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1 Fisher’s Geometric Model Simulations19

We model adaptive walks in sexual diploid populations with Wright-Fisher simulations20

using Fisher’s geometric model (FGM) as in Sellis et al. (2011). FGM is a phenotypic21

model, where the phenotype is represented as a point in n-dimensional coordinate space.22

We assume phenotypes are additive, such that the phenotype of a diploid individual is the23

midpoint of the phenotypes of the constituent alleles (Sellis et al. 2011). Note that this24

does not assume that alleles are additive in fitness space. Mutations in this system are25

vectors that modify the phenotype of the allele.26

Since FGM is a phenotypic model, the underlying genetic basis for the mutations is not27

explicitly defined. For the purposes of this work, we will assume that there is a large28

number of completely linked loci underlying the phenotype, resulting in an infinite alleles29

model with no recombination. Each phenotypic mutation vector could be thought of as30

representing a mutation at a unique locus in this underlying genotype space, analogous to31

different functional mutations in a single gene.32

1.1 FGM models33

We explore three different parameterizations of FGM. In all parameter regimes, the34

population initially contains a single allele with a distance of 2 units from the optimum.35

The first two regimes use a symmetrical Gaussian fitness landscape with a single36

phenotypic optimum at the origin of the form37

w(x) = e−x
2/2 (1)

in two and 25 phenotypic dimensions, respectively, where x is the distance of the38
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individual’s phenotype to the optimum. The mutation rate is set to µ = 5 ∗ 10−6, which39

results in one mutation every 20 generations on average with a diploid population of size40

N = 5000. Mutations are vectors in phenotype space that get added to the phenotypic41

position of the underlying allele to generate a new allele. The angle of the mutation vector42

is drawn from a spherically uniform distribution, while the magnitude of the mutation43

vector is drawn from an exponential distribution. For the two dimensional regime, the44

mean of the mutational magnitude is 0.5, while for the 25 dimensional regime, the mean is45

set to 5. The mutational magnitudes were chosen to generate sufficient numbers of46

adaptive walks both with and without overdominant mutations.47

We are forced to use a larger mutational magnitude for the 25 dimensional regime, as the48

magnitude of the component of the mutation vector in the direction of the phenotypic49

optimum becomes smaller when the number of dimensions increases. Once this component50

becomes too small, most mutations are nearly neutral in fitness effect and are mostly lost51

from the population. Thus, without increasing the mutational magnitude to compensate52

for this effect, it would be impossible for us to generate adaptive trajectories of sufficient53

length for our analysis. Despite this correction, we still had trouble sampling a sufficient54

number of trajectories without overdominant mutations for our statistics, as the fraction of55

adaptive mutations that are overdominant increases with increasing dimensionality under56

phenotypic additivity (Sellis et al. (2011), Figure S2), so we had to run additional57

simulations until we obtained another 200 simulations with at least 5 adaptive mutations58

that did not contain any balanced states.59

The third parametrization of FGM is another two-dimensional landscape with a different60

Gaussian fitness function. The Gaussian fitness surface was first used by Lande (1976)61

under an assumption that the population is initially close enough to the optimum to be62

adapting under a concave-down surface (fitness increases at a slower rate as the phenotype63
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approaches the optimum). In our original simulations, the initial population is in a64

concave-up portion of the fitness surface, so we conducted further simulations with the65

above fitness function to ensure that the shape of the local fitness surface did not have a66

qualitative impact on our results. These additional simulations in two dimensions are67

conducted with:68

w(x) = e−x
2/18 (2)

69

This parametrization is chosen such that the initial population, at distance 2 from the70

optimum, is in the concave-down portion of the Gaussian curve and thus close to the71

optimum. The remainder of the parameters (µ, N, and mutational magnitude) are identical72

to the previous two-dimensional regime.73

1.2 Implementation of simulations74

The simulations use the code modified from Sellis et al. (2011) to allow for more than 275

dimensions. We perform 10,000 replicate simulations using a standard Wright-Fisher76

approach (Fisher 1930; Wright 1931) . Simulations are conducted for 10,00077

generations, where each generation consists of mutating alleles and then propagating alleles78

to the next generation. For propagation, all possible offspring genotypes are computed and79

assigned a weight proportional to their frequency (assuming that all offspring genotypes are80

in Hardy-Weinberg equilibrium based on the allele frequencies of the previous generation)81

multiplied by the fitness of the diploid offspring genotype. We then conduct multinomial82

sampling over these weighted offspring genotypes to determine the frequencies of the alleles83
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in the next generation (i.e., viability selection on the offspring). Complete source code is84

available at https://github.com/sunthedeep/Fisher-Geometric-Model.85

To conduct backward predictability inference, we identify the most frequent allele in each86

simulated population at the end of 10,000 generations of evolution and study the mutations87

present on that allele. We limit our analysis to studying the first five mutations of each88

adaptive walk and ignore simulations with fewer than five mutations in order to control for89

the length of the adaptive walk when studying predictability. We partition our90

five-mutation adaptive walks into those that do and those that do not contain91

overdominant mutations to study the impact of balanced states on predictability.92

1.3 Partitioning walks93

Throughout all of our analysis, we have separated walks with and without overdominant94

mutations. The methodology for this separation is as follows. For each FGM simulation,95

we have identified the most frequent allele at the end of the simulation, and isolated the96

first five mutations to occur on this allele. We first determine the time t5 at which the97

allele containing these first five mutations exceeded 5% frequency in the population. All98

time-points after t5 are no longer considered for analysis. At each generation t <= t5, we99

isolate all alleles in the population at >= 1% frequency. For every subset of these alleles,100

we compute their equilibrium frequencies and mean fitness using the method of Kimura101

(1956) (ST1.4). If a set of alleles generates a stable polymorphic state at equilibrium, we102

infer that there is an overdominant mutation present among those alleles. An FGM103

simulation is determined to contain an overdominant mutation if, for any generation104

t <= t5, the subset of alleles with the highest mean fitness at generation t is a stable105

polymorphism at equilibrium. For simplicity, we removed simulations that contained stable106

polymorphisms with >= 3 alleles for >= 50 generations so that we only need to consider 2107

allele balanced states for the remainder of this work.108

5

https://github.com/sunthedeep/Fisher-Geometric-Model


1.4 Computing whether a set of alleles generates a stable109

equilibrium110

The method of Kimura (1956) generates a square fitness matrix A of size n, where n is the111

number of alleles present at the locus at non-zero frequency. The value of Ai,j (row i,112

column j of matrix A) is the fitness of the genotype containing alleles i and j. The system113

of alleles is stable if: 1) by replacing each column of A with 1’s and computing the114

determinant of the resulting matrix, the sign of the determinant is always positive and 2)115

the matrix T, where ti,j = Ai,j − Ai,n − Aj,n + An,n, must be negative definite. The116

frequencies of each allele and mean fitness can also be computed from these matrices. For a117

further discussion of computing the stability of a balanced system, please see Kojima118

(1959); Mandel (1959); Kingman (1961).119

1.5 Identification of hidden alleles120

We identify hidden alleles (Figure 4b) by comparing the set of alleles present in the121

equilibrium state of each generation throughout a given FGM simulation from ST1.3 to the122

set of 5 alleles along the direct mutational trajectory from the ancestral allele to the123

5-mutant allele (i.e. the 0, 1, 2, 3, 4 and 5- mutant alleles). Any allele that is present in the124

equilibrium states, but not part of the mutational trajectory of the 5-mutant allele, is125

deemed a hidden allele.126

2 Backward Predictability Inference127

Backward predictability inference seeks to reconstruct the order in which a set of128

mutations arose in an adaptive trajectory. By estimating the likelihood of every possible129

order, we can try to predict the “true” adaptive trajectory as the inferred trajectory with130

the highest probability. We can also study the probability distribution of all of the possible131

adaptive trajectories to understand how predictable the system is overall.132
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Experimental studies conducting backward predictability inference assumed a strong133

selection / weak mutation (SSWM) model of evolution (Weinreich et al. 2006), which we134

also use in our study. With the SSWM assumption, the population is assumed to reach135

equilibrium after the successful invasion of each mutation before the next mutation is136

introduced. This is appropriate as our per-generation mutation rate of 0.05 is much smaller137

than one. For simplicity of analysis. we also assume that all balanced states contain138

exactly two alleles, as we have excluded all simulations that generated balanced states with139

3 or more alleles.140

We utilize two variants of the backward predictability inference method. The first, which141

we call the fixation assumption method (FA method), assumes that every mutation that142

successfully invades the population reaches fixation, and is comparable to the method of143

Weinreich et al. (2006). The second, which we call the polymorphism assumption144

method (PA method), allows for the presence of stable two-allele polymorphic states.145

We conduct backward predictability inference within the framework of FGM. We explicitly146

model the phenotypes of the alleles and mutation vectors, and use the same fitness147

functions as in the FGM simulations to compute fitness.148

2.1 Computing the likelihood of a particular order of mutations149

We begin with an overview of the backward predictability inference method used by150

Weinreich et al. (2006) and then continue on to a description of our implementation of151

the FA and PA methods.152

Weinreich et al (2006) inference method Weinreich et al (2006) describe the153

probability of the ancestral allele (Awt) evolving into the derived allele containing all 5154

mutations available (Ader) going through a particular order of mutations (Mi) with155
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intermediate alleles a, b, c and d. This can be computed as156

Pr(Mi) = Pr(Awt −→ a −→ b −→ c −→ d −→ Ader)

= Pr(Awt −→ a) ∗ Pr(a −→ b) ∗ Pr(b −→ c) ∗ Pr(c −→ d) ∗ Pr(d −→ Ader) (3)

because “along any particular trajectory the choice of each next fixation is statistically157

independent of all previous fixations. Here, the Pr(i −→ j) are the conditioned fixation158

probabilities of a particular single mutant neighbour j of an allele i given by159

Pr(i −→ j) =
Πi−→j∑

kεNi

Πi−→k

(4)

where Πi−→j is the unconditioned fixation probability of allele j from allele i, and Ni is the160

set of all mutational neighbours of allele i.” (modified from Weinreich et al. (2006)161

Supplementary Methods). In essence, (Weinreich et al. 2006) compute the probability of162

a particular order of mutations as the product of the probabilities of each mutation in that163

order successfully fixing in the population in succession.164

The FA and PA methods Our methods for backward predictability inference are165

necessarily more complicated.166

First, since we are using a diploid model, new mutations occur as heterozygotes and thus167

must invade the population as heterozygotes. Therefore, we cannot compute the fixation168

probability, but must compute the probability of an allele successfully invading the169

population from low frequency and reaching its equilibrium frequency. Secondly, in the170

presence of a balanced polymorphism in the PA method, new mutations can occur on171

multiple available backgrounds. This allows for the generation of hidden alleles when172
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conducting the PA method. This also implies that it may take more than 5 mutations in a173

mutation order to generate the allele with all 5 mutations. Finally, a new mutation in the174

PA method that successfully invades can either fix or balance with any of the alleles175

already present in the population, whereas a successful invasion by new mutation in the FA176

method can only result in fixation. As these properties make it challenging to describe the177

FA and PA methods using closed form analytic equations as in Weinreich et al. (2006),178

we will describe the recursive algorithm we use to implement the FA and PA methods179

using pseudocode. Every call to the algorithm keeps requires a population state (set of180

alleles and their frequencies), a set of alleles observed during the recursion and the181

probability of the mutation order so far. Using global variables outside of the algorithm, we182

keep track of Φ(Mi), the unconditioned probability of every possible mutation order Mi.183

All Φ(Mi) are initialized to 0.184
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computeBackwardInference(Sexisting, A
existing, Pexisting)

1: Sexisting ← the population state = a set of alleles and their frequencies
2: Aexisting ← the set of alleles observed so far in this mutation order
3: Pexisting ← the unconditioned probability of this order of mutations so far
4: if AderεSexisting then
5: We need to first determine the order Mi in which the mutations were introduced into

Ader and add Pexisting to the unconditioned probability for this order of mutations
(Φ(Mi))

6: return // We are done since we have successfully generated Ader

7: else
8: ρtotal = 0
9: for all new alleles An that can be generated by a single mutation on the alleles in

Sexisting, excluding those where An ∈ Aexisting do
10: for all pairs of alleles Ai, Aj in the set of alleles including An and every allele in

Sexisting do
11: Compute the frequency of Ai and Aj and the mean fitness of the population at

equilibrium assuming these are the only two alleles in the population
12: Snew =the pair of alleles and their frequencies with the highest mean fitness

computed in the preceding for loop excluding all alleles at frequency 0.
13: if An /∈ Snew then
14: An cannot invade Sexisting and can thus be ignored
15: else
16: compute P i

An = the probability of invasion of An into Sexisting through 10,000
forward Wright-Fisher simulations

17: The unconditioned probability of An succeeding in this population ρn = P i
An∗ the

frequency of the allele in Sexisting that was mutated to generate An

18: ρtotal+ = ρn
19: for all new alleles An with ρn > 0 do
20: Snew and ρn defined as above for An

21: if Using the FA method then
22: Snew = An at frequency 1 (fixation)
23: Anew = Aexisting ∪ An
24: Pnew = Pexisting ∗ ρn

ρtotal

25: computeBackwardInference(Snew, Anew, Pnew) // recursive call
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The initial call to this algorithm has Sexisting be the ancestral population used in the FGM185

simulations i.e. a population monomorphic for an allele two units from the optimum,186

Aexisting as the set containing Awt and Pexisting = 1. Once we have computed the187

unconditioned probability for every Mi (Φ(Mi)), we then use this information to compute188

the conditioned probability for each mutation order.189

Pr(Mi) =
Φ(Mi)∑
j

Φ(Mj)
(5)

Note that we track mutation orders by the order in which the mutations were introduced190

on allele Ader, which is always five mutations long, not the order in which the mutations191

were introduced in the population which is >= 5 mutations with the PA method but192

always exactly 5 mutations with the FA method.193

In both the FA and PA methods, we compute the invasion probability of a new mutation194

P i
An using 10,000 forward Wright-Fisher simulations. In these simulations, we set N =195

5,000 diploid individuals as in our FGM simulations, with no new mutations allowed.196

The probability of a new allele successfully invading and reaching the deterministically197

inferred stable equilibrium is then the fraction of Wright-Fisher simulations where An198

reaches 90% of its expected equilibrium frequency in Snew. These simulations are entirely199

separate from the FGM simulations used to generate the adaptive walks used throughout200

the rest of this work.201

We are forced to utilize empirical estimations through simulations and not the classical202

analytic solutions to compute P i
An (Haldane 1927; Kimura 1962) as many of the203

observed mutations have a selective advantage exceeding 100%, violating the assumptions204

of the analytic solutions that the mutations are weakly beneficial. Our simulations suggest205
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that the analytic solutions significantly overestimate the invasion probability under these206

conditions (data not shown).207

2.2 Testing the accuracy of the backward predictability inference208

methods209

We first test the accuracy of the FA and PA methods by running additional forward FGM210

simulations. For each set of 5 mutations observed in one of the original FGM simulations,211

we conduct 1000 additional FGM simulations where the only available mutations are these212

five. We terminate the simulation either at 10,000 generations or when Ader reaches 5%213

frequency in the population, whichever occurs first, and remove from consideration all214

simulations where Ader did not occur by 10,000 generations. We estimate Pr(Mi) as the215

fraction of the additional FGM simulations that have mutation order Mi.216

2.3 Quantifying backward predictability217

To quantitatively study the results of backward predictability inference across simulations,218

we define the effective number of paths statistic as219

1∑
i

Pr(Mi)2
(6)

The effective number of trajectories is defined to be 0 when there are no viable trajectories,220

e.g.
∑
i

Pr(Mi)
2 = 0. This is similar to the effective number of alleles in a population221

(Kimura and Crow 1964), the predictability metric of Roy (2009) and the entropy222

metric of Palmer et al. (2013).223

When a single trajectory dominates the probability density, the effective number of224
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trajectories is close to 1, indicating high backward predictability. On the other hand, if225

every trajectory has equal probability, Pr(Mi) = 1
n!

since we know that there must be n!226

possible mutation orders for a system of n mutations. In this situation, the effective227

number of paths = n! = total number of possible mutation orders, indicating low backward228

predictability. This provides a single metric of the diversity of mutational orders that are229

possible while accounting for their relative likelihoods and summarizes the backward230

predictability of the adaptive walk. We also use the mean path divergence metric, which231

uses the Hamming distance between every pair of viable mutation orders scaled by the232

inferred probability of the mutation orders to quantify backward predictability233

(Lobkovsky et al. 2011, 2013) and get consistent results.234

2.4 Phenotypic similarity of inferred trajectories from backward235

predictability inference236

The effective number of paths metric captures the backward predictability of a set of237

mutations in terms of the likelihood of observing a given order of mutations. However, we238

can also consider the deviation of each of these possible trajectories from the true239

trajectory observed in the FGM simulations in phenotype space. In particular, we want to240

know if the presence of an overdominant mutation in a simulation influences the241

phenotypic similarity of incorrect mutation orders to the true mutation order.242

We compute a maximum distance metric between the phenotypic states of each inferred243

trajectory and the phenotypic states of the true trajectory that were identified in ST1.3,244

excluding any inferred trajectory that matches the mutation order of the true trajectory.245

We first compute the average phenotype in each trajectory in all generations t < t5. We246

use the alleles and their frequencies of equilibrium states computed in every generation247

t < t5 in section 1.3, and compute the average phenotype of the generation as the midpoint248

of the phenotypes of every genotype weighted by their frequencies at Hardy-Weinberg249
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equilibrium. We compute the largest distance from any phenotype in the alternative250

mutation order to the phenotypes of the true adaptive trajectory. We then average all of251

these phenotypic distances for all inferred trajectories to compute the average phenotypic252

distance statistic. We also conduct randomized trials where we randomly select a viable253

inferred trajectory as the true trajectory and redo the analysis.254

2.5 Maximum distance of observed trajectory from the optimal255

trajectory as a metric of forward predictability256

For every forward FGM simulation, we compute the average phenotype of the population257

at every generation (the the midpoint of the phenotypes of every genotype present in the258

population weighted by their frequencies). We then compute the minimum distance of each259

these average phenotypes from the optimal trajectory (the line segment connecting the260

ancestral phenotype and optimal phenotype) for each generation t < t5, and then take the261

maximum of these values as the maximal distance of the observed trajectory from the262

optimal trajectory for that particular simulation in a manner similar to the phenotypic263

similarity metric used in section 2.4.264

2.6 Example of backward predictability inference265

As a concrete example of how backward predictability inference is conducted, we will use a266

system of two mutations, m1 and m2. Let Awt be the ancestral allele, A1 be the allele267

containing mutation m1, A
2 be the allele with m2 and A1,2 = Ader be the the derived allele268

containing both available mutations m1 and m2.269

There are 2! = 2 different orders of mutations that can generate allele Ader. In the270

mutation order under consideration, m1 occurs first, then m2:271
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M1 = Awt
m1−→ A1 m2−→ Ader272

the remaining mutation order is:273

M2 = Awt
m2−→ A2 m1−→ Ader274

Let us first consider the FA method, using example data in Table S1, the results of which275

are shown in Figure S11. Using our recursive procedure, we start with Sexisting = Awt at276

fixation. There are two possible mutations in this population, where m1 occurs on Awt to277

get A1 and where m2 occurs on Awt to get A2. We compute the unconditioned probability278

of allele A1 successfully being generated and invading the population, ρA1 on Sexisting and279

similarly for A2. These are 0.3 and 0.5, respectively. We then compute the conditioned280

probabilities of success for these alleles. For A1, this is 0.3
0.3+0.5

= 0.375, while it is281

0.5
0.3+0.5

= 0.625 for A2 (Table S1). In essence, a single successful mutation in Sexisting (Awt282

fixed in the population) will generate an Snew of A1 fixed in the population 0.375 of the283

time, and an Snew of A2 fixed in the population 0.625 of the time. From here, we can then284

do the recursive call for the next step of the inference procedure for each of these new285

population states. These two recursive calls will be: 1) Snew = A1 fixed in the population,286

with Anew = Awt, A1 and Pnew = 1 ∗ 0.375 = 0.375 and 2) Snew = A2 fixed in the287

population, with Anew = Awt, A2 and Pnew = 1 ∗ 0.625 = 0.625288

Let us now consider the first of these recursive calls, when A1 is the first successful allele to289

invade the population and Pexisting for this call is 0.375. In this case, there is only one290

available mutation, m2, which will generate the fully adapted allele Ader with an291

unconditioned probability of 0.6 but a conditioned probability of 1. We now have Snew =292

Ader fixed in the population, with a Pnew of 0.375 ∗ 1 = 0.375. We then call the recursive293

condition again with this new Snew, where we find that the termination condition of having294

Ader in Sexisting has been reached. Therefore, we are done, and the unconditioned295
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probability of the mutation order used to get Ader this time, namely Awt
m1−→ A1 m2−→ Ader is296

0.375.297

A similar procedure with the other initial recursive call, where m2 was the first mutation,298

finds that the unconditioned probability of the mutation order Awt
m2−→ A2 m1−→ Ader is299

0.625. Therefore, we find two viable orders of mutations, one with conditioned probability300

0.375
0.375+0.625

= 0.375 and one with probability 0.625
0.375+0.625

= 0.625. Note that with the FA301

method, the conditioned probability for a mutation order always equals its unconditioned302

probability since the number of mutations introduced into the population is always equal303

to the number of mutations in the mutation order. This is not the case in the PA method,304

as we will see below.305
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Table S1306

Sexisting Mutation New Allele An Invasion Prob P i
An ρn Pexisting Pnew Snew Mutation Order for Adapted Allele Ader

Awt m1 on Awt A1 0.3 0.3 1 0.375 A1, freq = 1

Awt m2 on Awt A2 0.5 0.5 1 0.625 A2, freq = 1

A1 m2 on A1 Ader 0.6 0.6 0.375 0.375 Ader, freq = 1 Awt
m1−→ A1 m2−→ Ader

A2 m1 on A2 Ader 0.2 0.2 0.625 0.625 Ader, freq = 1 Awt
m2−→ A2 m1−→ Ader

307
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We then turn to the PA method, using a different pair of mutations with example data in308

Table S2 and the results in Figure S12. In this case, let us suppose that the A1 can309

successfully invade the ancestral population consisting of Awt to result in a balanced state310

consisting of A1 and Awt at intermediate frequencies. Meanwhile, A2 can also successfully311

invade the ancestral population, but it fixes, resulting in Snew consisting of A2 at frequency312

1. Given their relative invasion probabilities and the fact that Awt was initially fixed, we313

find that the conditioned probability of A1 invading Awt and resulting in a balanced state314

= 1 (freq of Awt) * 0.2 (invasion probability of A1) / (1 ∗ 0.2 + 1 ∗ 0.35) = 0.36, while the315

probability of A2 being the next mutation in Awt is 0.64.316

For the next recursion step, let us consider the Sexisting of A1 and Awt at intermediate317

frequencies. There are two possible mutations in this scenario, in which mutation m2 can318

occur on either A1 or Awt to generate alleles Ader and A2, respectively. The successful319

invasion of A2 results in a Snew containing a balanced state consisting of both A1 and A2.320

The new allele Ader can also successfully invade the population and results in a stable321

polymorphism as well. Mutation m1 is not allowed to occur on Awt, since that would322

regenerate allele A1 which has already been observed in this trajectory so far. The323

conditioned probability of A2 succeeding in this population is 0.7∗0.14
0.7∗0.14+0.3∗0.6 = 0.35, while324

the conditioned probability of Ader succeeding is 0.65. The running probability of these two325

mutation orders after two mutations have been introduced in the population are326

0.36 ∗ 0.35 = 0.126 and 0.36 ∗ 0.65 = 0.234, respectively.327

Now let us consider the mutations on the Sexisting where both A1 and A2 exist as a328

balanced polymorphism. In this situation, there are two possible mutations, where m1 can329

arise on A2 to give the adapted allele Ader, and m2 can arise on A1 to also give the adapted330

allele Ader. Even though this is the same allele being generated by the two mutations, the331

initial frequency of A1 and A2 are different, giving rise to different unconditioned332
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probabilities of their occurrence. The m1 mutation has a conditioned probability of333

0.8∗0.4
0.8∗0.4+0.2∗0.4 = 0.8, while the m2 mutation has a conditioned probability of 0.2. The334

running probability after each of these mutations are 0.36 ∗ 0.35 ∗ 0.8 = 0.1008 and335

0.36 ∗ 0.35 ∗ 0.2 = 0.0252, respectively.336

The final possible trajectory, where m2 occurred first on Sexisting = Awt and resulted in the337

fixation of A2 has only one possible mutation. This is mutation m1 on A2 resulting in the338

allele Ader. Supposing that A1, 2 is deleterious in this situation, it cannot invade and339

therefore has 0 probability of occurring. We then terminate this recursion as there are no340

valid beneficial mutations available to this population.341

Finally, we now need to compute the conditioned likelihoods of each mutation order. We342

managed to successfully get Ader in 3 different ways when considering the mutations343

introduced into the population, but only 2 different ways when considering the mutations344

introduced onto the allele that generated Ader. The unconditioned probabilities of these345

two different mutation orders are: 0.234 + 0.0252 = 0.2592 for mutation order346

M1 = Awt
m1−→ A1 m2−→ Ader and 0.1008 for mutation order M2 = Awt

m2−→ A2 m1−→ Ader. The347

conditioned probabilities for these two mutation orders are thus 0.2592
0.2592+0.1008

= 0.72 and348

0.1008
0.2592+0.1008

= 0.28, respectively.349
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Table S2350

Sexisting Mutation An P iAn ρn Pexisting Pnew Snew Mutation Order of Ader ∈ Snew

Awt m1 A1 0.2 0.2 1 0.36 A1 freq = 0.3, Awt freq = 0.7

Awt m2 A2 0.35 0.35 1 0.64 A2 freq = 1

A1 freq = 0.3, Awt freq = 0.7 m2 on Awt A2 0.14 0.098 0.36 0.126 A1 freq = 0.2, A2 freq = 0.8

A1 freq = 0.3, Awt freq = 0.7 m2 on A1 Ader 0.6 0.18 0.36 0.234 Ader freq = 0.8, Awt freq = 0.2 Awt
m1−−→ A1 m2−−→ Ader

A1 freq = 0.2, A2 freq = 0.8 m1 on A2 Ader 0.4 0.32 0.126 0.1008 Ader freq = 1 Awt
m2−−→ A2 m1−−→ Ader

A1 freq = 0.2, A2 freq = 0.8 m2 on A1 Ader 0.4 0.08 0.126 0.0252 Ader freq = 1 Awt
m1−−→ A1 m2−−→ Ader

A2 freq = 1 m1 on A2 Ader 0 0 0.64 0 A2 freq = 1

351

352
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SUPPLEMENTARY FIGURES353

3 Supplementary Figures354

355

Figure S1. Maximum phenotypic deviation of the initial simulations in 2 dimensions with356

and without overdominant mutations from the optimal trajectory. Simulations without357

overdominant mutations are significantly closer to the optimal trajectory than those with358

overdominant mutations (Kolmogorov-Smirnov p = 10−7).359
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360

Figure S2. Similar to Figure 1 but for simulations at 25 dimensions. The inferred361

probabilities from both the FA method (r2 = 0.36, p < 10−10) and PA method (r2 = 0.65,362

p < 10−10) are significantly correlated with the true probabilities. The PA method is again363

significantly better correlated than the FA method (p < 10−10).364
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365

Figure S3. Similar to Figure 2 but for simulations in 25 dimensions. The slope for the FA366

method is not significantly different from the randomized trials (slope = 0.024, empirical367

p = 0.733), whereas the slope for the PA method is significantly better than all of the368

randomized trials (slope = 0.269, empirical p = 0.009).369

23



370

Figure S4. Similar to Figure 3 but for 25 dimension simulations (Kolmogorov-Smirnov371

p < 10−10).372
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373

Figure S5. Similar to Figure 4 but for 25 dimension simulations (slope = −0.22, empirical374

p < 0.01)375
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376

Figure S6. Similar to Figure 1 but for simulations in two dimensions close to the377

optimum. The inferred probabilities from both the FA method (r2 = 0.27, p < 10−10) and378

PA method (r2 = 0.52, p < 10−10) are significantly correlated with the true probabilities.379

The PA method is again significantly better correlated than the FA method (p < 10−10).380
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381

Figure S7. Similar to Figure 2 but for simulations in two dimensions close to the382

optimum. The slopes for both the FA method (slope = 0.092, empirical p = 0.968) and the383

PA method (slope = 0.232, empirical p = 0.419) are not significantly larger than the384

randomized trials.385
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386

Figure S8. Similar to Figure 3 but for simulations in two dimensions close to the387

optimum (Kolmogorov-Smirnov p = 10−10)388
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389

Figure S9. Similar to Figure 4 but for simulations in two dimensions close to the390

optimum (slope = −0.03, empirical p = 0.02)391
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392

Figure S10. Cartoon of maximum phenotypic deviation calculation for a single adaptive393

trajectory. Suppose the black lines correspond to the true adaptive trajectory of the394

population, where three total mutations have occurred in succession (three black arrows).395

Consider two alternative orders of these mutations, in blue and red, both of which clearly396

deviate from the true adaptive trajectory in phenotype space. The distance A represents397

the maximal phenotypic deviation of the blue trajectory from the true adaptive trajectory,398

while the distance B represents the same thing for the red adaptive trajectory. This is399

essentially the largest distance from any point in the alternative mutation order to the true400

adaptive trajectory.401
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402

Figure S11. Along with table S1, representation of the FA method example in section403

S2.6. Arrows represent transitions after the introduction of an available mutation into the404

population, with the mutation above the arrow and the conditioned probability of the405

mutation successfully being generated and invading the population below the arrow.406
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407

Figure S12. Along with table S2, representation of the PA method example in section408

S2.6. Note that this example uses a different set of mutations than the example for the FA409

method. Arrows represent transitions after the introduction of an available mutation into410

the population, with the mutation above the arrow and the conditioned probability of the411

mutation successfully being generated and invading the population below the arrow.412

Successful mutations that result in a balanced polymorphism are represented by the413

presence of multiple alleles each at some frequency (f).414
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