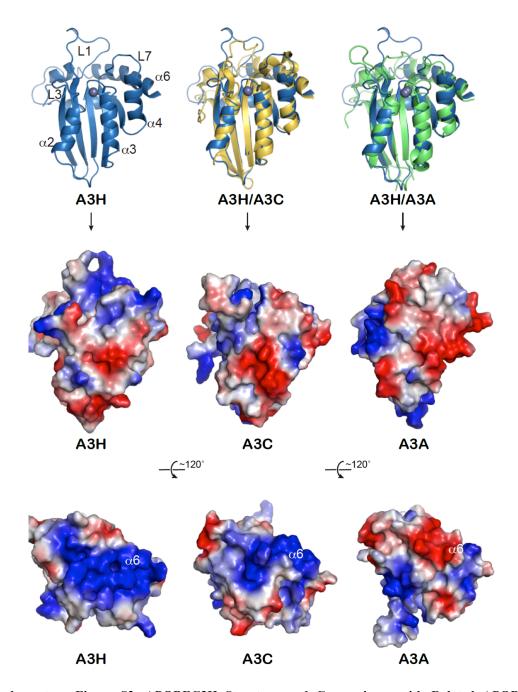

Supplementary Materials for:

The Antiviral and Cancer Genomic DNA Deaminase APOBEC3H Is

Regulated by an RNA-Mediated Dimerization Mechanism


Nadine M. Shaban, ¹⁻⁴ Ke Shi, ¹⁻³ Kate V. Lauer, ¹⁻⁴ Michael A. Carpenter, ¹⁻⁵ Christopher M. Richards, ¹⁻⁴ Michael W. Lopresti, ¹ Daniel Salamango, ¹⁻⁴ Jiayi Wang, ¹⁻⁴ Surajit Banerjee, ⁶ William L. Brown, ¹⁻⁴ Hideki Aihara, ¹⁻³ and Reuben S. Harris ^{1-5,7,*}

Supplementary Information: Figures S1, S2, and S3

Supplementary Figure S1. Electron Density Map for APOBEC3H-Duplex RNA Crystal Structure

(A and B) The experimental electron density map, obtained using SAD phasing method (see Methods) from zinc anomalous signal and contoured at 1σ (blue and purple mesh), reveals an A-form RNA duplex in the A3H crystal structure. Density is clearly visible for double helical-RNA in an A-form structure. The final refined RNA has a C3'-endo conformation for each ribose sugar pucker. The final refined RNA also has an average X-displacement of -5.5 Å, an average rise between adjacent base pairs of 2.86 Å, and an average twist angle between adjacent base pairs of 29.3°, respectively.

Supplementary Figure S2. APOBEC3H Structure and Comparisons with Related APOBEC Family Members

Top row: Ribbon schematic of an A3H monomer from the x-ray structure determined here in comparison by superposition with human A3A (pdb 5SWW) and human A3C (pdb 3V0W). Notable differences include a longer loop 1 in A3H, a shorter loop 3 in A3H, and an amino terminal 12-residue extension in A3A that has yet to resolve structurally.

Middle row: Electrostatic potential of A3H, A3A, and A3C in the same orientation as panel A, highlighting the conserved zinc-coordinating active site region.

Bottom row: 120 degree rotation of structures in the middle row, highlighting the RNA binding domain of A3H (patch 2) and a homologous basic patch in A3C. In contrast, A3A lacks an analogous positively charged surface region in the protein surface defined by the α 6-helix.

Supplementary Figure S3. APOBEC3H Conservation

- (A) Clustal Omega alignment of human A3H and homologous primate A3H enzymes highlighting loop 1, loop 3, loop 7, and α6-helix regions. Numbers correspond to the 183 amino acid splice variant of human A3H haplotype II. GenBank accession numbers: Human A3H: NP_861438.3; Chimpanzee A3H: NP_001136078.1; Gorilla A3H: ACJ60858.1; Orangutan A3H: XP_009232662.1; Siamang Gibbon A3H: ACJ60860.1; African Green Monkey (AGM) A3H: NP_001332866.1; Olive Baboon A3H: NP_001332865.1; Rhesus Macaque A3H: NP_001332864.1.
- (B) Clustal Omega alignment of human A3H and homologous mammalian A3Z3 enzymes. Format similar to panel A. GenBank accession numbers: Human A3H: NP_861438.3; Pig A3Z3: ACH69768.1; Cow A3Z3: NP_001333053.1; Sheep A3Z3: NP_001154853.1; Horse A3Z3: NP_001229380.1; Dog A3Z3: NP_001333059.1; Cat A3Z3: NP_001106181.2.
- (C) Clustal Omega alignment of human A3H, A3C, and AID. Format similar to panel A. GenBank accession numbers: Human A3H: NP_861438.3; human A3C: NP_055323.2; human AID: NP_065712.1.