
Supplementary Information

Supplementary Note 1: Conditions for and Proof of Conver-
gence of Principal Components
Lemma: Let X be a matrix of expression data with signal both due to artifacts A, and due to
a genuine network of linear expression relationships. Then under the conditions below and pro-
vided that the node degree distribution of the network follows a power-law, the principal components
of X consistently estimate a linear space spanning the artifacts A and not the network structure.

Proof:
Decompose a gene expression matrix with n samples and m genes Xm×n = (x1, ....,xm)t as follows:

X = µ× 1 + ΓAA + ΓNN + U

where,

• µ = (µ1, ....., µm)t is an m dimensional column vector with µi := E [xi], i = 1, ....,m and 1 is an
n dimensional row vector of 1’s.

• There are L artifacts or confounders (L < n), forming an L × n matrix A with an associated
coefficient matrix ΓA.

• N is an m× n matrix of expression data without any network structure, with associated m×m
coefficient vector ΓN . Features i and k are share an edge if γNik or γNki are nonzero. This represents
a linear relationship between the expression levels of genes. To avoid circularity, the diagonal
entries of ΓN are set to zero.

• U is an m× n matrix of pairwise independent mean zero random noise

Based on our previous work [1], we make the following additional assumptions about the behavior of
the data in the experiment.

1. The number of non-zero entries in the network ΓN follows a power-law distribution with an expo-
nential coefficient 2 < α < 3 [2]. As we point out in the main text power-law degree distributions
have been observed in gene expression networks, for example yeast co-expression networks [3, 4]
and Caenorhabditis elegans [5], and the preferential attachment model characteristic of scale-free
networks has been explained by gene duplication [6, 7, 8]. Further, network inference algorithms
such as WGCNA also employ this assumption.

1



2. The entries in the artifact and network coefficient, pre-network expression data, and independent
noise matrices have bounded fourth moment:

0 < E
[(
γAi,j

)4
]
≤ BγA

0 < E
[(
γNi,j

)4
]
≤ BγN

0 < E
[
(Ni,j)4

]
≤ BN

0 < E
[
(ui,j)4

]
≤ BU .

Therefore, by Liyapunov’s inequality, there exist (finite) bounds B′γA , B′γN , B′N , and B′U , on the
variances:

0 < Var
(
γAi,j

)
= E

[
(γAi,j)2

]
≤ B′γA

0 < Var
(
γNi,j

)
= E

[
(γNi,j)2

]
≤ B′γN

0 < Var (Ni,j) = E
[
(Ni,j)2

]
≤ B′N

0 < Var (ui,j) = E
[
(ui,j)2

]
≤ B′U .

This is true for most common distributions used to model gene expression data or a suitably
transformed version.

3. There exists a positive definite matrix ∆ for which the following hold:

(a) lim
m→∞

‖ 1
m
AtΓtAΓAA− At∆A‖F = 0

(b) At∆A has eigenvalues λ1 > .... > λL > λL+1 = .... = λn = 0

This assumption means that the batch effects and other artifacts are sufficiently widespread as
to affect a fixed and non-negligable percentage of the genes in the data set.

Additionally, we assume without loss of generality, that expression levels of each gene in X is centered.

4. µ = ~0.

5. The expression data in the absence of any network structure, N , has mean E [N ] = ~0 where ~0
is an m-dimensional column vector. Further, in the absence of network structure, the genes are
pairwise independent. Therefore, by Assumption 2 the entries of N converge almost surely to
zero.

Based on this model, we show that the principal components of the matrix X estimate the artifacts
and are not corrupted by the signal from the network terms.
The eigen-vectors of the matrix 1

m
XTX are equal to the right singular vectors of the matrix X. Given
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observed data X, the empirical variance-covariance matrix of the data Σ̂ takes the form:

Σ̂ = 1
m

XtX

= 1
m

(ΓAA+ ΓNN + U)t (ΓAA+ ΓNN + U)

= 1
m

(
AtΓtA +N tΓtN + Ut

)
(ΓAA+ ΓNN + U)

= 1
m

(AtΓtAΓAA+ AtΓtAΓNN + AtΓtAU +N tΓtNΓAA+N tΓtNΓNN +N tΓtNU+

UtΓAA+ UtΓNN + UtU)

= 1
m

(
AtΓtAΓAA+ AtΓtAΓNN +N tΓtNΓAA+N tΓtNΓNN

)
+

1
m

(
AtΓtAU +N tΓtNU + UtΓAA+ UtΓNN + UtU

)
= 1
m
AtΓtAΓAA+ 1

m
AtΓtAΓNN + 1

m
N tΓtNΓAA+ 1

m
N tΓtNΓNN+

1
m
AtΓtAU + 1

m
N tΓtNU + 1

m
UtΓAA+ 1

m
UtΓNN + 1

m
UtU

We will show that as the number of features grows, the empirical variance-covariance matrix, after
centering by an estimate of the background variation, converges to the same thing as if there were no
network structure:

X̃unstr := ΓAA+ U.

Then we can show that the principal components of the confounded matrix are consistent estimators
of the confounding variables.
Therefore, we will show that, holding the number of observations n fixed, there exits an n× n matrix
L so that:

lim
m→∞

1
m

(
X̃unstr

)t
X̃unstr − σ̂2

aveI = L

lim
m→∞

1
m

XtX− σ̂2
aveI = L

where, borrowing the notation from Leek 2011, we let VL(X) = {v1(X), ...., vL(X)} be a matrix of the
first L right singular vectors of X and Γ̂L the least squares estimates from regressing X on VL(X).
Then, we define:

σ2
ave := 1

m(n− L)‖X− Γ̂LVL(X)‖F ,

where we estimate L using a permutation approach through the ‘num.sv’ function in the sva package.
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To determine L, we write:

1
m

(
X̃unstr

)t
X̃unstr − σ̂2

aveI = 1
m

(ΓAA+ U)t (ΓAA+ U)− σ̂2
aveI

= 1
m

(
AtΓtA + U t

)
(ΓAA+ U)− σ̂2

aveI

= 1
m
AtΓtAΓAA+ 1

m
AtΓtAU + 1

m
U tΓAA+ 1

m

t

U − σ̂2
aveI

Letting m grow,

lim
m→∞

1
m

(
X̃unstr

)t
X̃unstr − σ̂2

aveI

= lim
m→∞

1
m

ΓtAΓAA+ lim
m→∞

1
m
AtΓtAU + lim

m→∞

1
m
U tΓAA+ lim

m→∞

1
m
U tU − σ̂2

aveI

= At∆A+ lim
m→∞

1
m
AtΓtAU + lim

m→∞

1
m
U tΓAA+ lim

m→∞

1
m
U tU − σ̂2

aveI

Leek 2011 shows that the terms limm→∞
1
m
AtΓtAU + limm→∞

1
m
U tΓAA both converge almost surely to

zero by the Kolmogorov Strong Law of Large Numbers (KSLLN). Further, Leek 2011 uses KSLLN
to show that the off diagonal elements of 1

m
U tU converge almost surely to zero, while the diagonals

converge almost surely to σ̂2
ave. Therefore,

lim
m→∞

1
m

(
X̃unstr

)t
X̃unstr − σ̂2

aveI = At∆A,

and
L = At∆A.
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The limit of the empirical variance-covariance matrix is as follows:

lim
m→∞

1
m

XtX− σ̂2
aveI

= lim
m→∞

1
m
AtΓtAΓAA+ lim

m→∞

1
m

ΓAAtΓNN + lim
m→∞

1
m
N tΓtNΓAA+ lim

m→∞

1
m
N tΓtNΓNN +−σ̂2

aveI

lim
m→∞

1
m
AtΓtAU + lim

m→∞

1
m
N tΓtNU + lim

m→∞

1
m

UtΓAA+ lim
m→∞

1
m

UtΓNN + lim
m→∞

1
m

UtU− σ̂2
aveI

= lim
m→∞

1
m
AtΓtAΓAA+ lim

m→∞

1
m

ΓAAtU + lim
m→∞

1
m
U tΓAA+ lim

m→∞

1
m
U tU − σ̂2

aveI+

lim
m→∞

1
m
AtΓtAΓNN + lim

m→∞

1
m
N tΓtNΓAA+ lim

m→∞

1
m
N tΓtNΓNN + lim

m→∞

1
m

UtΓNN + lim
m→∞

1
m
N tΓtNU

= At∆A+ lim
m→∞

1
m
U tU − σ̂2

aveI + lim
m→∞

1
m
AtΓtAΓNN + lim

m→∞

1
m
N tΓtNΓAA+

lim
m→∞

1
m
N tΓtNΓNN + lim

m→∞

1
m

UtΓNN + lim
m→∞

1
m
N tΓtNU

= At∆A+ lim
m→∞

1
m
AtΓtAΓNN︸ ︷︷ ︸
(1)

+ lim
m→∞

1
m
N tΓtNΓAA︸ ︷︷ ︸
(2)

+ lim
m→∞

1
m
N tΓtNΓNN︸ ︷︷ ︸
(3)

+

lim
m→∞

1
m

UtΓNN︸ ︷︷ ︸
(4)

+ lim
m→∞

1
m
N tΓtNU︸ ︷︷ ︸

(5)

We consider the convergence of (1) through (5) separately:
1.

lim
m→∞

1
m
AtΓtAΓNN = lim

m→∞
At

1
m

ΓtAΓNN

We first consider Q := 1
m

ΓtAΓN , an L × m matrix with entries indexed by l ∈ {1, ..., L}, k ∈
{1, ...,m} :

qlk = Ql,k

= 1
m

m∑
j=1

ΓAj,lΓNj,k

= 1
m

m∑
j=1

γAj,lγNj,k

= 1
m

∑
{j:γNj,k 6=0}

γAj,lγNj,k + 1
m

∑
{j:γNj,k=0}

γAj,lγNj,k

= 1
m

∑
{j:γNj,k 6=0}

γAj,lγNj,k + 1
m

∑
{j:γNj,k=0}

γAj,l × 0

= 1
m

∑
{j:γNj,k 6=0}

γAj,lγNj,k
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Suppose that there are 0 ≤ d ≤ m indices j for which γNj,k 6= 0, so that there are d terms γAj,lγNj,k
in the summation contributing to qlk. We can re-index these terms as γAj′,lγNj′,k , j

′ = 1, ..., d.
For any fixed k, whenever γNj,k , necessarily genes k and j share an edge. Therefore, given d
non-zero coefficients γNj,k , gene k has at least degree d. However, [9] show that for scale free
networks following a power-law degree distribution pk ∼ kα−1, as assumed in our framework, the
maximum degree of a vertex in the network follows kmax ∼ m

1
α−1 , and d ≤ m

1
α−1 . Therefore, we

can write each element as:

qlk = 1
m

∑
{j:γNj,k 6=0}

γAj,lγNj,k

= 1
m

d∑
j′=1

γAj′,lγNj′,k

= d

m

1
d

d∑
j′=1

γAj′,lγNj′,k

≤ m
1

α−1

m

1
d

d∑
j′=1

γAj′,lγNj′,k

= m−1m
1

α−1
1
d

d∑
j′=1

γAj′,lγNj′,k

= m
2−α
α−1

1
d

d∑
j′=1

γAj′,lγNj′,k

= m
−(α−2)
α−1

1
d

d∑
j′=1

γAj′,lγNj′,k

= 1
m

α−1
α−2

1
d

d∑
j′=1

γAj′,lγNj′,k

By Assumption 1 (2 < α < 3), so that α−1
α−2 > 1 and lim

m→∞
1

m
α−1
α−2

= 0.

Now, consider the expectation of the terms inside of the summation. For any j′, applying the
Cauchy-Schwarz inequality to |γAj′,l| and |γNj′,k |

E
[
|γAj′,lγNj′,k |

]
≤
√
E
[
|γAj′,l |2

]
E
[
|γNj′,k |2

]
=
√
E
[
(γAj′,l)2

]
E
[
(γNj′,k)2

]
≤
√
B′γA ×B′γN By Assumption 2

= B∗ where we define the bound B∗ :=
√
B′γA ×B′γN ,

and
−∞ < −B∗ ≤ E

[
γAj′,lγNj′,k

]
≤ B∗ <∞,
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and by the Strong Law of Large Numbers,

1
d

d∑
j′=1

γAj′,lγNj′,k
a.s.−−→ E

[
γAj′,lγNj′,k

]
,

therefore, for each l, k:

qlk ≤
1

m
α−1
α−2

1
d

d∑
j′=1

γAj′,lγNj′,k
a.s.−−→ 0

s
and

Q
a.s.−−→ 0.

Recall, the matrix of artifacts A is L× n dimensional, so that it is fixed with respect to m, and,
as shown in Assumption 5, N a.s.−−→ 0, so that by Slutsky’s Theorem:

lim
m→∞

1
m
AtΓtAΓNN = 0

2.
lim
m→∞

1
m
N tΓtNΓAA

By symmetry, the same argument as in (1) holds, and

lim
m→∞

1
m
N tΓtNΓAA = 0

3.
lim
m→∞

1
m
N tΓtNΓNN = lim

m→∞
N t 1

m
ΓtNΓNN

We will first consider P := 1
m

ΓtNΓN , an m×m matrix with entries indexed by l, k ∈ {1, ...,m} :

plk = Pl,k

= 1
m

m∑
j=1

ΓNj,lΓNj,k

= 1
m

m∑
j=1

γNj,lγNj,k

We will consider the diagonal and off-diagonal entries of P separately. The diagonal entries
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(k = l) take the form:

pll = 1
m

m∑
j=1

γNj,lγNj,l

= 1
m

m∑
j=1

γ2
Nj,l

= 1
m

∑
{j:γNj,l 6=0}

γ2
Nj,l

+ 1
m

∑
{j:γNj,l=0}

γ2
Nj,l

= 1
m

∑
{j:γNj,l 6=0}

γ2
Nj,l

Now, whenever γNj,l 6= 0, by definition, genes j and l share an edge, so that d′, the number of j
such that γNj,l 6= 0 is equal to the degree of vertex l. Following the argument from the proof of
(1) , d′ ≤ m

1
α−1 , 2 < α < 3 and:

pll = 1
m

∑
{j:γNj,l 6=0}

γ2
Nj,l

= 1
m

d′∑
j′=1

γ2
Nj′,l

= d′

m

1
d′

d′∑
j′=1

γ2
Nj′,l

≤ 1
m

α−1
α−2

1
d′

d′∑
j′=1

γ2
Nj′,l

Again, by Assumption 1
lim
m→∞

1
m

α−1
α−2

= 0.

Further, by Assumption 2
E
[
γ4
Nj′,l

]
≤ BγN ,

so that applying the Strong Law of Large Numbers,

1
d

d′∑
j′=1

γ2
Nj′,l

a.s.−−→ E
[
γ2
Nj′,l

]
≤ B′γN ,

and for each l:

0 ≤ pll ≤
1

m
α−1
α−2

1
d′

d′∑
j′=1

γ2
Nj′,l

a.s.−−→ 0.
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We now consider the off-diagonal entries(k 6= l):
plk = Pl,k

= 1
m

m∑
j=1

ΓNj,lΓNj,k

= 1
m

m∑
j=1

γNj,lγNj,k

= 1
m

∑
{j:γNj,l 6=0 and γNj,k 6=0}

γNj,lγNj,k + 1
m

∑
{j:γNj,l=0 or γNj,k =0}

γNj,lγNj,k

= 1
m

∑
{j:γNj,l 6=0 and γNj,k 6=0}

γNj,lγNj,k

If both γNj,l 6= 0 and γNj,k 6= 0 then gene j shares and edge with both genes l and k, so that
d′, the number of j such that γNj,l 6= 0 and γNj,k 6= 0 will be bounded by the maximum of the
degrees of vertices l and k. The same argument as used for the diagonal entries then follows:

plk ≤
1

m
α−1
α−2

1
d′′

d′∑
j′=1

γNj′,lγNj′,k ,

and
lim
m→∞

1
m

α−1
α−2

= 0.

Further, for any j′, by Assumption 2 and the Cauchy-Schwarz inequality to |γNj′,l | and |γNj′,k |

E
[
|γNj′,lγNj′,k |

]
≤
√
E
[
|γNj′,l|2

]
E
[
|γNj′,k |2

]
=
√
E
[
(γNj′,l)2

]
E
[
(γNj′,k)2

]
≤
√
B′γN ×B′γN

and
−∞ < −(B′γN )2 ≤ E

[
γNj′,lγNj′,k

]
(B′γN )2 <∞,

and by the Strong Law of Large Numbers,

1
d′′

d′′∑
j′=1

γNj′,lγNj′,k
a.s.−−→ E

[
γNj′,lγNj′,k

]
,

therefore, for each l 6= k:

plk ≤
1

m
α−1
α−2

1
d′′

d′′∑
j′=1

γNj′,lγNj′,k
a.s.−−→ 0.

Therefore, both the diagonal and off-diagonal entries in P converge to zero, and
P

a.s.−−→ 0.
As shown in Assumption 5, N a.s.−−→ 0, so that by Slutsky’s Theorem:

lim
m→∞

1
m
N tΓtNΓNN = 0
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4.
lim
m→∞

1
m

UtΓNN

This term converges almost surely to zero by the KSLLN since E [U ] = 0 and ΓN and U have
bounded fourth moments.

5.
lim
m→∞

1
m
N tΓtNU

This term converges almost surely to zero by the KSLLN since E [U ] = 0 and ΓN and U have
bounded fourth moments.

Therefore, all of the terms (1)-(5) converge almost surely to zero and the limit of the empirical variance-
covariance matrix is

lim
m→∞

1
m

XtX− σ̂2
aveI = At∆A + lim

m→∞

1
m
AtΓtAΓNN︸ ︷︷ ︸
(1)

+ lim
m→∞

1
m
N tΓtNΓAA︸ ︷︷ ︸
(2)

+

lim
m→∞

1
m
N tΓtNΓNN︸ ︷︷ ︸
(3)

+ lim
m→∞

1
m

UtΓNN︸ ︷︷ ︸
(4)

+ lim
m→∞

1
m
N tΓtNU︸ ︷︷ ︸

(5)

= At∆A = L

The principal components of this matrix consistently estimate the space spanend by the confounding
artifacts as we have previously demonstrated [1].

Supplementary Note 2: Online Methods
All analyses was performed using R and scripts are available on github at:
https://github.com/leekgroup/networks_correction

2.1 Simulation example
We construct a true underlying network with eight nodes that represent genes and three edges that
represent conditional dependencies between the genes. Next, we simulate 10,000 observations from
a multivariate normal distribution that encode the conditional dependencies corresponding to three
edges as non-zero entries in the precision matrix (Figure 1a). Then, to introduce confounding in the
data, we simulate a sample specific term from a standard normal distribution, and add a scalar mul-
tiple of that to genes 2 through 6 (Figure 1d). Finally, to correct the data, we regress out the first
principal component from the confounded data (Figure 1g). We used graphical lasso to reconstruct
networks using the three versions of the data. The code for this simulation example and network recon-
struction can be found at: https://github.com/leekgroup/networks_correction/blob/master/
publication_rmd/simulation_example_fig1/figure1.Rmd

2.2 Co-expression network reconstruction
To evaluate our correction method and it’s effect on reconstruction of co-expression networks, we used
two methods to infer the structure of gene co-expression networks: a) weighted gene co-expression
networks (WGCNA)[10] and b) graphical lasso[11]
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2.2.1 WGCNA

Weighted Gene Co-expression Network Analysis (WGCNA) identifies relationships between genes
through a power transform of the Pearson correlation coefficient. The algorithm first computes the
pairwise correlation between genes i and j:

aij = |corr(xi, xj)|β (1)
where β ≥ 1. β is the soft-thresholding parameter and it’s value is selected such that the networks
obtained are scale free. This is assesed by setting a scale-free topology fit R2 at least 0.85, between
log(p(k)) and log(k) where p(k) is the fraction of nodes with at least k neighbors[12, 10, 13, 14].Next,
the adjacency matrix between genes is transformed into a topological overlap matrix (TOM) [12].
The TOM is then input into an average linkage hierarchical clustering algorithm to identify network
modules – defined as ‘groups of nodes with high topological overlap and indicates high levels of co-
expression [12].

2.2.2 Graphical Lasso

Given our gene expression data contains N multivariate gaussian observations each of dimension p,
i.e. for each observation, we have expression measurements for p genes, graphical lasso estimates
the structure of the co-expression network over genes by maximizing L1-penalized log likelihood of a
multivariate gaussian with mean µ and covariance Σ over Θ:

log det Θ− trace(SΘ)− λ||Θ||1 (2)
Here S is the empirical covariance matrix and Θ = Σ−1 is the inverse covariance matrix. The L1
penalty on Θ induces and controls the amount of sparsity in the solution [11]. Hence, if an entry Θi,j

is 0, then variable i is conditionally independent of variable j given other variables. We used ‘QUIC’
package[15] in R to infer co-expression network structure with graphical lasso.

2.3 Determining sample specific estimate of GC bias
Studies have shown that GC content of genes have significant impact on sequencing read coverage in
DNA-seq and RNA-seq experiments. This eventually introduces sample specific biases in expression
quantification. To quantify the effect of GC bias, using transcript level fasta files from Gencode v25
we first computed the GC% of each transcript by:

GC%(T ) = (#G+ #C)
(#A+ #T + #G+ #C)

We summarized GC content of genes, by averaging over all transcripts belonging to the gene. Suppose
k transcripts were transcribed from gene Gi then,

GC%(Gi) =
∑k
j=1 GC%(Tj)

k

Next using a linear model, we obtain sample specific estimates of GC content of genes:
Ei = µ+ βi ×G

where, Ei is the vector of expression values of all genes in sample i, G is the GC content for each gene
and βi is the estimate of GC bias for sample i.
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2.4 Network reconstruction using GTEx data
We used gene expression RNAseq data from five tissues in the GTEx project [16] that included Adipose
Subcutaneous, Lung, Muscle Skeletal, Thyroid and Whole Blood. In each tissue we filtered for genes
that had scaled expression (counts scaled by the total coverage of the sample) of at least 0.1 in ≥ 25%
of total number of observations. Next, we log2 transformed the scaled gene expression data, and
performed following steps to select the most variable 5000 genes across five tissues:

(a) Select genes expressed in all five tissues.

(b) For each tissue, assign a rank to each gene by variance, such that the most variable gene is
ranked first and least variable gene is ranked in last.

(c) Using the ranked list of genes from five tissues, assign an average rank to each gene across five
tissues.

(d) Select top 5000 genes from the average rank list for network inference with WGCNA and graphical
lasso.

2.4.1 Network inference with WGCNA

For learning the structure of networks using WGCNA, for each tissue, we performed the following
steps for data correction and network inference:

• Raw uncorrected expression data:

1. We transformed the expression of each gene to a Gaussian distribution by projecting the
expression of each gene to the quantiles of a standard normal.

2. Next, to reconstruct unsigned weighted co-expression networks with WGCNA, we identified
lowest power for which scale-free fit R2 between log(p(k)) and log(k) exceeds 0.85. Here
p(k) is the fraction of node in the network with at least k neighbors

3. After that we used the ‘blockwisemodules‘ function in the WGCNA CRAN package to
perform co-expression module detection at varying cut-heights of hierarchical dendrogram
ranging from 0.9 to 1.0.

• Residuals from RIN/Exonic Rate/ GC bias:

1. First using a linear model, we regressed the RNA integrity number (RIN), exonic rate or
sample specific estimate of GC bias on the expression data and computed the residuals.

2. Next we transformed the expression of each gene to Gaussian distribution by projecting the
expression of each gene to the quantiles of a standard normal.

3. Then for module detection, we repeated step 2-3 from raw uncorrected expression data

• Residuals from principal components:

1. Using a permutation based approach, we determined the number of principal compo-
nents to correct the data for with the ‘num.sv’ function in the Bioconductor package
sva.(Supplementary Table 1)
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2. Next we normalized the expression data such that expression of each gene was centered at
mean and had unit standard deviation. After that, we performed singular value decompo-
sition of the normalized expression data.

3. Using a linear model we regressed the top s principal components (s as determined in step
1) on the expression data and computed the residuals.

4. We then transformed the expression of each gene to Gaussian distribution (as described
earlier).

5. For module detection, we repeated step 2-3 from raw expression data

For networks that were reconstructed with WGCNA, we considered all genes in the same module to
be a fully-connected subgraph.

2.4.2 Network inference with graphical lasso

As described above, we use a permutation based approach to determine the number of principal
components to include [17] in our linear model for correction of expression data. The steps for data
correction and network inference for each tissue were as follows:

• Raw uncorrected expression data:

1. We transformed the expression of each gene to Gaussian distribution (as described earlier).
2. Next using the transformed data, we computed the gene covariance matrix and used graph-

ical lasso for co-expression network reconstruction. For this we used the ‘QUIC’ function in
the QUIC[15] R package and inferred the networks with penalization parameters λ ranging
from 0.3 to 1.0.

• Residuals from RIN/Exonic rate/ GC bias

1. Using a linear model, we regressed the RNA integrity number (RIN), exonic rate, or GC
bias on the expression data and computed the residuals.

2. To reconstruct networks, we repeated steps 1-2 from raw uncorrected expression data

• Residuals from principal components:

1. We used the ‘num.sv’ function in the sva Bioconductor package to determine the number
of principal components to correct for.

2. Next we scaled the gene expression data such that expression of each gene was centered at
mean and had a unit standard deviation. Next we performed singular value decomposition
of the scaled expression data.

3. Using a linear model, we regressed the top s principal components (as determined in step
1) on the scaled expression data and then computed the residuals.

4. For co-expression network reconstruction, we repeated steps 1-2 from raw uncorrected ex-
pression data.

13



2.4.3 Network evaluation

Since the underlying network structure is generally unknown, we used a) genes known to be functional
in the same pathways and b) known transcription factors and their targets as ground truth to assess
these networks.

• Canonical pathway databases: We downloaded the latest pathway information (2016) from
KEGG, Biocarta and Pathway Interaction Database from Enrichr[18, 19], that were also anno-
tated as canonical pathways by MSigDB [20]. The number of pathways/genesets in each of these
databases were:

– KEGG - 293
– Biocarta - 237
– Reactome - 1530
– Pathway Interaction Database - 209

We obtained a total of 714616 unique real connections from these databases. Any pair of genes
that have at least one pathway in common were assumed as true connection. An edge that was
observed between a pair of genes in the inferred network (from WGCNA or graphical lasso) and
was also present in the list of real connections was called as a true positive (TP). We defined
false positive (FP) to be an edge that was observed between a pair of genes in the inferred
network, however was absent in the list of real connections. False negatives (FN) were the edges
that were missing in the inferred network but were present in the list of real connections. Using
this definition of true positive, false positive and false negative, we compute precision and recall
for the networks inferred by WGCNA and graphical lasso with different forms of corrected and
uncorrected data.

• Shared true positives: We obtained a refined list of real connections described above by
restricting to pairs of genes that were present in at least two pathway databases. By doing this,
we reduced to a more confident set of 49559 unique real connections.

• Transcription factor targets: We downloaded the list of known transcription factor target
genes (ChEA 2016) from Enrichr[18, 19]. Connection between a each transcription factor with
it’s targets were called as true connections. Edges inferred from co-expression networks that
were also true connections were called as true positives. False positives and false negatives were
defined as described above.

All TP, FP and FN were computed with genes restricted to the most variable 5000 genes that were
used for reconstructing co-expression networks. Using the above mentioned definitions of TP, FP and
FN, we compute precision and recall as given below:

Precision = TP

TP + FP
(3)

Recall = TP

TP + FN
(4)
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Supplementary Note 3: Supplementary Figures and Tables
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Supplementary Figure 1: Precision and recall curves of (a-b) WGCNA networks obtained at a varying
cut-heights. (c-d) networks obtained from graphical lasso with varying size of penalty parameter. Each
point corresponds to the network obtained at a specific cut-height in WGCNA or penalty parameter
in graphical lasso
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Supplementary Figure 2: Precision-Recall curves of WGCNA modules using canonical pathway
databases. WGCNA networks obtained at a varying cut-heights. Each color corresponds to the
correction approach, and each point corresponds to the network obtained at a specific cut-height.
Exonic rate is the known confounder used in this figure.
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Supplementary Figure 3: Precision-Recall curves of networks inferred with graphical lasso using canon-
ical pathway databases. Each color corresponds to the correction approach, and each point in the
figure corresponds to precision and recall of networks obtained at a specific L1 penalty parameter
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figure
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Supplementary Figure 4: Principal component loadings of gene expression are significantly associated
with estimates of sample specific GC bias. Association was tested using a linear model. Panel (a)
shows BH adjusted p-values and (b) shows R-squared
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Supplementary Figure 5: Precision-Recall curves of WGCNA modules using canonical pathway
databases. WGCNA networks obtained at a varying cut-heights. Each color corresponds to the
correction approach, and each point corresponds to the network obtained at a specific cut-height. GC
bias is the known confounder used in this figure.
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Supplementary Figure 6: Precision-Recall curves of networks inferred with graphical lasso using canon-
ical pathway databases. Each color corresponds to the correction approach, and each point in the
figure corresponds to precision and recall of networks obtained at a specific L1 penalty parameter
value (penalty parameter ranges from 0.3 to 1.0). GC bias is the known confounder used in this figure.
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Supplementary Figure 7: Precision-Recall curves of WGCNA modules using list of shared true positives
(Supplementary Note 2.3.3). Precision and recall curves of WGCNA networks obtained at a varying
cut-heights. Each color corresponds to the correction approach, and each point corresponds to the
network obtained at a specific cut-height
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Supplementary Figure 8: Precision-Recall curves of networks inferred with graphical lasso using list of
shared true positives (Supplementary Note 2.3.3). Each color corresponds to the correction approach,
and each point in the figure corresponds to precision and recall of networks obtained at a specific L1
penalty parameter value (penalty parameter ranges from 0.3 to 1.0)
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Supplementary Figure 9: Precision-Recall curves of WGCNA modules using ChEA2016 (transcription
factor targets). Precision and recall curves of WGCNA networks obtained at a varying cut-heights.
Each color corresponds to the correction approach, and each point corresponds to the network obtained
at a specific cut-height.
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Supplementary Figure 10: Precision-Recall curves of networks inferred with graphical lasso using
ChEA2016 (transcription factor targets). Each color corresponds to the correction approach, and each
point in the figure corresponds to precision and recall of networks obtained at a specific L1 penalty
parameter value (penalty parameter ranges from 0.3 to 1.0).
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Total # of PCs removed
Adipose Subcutaneous 37

Lung 30
Thyroid 38

Skeletal Muscle 39
Whole Blood 25

Supplementary Table 1: Number of principal components removed
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