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Calculating with CUDA 

In general, the Central Processing Unit (CPU) of a computer executes program code 
sequentially, and the speed of execution is set by the CPU clock rate.  For algorithms which 
lend themselves to parallelization, higher performance may be achieved by a Graphics 
Processing Unit (GPU).  The essential difference between a CPU and a GPU is the 
architecture, which in the GPU consists of many individual processors (multiprocessors) 
which run concurrently.  Each multiprocessor of a GPU is organized into many computing 
blocks, and each block is capable of executing multiple program threads.  The architecture 
of the GPU is parallelized at the multiprocessor, block, and thread level, as illustrated in 

Supplementary Fig. S1.  Consequently, an operation which needs to be repeated N  times 

on a CPU can be accelerated by executing it in a single step using N  independent threads 

of a GPU.   
 
CUDA is a computing platform which enables general purpose, parallel computing on 

Nvidia CUDA-enabled GPUs1.  A simple example of a parallelized operation is a function 
which subtracts the values of one set of arrays (arrays1) from a second set of arrays 
(arrays2), as shown in Supplementary Fig. S1. In this example, the results of the calculation 
for all array elements are obtained simultaneously.  This is facilitated by the organization of 
each multiprocessor into blocks and threads.  Here, each array subtraction is assigned to 
one block, and the calculation of each element of the output array is executed by the 
individual threads within the block.  The variables block_index and thread_index allows the 
code executing on each thread to know for which part of the computation it is responsible.   

 
CUDA functions resemble extended C functions.  The number of required threads 

must be defined by two parameters in the function call, enclosed in <<< >>>.  The first 
parameter represents the number of thread blocks, and the second represents the number 
of threads per block.  In the example shown in the figure, the number of blocks corresponds 
to the number of pairs of arrays to be subtracted and the number of threads corresponds to 
the number of elements in each array. Thread blocks are evenly distributed across the 
multiprocessors and are executed independently. The more processors a GPU has, the 
larger the number of thread blocks that may be executed concurrently. 

 

Gpufit performance characterization 

Computer hardware 

All tests were executed on a PC running the Windows 7 64-bit operating system and 
Nvidia Graphics driver version 378.78.  The PC hardware included an Intel Core i7 5820K 
CPU, running at 3.3 GHz, and 64 GB of RAM.  The graphics card was an NVIDIA GeForce 
GTX 1080 GPU with 8 GB of GDDR5X onboard memory.  To avoid fluctuations in the CPU 
processor speed during testing, Windows was configured in a “High Performance” mode via 
the Power Options window.  Specifically, the “Minimum processor state” setting was set to 
100%, ensuring that the CPU clock remained at its maximum speed. 
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Test software 

The Cpufit, Gpufit, and C/C++ Minpack libraries were compiled using Microsoft Visual 
Studio 2013, with compiler optimizations enabled (release mode).  The CUDA Toolkit used 
to build the software was version 8.0.  CMake was used to automatically configure and 
generate the Visual Studio solution files.  Instructions for building the Gpufit library are 
included with the Gpufit documentation (http://gpufit.readthedocs.io).   

 
Each performance test was written as a Matlab script, and calls to Gpufit, Cpufit, 

Minpack, and GPU-LMFit were made via Matlab external code interfaces (MEX files).  For 
this purpose, either 32-bit or 64-bit Matlab was used (version R2015b for 32-bit processing, 
and R2016b for 64-bit processing).  All tests were run in 64-bit mode, with the exception of 
any test involving the GPU-LMFit software, which was only available as a 32-bit compiled 

static library file (.lib).  MINPACK fitting was accomplished by calling the function lmder() 

from the MINPACK library.  Code profiling tests were made using special versions of Cpufit 
and Gpufit having built-in timing functions. 

 
The binary files required to run GPU-LMFit were included with the publication 

describing the software.2  Specifically, a Visual Studio 2010 project “GPU2DGaussFit”, which 
provides an example of how to use GPU-LMFit for fitting of a 2D Gaussian function.  We 
reduced this project to its essential components by removing operations such as the initial 
parameter estimation and background correction in order to allow a fair comparison with 
Gpufit.  The project was compiled using Visual Studio 2010 and CUDA 8.0 to yield a MEX 
file.  Fitting of 2D Gaussian functions with this package was accomplished using the 
compiled MEX file. 

 
Integration of Gpufit with Picasso was accomplished by including the pyGpufit 

module into the Picasso source code.  Picasso was downloaded from the publicly accessible 
Git repository http://github.com/jungmannlab/picasso.  An option was added to the user 
interface to allow the selection of the Gpufit function for curve fitting.  When this option was 
selected, Picasso used Gpufit instead of its original multi-threaded curve fitting code.  The fit 
tolerance and maximum number of fit iterations used for the call to Gpufit were the same as 
for the CPU-based Picasso fitting.  The code was executed using the Python 3.5 interpreter, 
running in 64-bit mode on the same PC as described above.  Additional timing functions 
were added to the python code in order to measure the actual execution time of the fit 
process, on either the CPU or the GPU.  The source code for the initial version of Gpufit-
modified Picasso is available at http://github.com/gpufit/picasso/tree/gpufit_integration_initial. 
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Test datasets 

Simulated datasets were generated in order to test the curve fitting algorithms.  For 
this data, we simulated 2D Gaussian functions, according to the following expression: 
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where ( )0 0,x y  are the center coordinates of the Gaussian peak, A  is the amplitude, σ  is 

the peak width, and b  is the constant baseline level.   

 
The size of each dataset was characterized by the number of data points per fit 

(defined by the size L  of a square region, such that the total number of points per fit is 2L ).  

The total number of fits per dataset was defined as N .  The number of fits per dataset N  

was varied between 1 fit and 1x108 fits, and the fit size L  was varied between 5 and 25.  
 
For each test data point, the parameters of the simulated Gaussian peaks were held 

constant with the exception of the center coordinates ( )0 0,x y  which were randomly 

generated.  The range of the center coordinates was defined by the mean center position 

( )0 0,x y  and a maximum deviation ( )max max,x yΔ Δ .  For all tests, the mean center position 

was set equal to the center of the fit region, and the deviation was selected from a uniform 
distribution. 

 
The initial guesses for all fits calculated with Cpufit, Gpufit, Minpack, and GPU-LMFit 

were randomized, within a specified range of the true value.  The maximum offset for each 

parameter was calculated according to a maximum offset fraction offsetf  multiplied by the 

mean value of the true fit parameter.  For example, if the true value of the Gaussian 

amplitude was 500 and offsetf  was set to equal 0.3, then the maximum random offset for the 

initial guess of the amplitude was 150.  In this case, the initial guess for the amplitude would 
be chosen from a uniform distribution ranging between 350 and 650.  This method was 
applied to the initial guesses for each fit parameter.  For the center coordinate parameters, 

the maximum offset was calculated by multiplying offsetf  by the Gaussian width σ , in order 

to avoid any dependence of the results on the size of the fit area.   
 
Noise was added to the data as either Gaussian-distributed noise or Poisson-

distributed noise.  For the case of Poisson noise, after calculating the simulated input data, 
each data point was replaced with a random value drawn from a Poisson distribution having 
a mean equal to the data value (as for counting statistics).  For datasets with Gaussian 
noise, a random value drawn from a Gaussian distribution of mean zero and standard 

deviation noiseσ  was added to each data point.  The signal to noise ratio (SNR) of the data 

was defined as the mean value of the signal within the area of the Gaussian peak, divided by 
the standard deviation of the noise.  Specifically, the area of the peak was approximated as 
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the area of a circle with a diameter equal to the full-width at tenth maximum (FWTM) of the 

Gaussian, i.e. ( )2GaussianArea 2ln10π σ≈ .  The volume of the Gaussian can be written as 

22 Aπ σ , and hence the mean value of the signal is approximately ( )Gaussian / ln10f A= .  

Thus, the signal to noise ratio was defined as shown in equation (S2). 
 

 
noise

SNR
ln10
A

σ
=   (S2) 

 

We note that the constant baseline level b  does not enter into these expressions, since the 

absolute value of the baseline has no effect on the tests in which the SNR was varied. 
 
 For the experiment comparing the LSE and MLE estimators, both unweighted and 
weighted least squares fits were tested.  For the weighted fit, the weights input of Gpufit was 
set equal to the inverse of the data values, with a maximum weight value of 1.0. 
  

Test parameters 

The specific parameters used for each test are listed in Supplementary Table S1.  
These values define the number of fits in the test dataset, the noise added to the data, the 
parameters of the simulated Gaussians, the randomness of the initial guesses, and the data 
size (the size of each fit).   

 

Test outputs 

The test results included the fit speed and fit precision. The execution time of each fit 
function was determined by measuring the total time taken for the Matlab call to the fit 

function (the mex function call) using the Matlab functions tic and toc.  The fit speed was 

defined as the number of fits per function call divided by the execution time (resulting in a 
speed value measured in number of fits per second).  A measure of the fit precision was 
obtained by calculating the absolute precision of the x-coordinate fit parameter (the standard 
deviation of the x-coordinate fit errors).  For code profiling results shown in Fig. 3 and 
Supplementary Fig. S5 and S6, the execution times of individual sections of the code were 

measured using the C++ timing class std::chrono::high_resolution_clock and 

with CUDA cudaDeviceSynchronize() at the end of each CUDA kernel.  

 

STORM experiment 

Microscope and sample preparation 

The STORM microscope, data analysis, and sample preparation procedures have 
been described previously.3,4  For this experiment, the sample was stained with a fluorescent 
antibody against the protein GP210, a component of the Nuclear Pore Complex (NPC), as 
described previously.5  The secondary antibody was, in this case, labeled with the 
fluorescent dye Alexa Fluor 647. 
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Supplementary Figure S1: GPU processing example 

 

Supplementary Figure S1:  GPU architecture and example computation.  The GPU is organized into a 
set of multiprocessors.  Each multiprocessor is logically organized into a grid of computing blocks, and 
each block contains multiple computing threads.  The blocks have a dedicated shared memory space 
and may access global GPU memory.  The example CUDA function shown here calculates the 
numerical difference between two sets of arrays.  The input variables arrays1 and arrays2 each contain 
a set of M sub-arrays of N elements in length, concatenated together.  The computation is spread 
across multiple blocks.  Each array difference is calculated by one block.  The difference between 
individual elements of the two arrays is calculated by individual threads.  The number of blocks used in 
the calculation is equal to the number of input array pairs (M) and the number of threads per block is 
equal to the number of elements per array (N).  As long as a sufficient number of computing blocks and 
threads are available, the entire calculation can be performed in a single step. 
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Supplementary Figure S2: Gpufit modular design 

 

Supplementary Figure S2: The modular design of Gpufit.  Data is transferred to the GPU in chunks of a 
suitable size.  The core Gpufit module performs the fitting operation, making use of the selected model 
function and estimator, as specified by the user.  Additional model functions and estimators may be 
added by re-compiling the source code.  Finally,  the results of the fit process are returned to CPU 
memory. 
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Supplementary Figure S3: Gpufit vs. MINPACK comparison 

 

Supplementary Figure S3: Gpufit vs. MINPACK comparison.  Upper plot shows the standard deviation 
of the fit results (absolute X position, arbitrary units) for a set of 2D Gaussian fits as a function of the 
signal to noise ratio (SNR) of the input data, for the two algorithms Gpufit and MINPACK.  Similar 
results were obtained over a wide range of SNR values.  For reference, the Cramér–Rao bound6 of the 
position estimator is also shown (black line), verifying that the fit results from both packages approach 
the theoretical limit.  The lower plot shows the mean number of fit iterations required for convergence.  
For most conditions tested, MINPACK was found to converge in fewer iterations than Gpufit, as 
expected since MINPACK employs a modified version of the LMA. 
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Supplementary Figure S4: Fit precision and accuracy 

 

Supplementary Figure S4: Fit precision and accuracy comparison for Gpufit and Minpack.  The model 
function is a five-parameter 2D Gaussian fit, and 104 individual fits were calculated for a randomized 
dataset with a SNR of 100.  The true values of each parameter are shown in red at the top of the figure, 
and below them the distributions of the fit results are plotted, along with the mean and standard 
deviation for each result.  When comparing the results of Gpufit and MINPACK, no deviations were 
measured in fit precision or accuracy, with the exception of the results for very high SNR values as 
shown in Supplementary Fig. S3. 
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Supplementary Figure S5: Cpufit program flow 

 

Supplementary Figure S5:  Program flow and normalized execution times of Cpufit.  Code profiling 
results for a sequence of five million individual fitting operations are shown on the left side of the chart 
(percentage of total time spent in each code section).  The profiling results show that the majority of the 
execution time is spent calculating the model function at each data point, evaluating the Hessian matrix, 
and solving the equation system. 
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Supplementary Figure S6: Gpufit program flow 

Supplementary Figure S6: Program flow and normalized execution times of Gpufit.  Code profiling 
results for a sequence of five million individual fitting operations are shown on the left side of the chart 
(percentage of total time spent in code section).  Additional and modified steps, as compared with the 
Cpufit program flow, are highlighted in blue.  The profiling results show that data transfers to the GPU 
memory constitute a significant amount of the processing time, while tasks which are highly parallelized, 
such as the calculation of the model function, are relatively fast in comparison with the Cpufit program 
flow (see Supplementary Figure S5).  Note that the program flow corresponds to one fit only, however 
many fits are processed in parallel.  Once an individual fit has converged, it is not iterated further. 
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Supplementary Figure S7: Precision of Gpufit and GPU-LMfit 

 

Supplementary Figure S7: Comparison of fit precision between two GPU-accelerated Levenberg 
Marquardt algorithms: Gpufit and GPU-LMFit.  The absolute precision (standard deviation) of the x-
position parameter (arbitrary units) returned by the fit algorithm is plotted on the vertical axis.  As the 
SNR of the input data was varied, the two packages yielded results with virtually identical degrees of 
precision. 
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Supplementary Figure S8: Comparison of fit estimators 

 

Supplementary Figure S8: Fit precision comparison for weighted and unweighted least squares vs. 
maximum likelihood estimation.  For reference, the Cramér–Rao bound6 of the position estimator is also 
shown (dashed black line).  The input data consisted of simulated 2D Gaussian functions with Poisson 
distributed (counting) noise.  The signal to noise ratio of the data was varied by changing the amplitude 
of the Gaussian peak.  The standard deviation of the fit results for the x-position parameter (arbitrary 
units) is plotted on the vertical axis.  As expected, a more precise fit is obtained using the maximum 
likelihood estimator, as opposed to least squares fitting.  For low signal levels, the unweighted least 
squares fit performed similarly to the maximum likelihood estimator, while for larger values a weighted 
least squares fit was comparable to the maximum likelihood fit.  For all conditions tested, however, the 
maximum likelihood estimator yielded the highest fit precision.   
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Supplementary Table S1:  Test parameters 

 Figure 1 Figure 2 Figure 3A Figure 3B Figure S3 Figure S4 Figure S5 Figure S6 Figure S7 Figure S8 

OS architecture 64-bit 64-bit 32-bit 32-bit 64-bit 32-bit 64-bit 64-bit 32-bit 64-bit 

Number of fits per  
function call (N) 

varied:  
10 to 108 5.0 x 106 varied:  

1 to 106 1.0 x 105 2.0 x 104 1.0 x 105 5.0 x 106 5.0 x 106 1.0 x 104 1.0 x 104 

Maximum # iterations 20 20 20 20 20 20 20 20 20 20 

Fit tolerance 1.0 x 10-4 1.0 x 10-4 1.0 x 10-4 1.0 x 10-4 1.0 x 10-4 1.0 x 10-4 1.0 x 10-4 1.0 x 10-4 1.0 x 10-4 1.0 x 10-4 

Fit weighting None None None None None None None None None Weighted and 
unweighted 

Noise type Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian Poisson 

SNR 60 60 60 60 
varied: 

5.0 to 108 
60 60 60 

varied:  
5.0 to 103 --- 

Data size (edge length L) 5 5 5 
varied:  
5 to 25 

15 15 5 5 15 15 

Gauss amplitude (A) 500 500 500 500 500 500 500 500 500 
varied:  

5 to 200 

Gauss x position (x0) center center center center center center center center center center 

Gauss y position (y0) center center center center center center center center center center 

Gauss width (σ) 1.0 1.0 1.0 0.143 L× 1.0 1.0 1.0 1.0 1.0 2.0 

Gaussian baseline (b) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 5.0 

Coordinate deviation max. 
(∆xmax, ∆ymax) 

0.5 1.0 0.5 0.5 1.0 0.0 1.0 1.0 1.0 1.0 

Initial guess max. offset 
fraction (foffset) 

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

Supplementary Table 1:  The parameters which define the test datasets used for characterization of Gpufit performance.  Parameters are 
ordered according to the figure in which the test results are shown. 
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