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1. Haploid Model 
 
Here we rigorously solve the haploid model with age-structure and endogenous reproductive variance, 

and relate our results with those of previous work that considered special cases of our model. In Section 

1.2 we consider the implications of our assumptions about endogenous reproductive variance. In Section 

1.3 we solve for the joint stationary distribution of the age and relative reproductive success associated 

with an allele, going backwards in time. Based on this distribution, we derive the stationary per-generation 

coalescence rate for a sample of two alleles, to obtain Eq. 7 in the main text: 

𝑁$ =
&⋅(
)

.           (S1) 

In Section 1.4, we recast these results in terms of total reproductive variance, showing that the relationship 

derived by Hill for the case with age-structure alone (1): 

𝑁$ = 𝐺 ⋅ 𝑀,/𝑉,          (S2) 

applies to the extended model with endogenous reproductive variance, and derive Eq. 11 in for the total 

reproductive variance in this case, i.e., 

𝑉 = 𝑊 ⋅ (𝑀,/𝑀).          (S3) 

In section 1.5 we consider the case without endogenous reproductive variance, to show that the our results 

for the effective population size (Eq. S1) reduce to the formula obtained by Felsenstein (2), and to consider 

a simple example of how age-structure affects the effective population size. 

 

1.1 Requirements on 𝑓"  

When we introduced the haploid model with endogenous reproductive variance, we assumed that each 

newborn is assigned a relative reproductive success vector 𝑟, and denoted the (constant) proportion of 

individuals with a given vector 𝑟 in age class a by 𝑓" 𝑟  (see Table S1 for summary of notation). Here we 

describe the requirements on the probability mass function 𝑓" that these assumptions entail. First, given 

that the probability of being born to a parent of age a is 𝑝", and to a specific parent of age a and with 

reproductive success 𝑟 is 𝑝" ⋅
45
&5

, we require that 𝐸75 𝑟" = 𝑓" 𝑟 ∙ 𝑟" =4 1 for any age a. Second, given 

that the number of individuals with a given 𝑟 can only decrease with age (due to mortality), we further 

require that 𝑀" ⋅ 𝑓" 𝑟 ≥ 𝑀";, ⋅ 𝑓";,(𝑟). 
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Third, requiring that the number of individuals of a given age a and with a given 𝑟 is constant and equal 

to 𝑀" ⋅ 𝑓" 𝑟 , implies that this number needs to be an integer. Notably, if we would like to model the 

distribution of relative reproductive success using a given (continuous or discrete) distributions 𝑓"(𝑟), 

which satisfies the first two requirements, we would need to discretize 𝑓" to obtain a probability mass 

function 𝑓"< such that 𝑀" ⋅ 𝑓"<	(𝑟) is always an integer. However, if we assume that the relative sizes of the 

age-class, i.e., the ratios 𝑀>/𝑀?, are constant, and increase the total population sizes, the discretized 

functions 𝑓"< will approach 𝑓", and the value of the 𝑊>,? = 𝐸7AB	 𝑟> ⋅ 𝑟? = 𝐸 𝑟> ⋅ 𝑟?|survival	to	age	𝑗  terms, 

which summarize the effect of endogenous reproductive variance on the effective population size, will 

approach 𝐸7P 𝑟> ⋅ 𝑟? . We implicitly assumed this limit when we considered the special case in which 

relative reproductive success is independent of age and of mortality rates. More generally, while the 

assumption that for any age a,  𝑀" ⋅ 𝑓" 𝑟  is an integer, might appear highly restrictive, these restrictions 

are relaxed under the standard coalescent assumption that the population size is sufficiently large.  
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Notation Definition Remarks 

𝑝" Probability that a newborn descends from a parent of age a 𝑝"
"

= 1 

𝑞" Probability that a newborn descends from a parent of age ≥ 𝑎 𝑞" = 𝑝>
>S"

 

𝐺 Average generation time 𝐺 = 𝑎 ⋅ 𝑝"
"

 

𝑀" Number of individuals of age a 

(𝑀, is the number of newborns per-year) 

𝑀";, ≤ 𝑀" 

𝑟 Relative reproductive success, where component 𝑟" is the relative 

reproductive success at age a 

 

𝑓"(𝑟) The frequency of individuals with relative reproductive success 𝑟 

among individuals of age a 

 

𝑔"(𝑟) Given an individual I of age a and a newborn n, 𝑔"(𝑟) is the probability 

that I has relative reproductive success 𝑟, conditioned on n being 

descended from I  

𝑔" 𝑟 = 𝑟"𝑓" 𝑟  

𝜖(𝑎, 𝑟) Joint stationary probability of age a and relative reproductive success 𝑟 

along a lineage, going backwards in time 

𝜖(𝑎, 𝑟)

=
1
𝐺

𝑝?𝑔?(𝑟)
?S"

 

𝜖" Marginal stationary distribution of age a 𝜖" = 	
𝑞"
𝐺

 

𝑀 Effective age-class size See Eq. S16 

𝑊>,? Average value of 𝑟> ⋅ 𝑟? among individuals of sex s and age a Defined for 𝑖 ≤ 𝑗 

𝑊 Weighted average of the 𝑊>,? See Eq. S15 

𝑋, 𝑋" An individual’s number of offspring, throughout its life or at age a, 

respectively 

 

𝑉 Reproductive variance (i.e., 𝑉 = 𝑉𝑎𝑟(𝑋)) See Eq. S28 

𝑆" The event of surviving to age ≥ 𝑎  

 
Table S1: Notation for the haploid model, with parameters of the model in red. 
 

1.2 Solution backwards in time  
Here, we extend the derivations of Sagitov and Jagers (3) to account for endogenous reproductive 

variance. Tracing an allele backward in time, the age 𝑎Z and relative reproductive success 𝑟Z of the 

individual 𝐼Z who carries the allele t years in the past defines a Markov chain (𝑎Z, 𝑟Z). To define the 

transition probabilities of the chain, we distinguish between two cases.	First, if the individual carrying the 
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allele is not a newborn, i.e., 𝑎Z > 1, then at time t+1 that individual will be one year younger and its 

relative reproductive success 𝑟 will remain unchanged, i.e., (𝑎Z;,, 𝑟Z;,) = (𝑎Z − 1, 𝑟Z) with probability 

one. Second, if individual carrying the allele is a newborn, i.e., 𝑎Z = 1, then 𝑎Z;, equals a with probability 

𝑝". The probability mass function of 𝑟Z;, conditional on 𝑎Z;,, follows from Bayes’ theorem, further 

conditioning on the fact that the parent, 𝐼Z;, = 𝐼, necessarily reproduced successfully 

         𝑃 𝑟_ = 𝑟|𝐼Z;, = 𝐼, 𝑎Z;, = 𝑎  

= ` _abcd_|4abcd4,"abcd" ⋅` 4ed4|	"abcd"
` _abcd_

 = (45/&5)⋅75 4
	(45/&5)⋅75(f)g

= 𝑟" ⋅ 𝑓" 𝑟 .  (S4) 

We denote this probability by 𝑔" 𝑟 ≡ 𝑟" ⋅ 𝑓" 𝑟 , and conclude that  

𝑃 (𝑎Z;,, 𝑟Z;,) = 𝑎, 𝑟 𝑎Z = 1 = 𝑝" ⋅ 𝑔" 𝑟 .     (S5) 

 

𝑔" is a proper probability mass function since 𝑔"(𝑟)4 = 𝑟" ⋅ 𝑓"(𝑟)4 = 1. Moreover, the parent’s 

expected value of 𝑟" is 𝐸4~j5 𝑟" = 𝐸4~75 𝑟"
k = 1 + 𝑉4~75 𝑟" ≥ 1. The latter inequality makes intuitive 

sense, as it implies that the allele is more likely to be descended from an individual that has higher than 

average relative reproductive success in its age class. 

 

We rely on the transition probabilities to derive and solve a recursion for the stationary probability 𝜖(𝑎, 𝑟) 

of age, a and relative reproductive successes, 𝑟, of the individuals carrying the allele. Namely, 

𝜖(𝑎, 𝑟) = 𝜖(𝑎 + 1, 𝑟) + 𝜖 1, 𝑘f ⋅ 𝑝" ⋅ 𝑔"(𝑟),     (S6) 

where the first term corresponds to aging within the same individual and the second corresponds to 

parenting a newborn. In order to solve these recursions we first consider the marginal stationary 

distribution of age, 𝜖" = 𝜖(𝑎, 𝑟)4 . To this end, we sum the recursions over 𝑟 to obtain recursions on the 

marginal distribution,  

𝜖" = 𝜖";, + 𝜖, ⋅ 𝑝",         (S7) 

where we also require that 𝜖"" = 1. This recursion was solved by Sagitov and Jagers (3) for the case 

without endogenous reproductive variance, yielding 

𝜖" = 𝑞"/𝐺,          (S8) 

 where 𝑞" ≡ 𝑝??S" . Substituting this expression into Eq. S6, the recursions simplify to 

𝜖(𝑎, 𝑟) = 𝜖(𝑎 + 1, 𝑟) + ,
(
⋅ 𝑝" ⋅ 𝑔"(𝑟),      (S9) 

where we further require that 𝜖(𝑎, 𝑟)",4 = 1. The solution of these recursions is 
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𝜖(𝑎, 𝑟) = ,
(

𝑝?𝑔?(𝑟)?S" .         (S10) 

The marginal stationary probability mass function of 𝑟 is 𝜖(𝑎, 𝑟)" = ,
(

𝑗 ⋅ 𝑝? ⋅ 𝑔?(𝑟)? , which is a 

proper probability mass function because   ,
(

𝑗 ⋅ 𝑝?? = 1, and 𝑔"(𝑟)4 = 1 for any age a. 

  

We rely on the stationary distribution to derive the probability of coalescence of two alleles, along the 

same lines as detailed in the main text for the case without endogenous reproductive variance. For the 

coalescence to occur at time t in the past, one of the alleles (A) would descent from the other (B) or both 

would descent from the same parental allele at that time (this is contrary to the case of non-overlapping 

generations, in which coalescence necessarily occurs when both alleles descent from the same parental 

allele in the previous generation). Specifically, if allele B is in an individual of age a and relative 

reproductive success 𝑟 at time t (with probability 𝜖(𝑎, 𝑟)), then allele A must be in a newborn at time t-1 

(with probability 𝜖,) having descended from the same individual carrying allele B (with probability 𝑝" ⋅
45
&5

). Summing over the individual’s possible ages and reproductive success vectors, we obtain the 

probability 

𝜖 𝑎, 𝑟 ⋅ 𝜖, ⋅ 𝑝" ⋅
45
&5",4 = ,

(n
o5oA 45jA(4)pAq5

&5" = ,
(n

o5oA)5,AAq5

&5" ,   (S11) 

where for 𝑗 ≥ 𝑖,  

𝑊>,? = 𝑟>𝑔?(𝑟)4 = 𝑟>𝑟?𝑓?(𝑟)4 = 𝐸4~7A(𝑟> ⋅ 𝑟?)      (S12) 

is the expectation of (𝑟> ⋅ 𝑟?) conditional on surviving to age ³ j. Further allowing for either allele or both 

to be the newborn (using the inclusion-exclusion principal to subtract the probability 𝜖,k
o5n)5,5	
&5"  that 

both alleles were in a newborn prior to coalescence), and measuring the coalescence rate in generations 

(rather than years), we obtain the per-generation coalescence rate and corresponding effective population 

size: 
,
rs
= ,

(
o5n)5,5;k o5oA)5,AAt5

&5" .       (S13) 

 

Eq. S13 can be rearranged to obtain Eq. 7 of the main text. To this end, we define  

𝑤> = (𝑝>k𝑊>,> + 2 𝑝>𝑝?𝑊>,??w> )/𝑊,       (S14) 

where  

𝑊 =	 𝑝>k𝑊>,>> + 2 𝑝>𝑝?𝑊>,?>x?        (S15) 
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is a weighted average of the 𝑊>,?. Noting that 𝑤"" = 1, we then define the effective age class size as a 

weighted harmonic average of the age class sizes, 
,
&
= y5

&5" .          (S16)   

Substituting this expression into Eq. S13, we obtain Eq. 7 of the main text: 
,
rs
= 𝑊/(𝑀 ⋅ 𝐺).         (S17) 

 

1.3 Reproductive variance  

To recast our results for 𝑁$ in terms of the total reproductive variance 𝑉, we first consider the case with 

non-overlapping generations in a haploid population of constant size, i.e., with Wright-Fisher sampling.  

We denote the number of offspring of the ith individual by 𝑘> and the census size by 𝑁. The expected 

number of offspring is 1, i.e., ,
r

𝑘> = 1> , and we denote the variance in number of offspring, which we 

also refer to as the reproductive variance, by 𝑉 = ,
r

𝑘> − 1 k
> . In the standard neutral model, without 

endogenous reproductive variance, 𝑉 = 1.   Since the probability that two distinct gametes descend from 

the same ancestor in the previous generation is fz
r
⋅ fz{,
r{,> = |

r{,
, we find that the effective population 

size is 

𝑁$ =
r{,
|
≅ r

|
,          (S18) 

which is the expression derived by Wright (4) and presented in Eq. 9 of the main text. 

 

To extend Eq. S18 to the case with overlapping generations, we consider the first two moments of an 

individual’s number of offspring, 𝑋, throughout its lifetime. First, we note that an individual’s number of 

offspring can be expressed as a sum over the number at each age, i.e., 𝑋 = 𝑋"" , where 𝑋" is the number 

of offspring at age a; 𝑋" = 0 if the individual does not survive to that age. In these terms, the first two 

moments are 

𝐸(𝑋) = 𝐸(𝑋")"  and 𝐸(𝑋k) = 𝐸(𝑋"k)" + 2 𝐸(𝑋> ⋅ 𝑋?)>x? .    (S19) 

Denoting the event of surviving to age ³ a by 𝑆", we note that  

𝐸 𝑋"> = 𝑃𝑟 𝑆" ⋅ 𝐸 𝑋"> 𝑆" = &5
&c
⋅ 𝐸 𝑋"> 𝑆" ,     (S20)  

The latter term, 𝐸 𝑋"> 𝑆" , can be simplified further by conditioning on 𝑟. Since the probability mass 

function of 𝑟 conditional on 𝑆" is 𝑓", 
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𝐸 𝑋"> 𝑆" = 𝐸4~75𝐸 𝑋"> 𝑆", 𝑟 .        (S21) 

Moreover, the distribution of 𝑋" conditional on 𝑆" and 𝑟 is simply 𝑋" 𝑟, 𝑆" 	~𝐵𝑖𝑛 𝑀,, 𝑝" ⋅ 𝑟"/𝑀" , and 

therefore  

       		𝐸 𝑋" 𝑆" = 𝐸4~75
&c45o5
&5

= &co5
&5

   

and   

𝐸 𝑋"k 𝑆" = 𝐸4~75 𝑀,
45o5
&5

+ 2 𝑀,
2

45o5
&5

k
= &co5

&5
+ 2 𝑀,

2
o5
&5

k
𝑊",". (S22) 

Substituting these expression into Eq. S20, we find that  

𝐸(𝑋") = 𝑝"  and	𝐸 𝑋"k = 𝑝" +	
&c{,
&5

𝑝"k ⋅ 𝑊",".      (S23) 

To calculate the remaining terms in Eq. S19, 𝐸(𝑋> ⋅ 𝑋?) for 𝑗 > 𝑖, we note that conditioning on 𝑆?, and on 

𝑟|𝑆?, 

𝐸 𝑋> ⋅ 𝑋? = 𝑃𝑟 𝑆? ⋅ 𝐸 𝑋> ⋅ 𝑋? 𝑆? = &A

&c
⋅ 𝐸4~7A𝐸 𝑋> ⋅ 𝑋? 𝑆?, 𝑟 .   (S24)  

The latter term is easily calculated, since conditional on 𝑆? and 𝑟, 𝑋> and 𝑋? are independent binomial 

variables, with 𝑋> 𝑟, 𝑆? ~𝐵𝑖𝑛 𝑀,, 𝑝> ⋅ 𝑟>/𝑀>  and 𝑋? 𝑟, 𝑆? ~𝐵𝑖𝑛 𝑀,, 𝑝? ⋅ 𝑟?/𝑀? , yielding  

𝐸 𝑋> ⋅ 𝑋? = &A

&c
⋅ 𝐸4~7A

&cnozoA4z4A
&z&A

= &cozoA)z,A

&z
.     (S25)  

Substituting the expressions from Eqs. S23 and S25 into Eq. S19 we find that 

𝐸 𝑋 = 1	 and 𝐸 𝑋k = 1 +𝑀, 	oz
n⋅)z,z;k ozoA)z,AAtz

&z
> − oz

n⋅)z,z
&z

> .  (S26) 

 

Assuming that the total population size is sufficiently large for the ratios 𝑀>/𝑀? and terms 𝑊>,? to be 

approximated as fixed, and for the higher order term oz
n⋅)z,z
&z

>  to be negligible, we find that   

𝐸 𝑋 = 1	 and 𝐸 𝑋k ≅ 1 + &c
&
𝑊,        (S27) 

and therefore the total reproductive variance is 

𝑉 = 𝐸 𝑋k − 𝐸k(𝑋) = &c
&
𝑊,        (S28) 

which is Eq. 11 of the main text. These assumptions correspond to the standard practice of neglecting 

higher order terms in 1/𝑁 in models with non-overlapping generations. From Eqs. S17 and S28 we find 

that the effective population size is   

𝑁$ = (𝐺 ⋅ 𝑀,)/𝑉,          (S29) 
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which is the same form as in the case without age-structure (Eq. S18), and the general form presented in 

Eq. 10 of the main text. 

  

1.4 Age-structure alone  
Felsenstein (1971) used a different approach to solve the haploid model without endogenous reproductive 

variance, relying on the definition of the effective population size as the inbreeding effective number (2). 

To see that his results agree with ours (as well as with those of Sagitov and Jagers (3)), consider the case 

without endogenous reproductive variance, where Eq. S17 reduces to 

𝑁$ = 𝑀𝐺 = (
�z
nbn �z�AAtz

�z
z

= (
�z
�z

�z;�zbcz
,      (S30) 

where 𝑞> = 𝑝>?S> . Noting that 𝑝> 𝑞> + 𝑞>;, = 𝑞> − 𝑞>;, 𝑞> + 𝑞>;, = 𝑞�k − 𝑞>;,k , we find that 

𝑁$ =
(

�z
�z

�z;�zbc
= (&c

�c
�z

�z
n{�zbc

n = (&c
,; �zbc

n ( �c
�zbc

{�c�z
)z
,     (S31) 

where Felsenstein’s functional form (p. 585 in (2)) is on the rightmost side. 

 

To better understand the effect of age-structure on the effective population size, consider a simple example 

in which there is no endogenous reproductive variance, and no age-dependence in reproductive success. 

In other words, the only difference among individuals’ numbers of offspring arise from the stochasticity 

of mortality and reproduction. In this case, the probability of having a parent of age a is proportional to 

the size of the age class, i.e.,  𝑝" = 	𝑀" 𝑁 where 𝑁 = 𝑀""  is the census size. Following our derivations, 

the effective population size (Eq. 3 in the main text) then reduces to 𝑁$ =
(

(k({,)
𝑁, and if the generation 

time 𝐺 ≫ 1 then 𝑁$ ≈
,
k
𝑁. In other words, the age structure reduces the effective population size to half 

of the census size 
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2. Diploid Model  
 

2.1 Overview  

Here we rigorously define and solve the diploid model with two sexes and endogenous reproductive 

variance, and derive formulas for the effective population sizes of X and autosomes. While the diploid 

model is more elaborate, the model and results follow along the same lines as we described for the haploid 

model.  In Section 2.2 we detail the assumptions of the diploid model and introduce the notation required 

for the derivations that follow. In Section 2.3 we solve for the joint stationary distribution of the age and 

relative reproductive success of autosomal and X-linked alleles. We build on the joint stationary 

distribution to solving for the stationary per-generation coalescence rates and corresponding effective 

population sizes on X and autosomes. Since some of the explicit equations we derive are not presented in 

the main text, we briefly review them here.  

 

Notably, to extend the haploid formula for the effective population size, 𝑁$ = 𝑀𝐺/𝑊 (Eqs. 7 and S17), 

to the diploid case, we require explicit expressions for the effective age-class size 𝑀, generation time 𝐺, 

and 𝑊, corresponding to the X and autosomes. First, we define these measures for each sex in the same 

way that we did in the haploid model (i.e., as in Eqs. S15 and S16). We then define 𝐺 and 𝑊 for X and 

autosomes, as simple weighted averages over their values in males and females: 

𝐺� =
k
�
𝐺� +

,
�
𝐺& and 𝐺� =

,
k
(𝐺& + 𝐺�)       (S32) 

(which is Eq. 12 in the main text), and 

𝑊� =
k
�
𝑊� +

,
�
𝑊& and 𝑊� =

,
k
(𝑊& +𝑊�),      (S33) 

where the weights reflect the relative number of generations that X and autosomal linked loci spend in 

males and females (see Table S2 for notation). The effective age class sizes on X and autosomes are 

defined as weighted harmonic averages. In the case without endogenous reproductive variance, they are 

defined as 
,
&�

= , �
&�

+ k �
&�

  and  ,
&�

= , k
&�

+ , k
&�

.        (S34) 

To account for sex-specific endogenous reproductive variances, the weights further account for the 

endogenous reproductive variances effect on the relative probability of coalescence in males and females, 
,
&�

= , �()� )�)
&�

+ k �()� )�)
&�

 and ,
&�

= , k()� )�)
&�

+ , k()� )�)
&�

.    (S35) 
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Using these definitions, the effective population size for the X and autosomes take the form 

𝑁$� =
k(�&�
)�

 and 𝑁$� =
k(�&�
)�

,        (S36) 

where the factor 2, which is absent in the haploid case (Eqs. 7 and S17), accounts for the effective number 

of age classes in the population (i.e., 𝐺 classes in the haploid population, but 2𝐺 classes in the case with 

two sexes). To translate these effective sizes into coalescence rates, we also account for ploidy, yielding 

per generation rates of 1 2𝑁$� = 𝑊� 4𝐺�𝑀� on autosomes and 1 3 2 𝑁$� 	= 𝑊� 3𝐺�𝑀� on the X. 

Based on Eq. S36, the mutation rate on X and autosomes (Eq. X), and the standard forms for 

polymorphism levels (Eq. X), we obtain the following expression for the ratio of X to autosome 

polymorphism levels: 

� ��
� ��

= �
�
⋅
7 ��

��
⋅7 ��

��

7 �� ��
�� ��

          (S37)  

(note that this differs from Eq. 18 in the main text). 

 

In Section 2.4, we recast the results for the effective population size (Eq. S36) and polymorphism ratio 

(Eq. S37) in terms of male and female reproductive variances. First, we show that the reproductive 

variances in males and females, 𝑉& and 𝑉�, are given by 

𝑉� =
&c
��

)�
&�
− ,{��

��n
,          (S38) 

where the index s corresponds to M or F, and 𝛾& and 𝛾� are the proportions of males and females among 

newborns, respectively. Thus, this equation does not assume a sex ratio of 1. Rewriting Eq. S36 in terms 

of male and female reproductive variances we find that 

𝑁$� =
�(�&c

n
���|�	;	

�
���|�	;

n
�	
��
��

;��	
��
��

 and 𝑁$� =
�(�&c

��|�	;	��|�	;	
��
��

;	����
,   (S39) 

where 𝑀, is the number of newborns of both sexes per year, and that 
� ��
� ��

= �
�
⋅ 7 ��/�� ⋅7 (�/(�

𝑓
𝛾𝐹/𝛾𝑀	+	𝛾𝑀𝑉𝑀
𝛾𝑀/𝛾𝐹	+	𝛾𝐹𝑉𝐹

.       (S40) 

These equations reduce to Eqs. 15 and 18 in the main text when the sex ratio at birth equals 1.  

 

In Section 2.5, we derive the expressions for the effective population sizes in terms of the allelic 

reproductive variances for X and autosomes, 𝑉�∗ and 𝑉�∗ (Eq. 13 in the main text):  
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𝑁$� =
(�⋅&c
|�
∗  and 𝑁$� =

(�⋅&c
|�
∗ ,        (S41) 

where the expression for the X only hold when the sex ratio at birth equals 1 (see below).  
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Notation Definition Remarks 

𝑝�," Probability that a parent of sex s is of age a Σ¡𝑝�," = Σ¡𝑝&," = 1 

𝑞�," Probability that a parent of sex s is of age ³ a 𝑞�," = Σ>S"𝑝�,> 

𝐺&, 𝐺� Male and female generation times  𝐺� = Σ¡𝑎 ⋅ 𝑝�," 

𝐺�, 𝐺� Generation times for X and autosomes See Eq. S32 

𝑀�," Number of individuals of sex s and age a 𝑀�,";, ≤ 𝑀�," 

𝑀, Number of newborns of both sexes per-year  

𝛾&, 𝛾�  Proportions of males and females among newborns 𝛾� = 𝑀�,,/𝑀, 

𝑟 Relative reproductive success  

𝑓�,"(𝑟) The proportion of individuals with relative reproductive success 𝑟 among 

individuals of sex s and age a 

 

𝑔�,"(𝑟) Given a newborn that descended from a parent of sex s and age a,  𝑔�,"(𝑟) is 

the probability that the parent has relative reproductive success 𝑟  

𝑔�," 𝑟 = 𝑟"𝑓�," 𝑟  

𝜖�(𝑠, 𝑎, 𝑟), 

𝜖�(𝑠, 𝑎, 𝑟) 

Joint stationary probability of sex s, age a and relative reproductive success 𝑟 

for the X and autosomes 

See Eqs. S49 and 

S50 

𝜖�,"� , 𝜖�,"�  Marginal stationary distribution of age a for the X and autosomes  

𝑀&,𝑀� Effective male and female age-class sizes See Eq. S61 

𝑀�,𝑀� Effective X and autosome linked age-class sizes  See Eq. S65 

𝑊�,>,? Expectation of 𝑟> ⋅ 𝑟? among individuals of sex conditional of surviving to age 

𝑎 ≥ 𝑗 

Defined for 𝑗 ≥ 𝑖 

𝑊&,𝑊� Weighted averages of the 𝑊&,>,? and the 𝑊�,>,?, respectively See Eq. S60 

𝑊�,𝑊� Weighted averages of W_M and W_F for X and autosome linked loci See Eq. S33 

𝑋�, 𝑋�," X¤,¡ and X¤ are Random variables describing the numbers of offspring an 

individual has at age a or throughout life, respectively 

 

𝑉&, 𝑉� Male and female reproductive variances (i.e., 𝑉� = 𝑉(𝑋�)) See Eq. S84 

𝑆�," The event of a newborn of sex s surviving to age ³𝑎  

𝑓(𝑥) 𝑓 𝑥 ≡ (2𝑥 + 4)/(3𝑥 + 3)  

𝜇&, 𝜇� Male and female expected mutation rates per generation  See Section 3 

𝜇�, 𝜇� Expected mutation rates per generation on  X and autosomes; 

𝜇� =
,
�
𝜇& +

k
�
𝜇� and 𝜇� =

,
k
𝜇& +

,
k
𝜇� 

 

𝑋§�, 𝑋§�  The number of newborns carrying a random X or autosome linked allele m  

𝑉�∗, 𝑉�∗ Reproductive variances of X and autosome linked alleles, respectively 

(i.e., 𝑉�∗ ≡ 𝑉(𝑋§�) and 𝑉�∗ ≡ 𝑉(𝑋§�)) 

See Eqs. S90 and 

S96 

 
Table S2: Notation for the diploid model with two sexes, with parameters of the model in red.  
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2.2 Assumptions and notation 

We consider a panmictic, diploid population of constant size, with two sexes, and sex- and age-dependent 

mortalities, fecundities and reproductive variances. We measure age in years, and assume that the number 

of individuals of sex s and age a, 𝑀�,", is constant. Specifically, the sizes of the newborn age classes, 𝑀&," 

and 𝑀�,", may take any integer values, meaning that at this point we make do not assume that the sex-

ratios at birth equals 1. More generally, the size of classes can vary between sexes, but for each sex they 

decrease with age, i. e. , 𝑀�,";, ≤ 𝑀�,", reflecting sex- and age-specific mortalities. We further assume that 

age classes are partitioned according to individuals’ age-dependent reproductive success. Namely, 

individuals are randomly assigned a vector 𝑟 at birth, reflecting their expected relative reproductive 

success at each age (see below). We then assume that the number of individuals in the population of sex 

s, age a and relative reproductive success 𝑟, is constant and equal to 𝑀�," ⋅ 𝑓�,"(𝑟), where 𝑓�," is the 

probability mass function of 𝑟 among individuals of sex s and age a. Individuals with the same value of 𝑟 

are chosen to survive to the next age class at random, i.e., there are no differences in viability, but 𝑀�," ⋅

𝑓�," 𝑟 ≥ 	𝑀�,";, ⋅ 𝑓�,";, 𝑟  due to mortality, where rates of mortality can depend on the value of  𝑟.  

  
Sex and age dependent fertility and reproductive success are described backwards in time, in terms of the 

probability of an individual being chosen as a parent. Every newborn has a mother and a father, which are 

chosen independently. The probability that the parent of sex s is of a given age is described by a discrete 

distribution 𝐴� = (𝑝�,")"d,ª , where the expectations 𝐺& = 𝐸(𝐴&) and 𝐺� = 𝐸(𝐴�) are the generation 

times for males and females, respectively. The average probability per individual of age a is therefore 

𝑝�," 𝑀�,", which can be viewed as the fertility associated with that age and sex. The probability of being 

born to a specific parent of age a and relative reproductive success 𝑟 is 𝑝�," ⋅
45
&�,5

, where 𝑟" is the a-th 

component of 𝑟. The value of 𝑟" thus reflects an individual’s expected (rather than actual) relative 

reproductive success.  

 

Similar to the haploid case (cf. Section 1.1), our assumptions imply several requirements on the form of 

the probability mass functions 𝑓�,". First, requiring that the probability of a parent of sex s being of age a 

is 𝑝�,", implies that for any sex s and age a,  𝐸7�,5 𝑟" = 1. Second, requiring that 𝑀�," ⋅ 𝑓�," 𝑟 ≥ 	𝑀�,";, ⋅

𝑓�,";, 𝑟  implies that 𝑓�," 𝑟 𝑓�,";, 𝑟 ≥ 𝑀�,";, 𝑀�,". Third, requiring that for any sex s and age a 𝑀�," ⋅

𝑓�,"(𝑟) is an integer, implies that the probability mass functions 𝑓�," are discrete and can only take values 
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𝑖 𝑀�," for 𝑖 = 0, 1, … ,𝑀�,". While the latter requirement may appear to be highly restrictive, if we fix the 

ratios 𝑀�,"/𝑀�<,"< and assume that the total population size is sufficiently large, we can relax this 

requirement and assume any continuous or discrete  distributions 𝑓�," that satisfy the first two requirements 

(by the same reasoning we applied to the haploid case in Section 1.2).  

 

2.3 Solution backwards in time 
Here, we extend the derivations of Pollak (5) to account for endogenous reproductive variance. Tracing 

an allele backward in time, the sex 𝑠Z, age 𝑎Z and relative reproductive success 𝑟Z of the individual 𝐼Z 

carrying the allele t years in the past defines a Markov chain, (𝑠Z, 𝑎Z, 𝑟Z). To define the transition 

probabilities of the chain, we distinguish between two cases. First, if the allele is not carried by a newborn, 

i.e., if 𝑎Z > 1, then at time t+1 the individual carrying it was one year younger, and its sex s and relative 

reproductive success 𝑟 remain unchanged, i.e., 𝑠Z;,, 𝑎Z;,, 𝑟Z;, = (𝑠Z, 𝑎Z − 1, 𝑟Z) with probability one. 

Second, if the allele is carried by a newborn, i.e., if 𝑎Z = 1, then the sex of the parent, 𝑠Z;,, is equally 

likely to be male or female if the allele is autosomal or if it is X-linked and the newborn was a female, but 

if it is X-linked and the newborn was a male then the sex of the parent will be female with probability 1. 

Conditional on the parent’s sex, 𝑠Z;,, its age 𝑎Z;, = 𝑎 with probability 𝑝�abc,". The probability mass 

function of 𝑟Z;, conditional on (𝑠Z;,, 𝑎Z;,), follows from Bayes’ theorem, further conditioning on the fact 

that the parent, 𝐼Z;, = 𝐼, necessarily reproduced successfully 

        𝑃 𝑟_ = 𝑟|𝐼Z;, = 𝐼, 𝑎Z;, = 𝑎  

= ` _abcd_|4abcd4,"abcd" ⋅` 4ed4|	"abcd"
` _abcd_

 = 45/&�,5 ⋅7�,5 4
	 45/&�,5 ⋅7�,5(f)g

= 𝑟" ⋅ 𝑓�," 𝑟   (S42) 

We denote this probability by 𝑔�," 𝑟 ≡ 𝑟" ⋅ 𝑓�," 𝑟 , and conclude that when 𝑎Z = 1, 𝑠Z;, is distributed as 

we described above and  𝑃 𝑎Z;,, 𝑟Z;, = (𝑎, 𝑟) 𝑠Z;, = 𝑝�," ⋅ 𝑔�," 𝑟 .  

 

𝑔�," is a proper probability mass function since 𝑔�,"(𝑟)4 = 𝑟" ⋅ 𝑓�,"(𝑟)4 = 1. Moreover, the parent’s 

expected value of 𝑟" is 𝐸4~j�,5 𝑟" = 𝐸4~7�,5 𝑟"
k = 1 + 𝑉4~7�,5 𝑟" ≥ 1. The latter inequality makes 

intuitive sense, as it implies that the allele is more likely to be descended from an individual that has higher 

than average relative reproductive success in its age class. 
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We rely on the transition probabilities to derive and solve recursions for the stationary probabilities, 

𝜖�(𝑠, 𝑎, 𝑟) and 𝜖�(𝑠, 𝑎, 𝑟), of sex, s, age, a, and relative reproductive successes, 𝑟, of autosome and X 

linked alleles, respectively. For autosomal alleles 

𝜖� 𝑠, 𝑎, 𝑟 = 𝜖� 𝑠, 𝑎 + 1, 𝑟 + 𝜖� 𝑡, 1, 𝑘Z,f ⋅ ,
k
𝑝�," ⋅ 𝑔�," 𝑟 ,    (S43) 

where the first term corresponds to aging by one year and the second term corresponds to parenting a 

newborn. For X linked alleles 

𝜖�(𝑠, 𝑎, 𝑟) = 𝜖�(𝑠, 𝑎 + 1, 𝑟) + ,
k

𝜖�(𝐹, 1, 𝑘)f + 𝕀�d� 𝜖�(𝑀, 1, 𝑘)f ⋅ 𝑝�," ⋅ 𝑔�," 𝑟 ,  

(S44) 

where 𝕀 denotes an indicator function, and, similar to the autosomal case, the first term corresponds to 

aging by one year and the second term corresponds to parenting a newborn.  

 

In order to solve these recursions, we first consider the marginal stationary distribution of age and sex, 

𝜖�,"� = 𝜖�(𝑠, 𝑎, 𝑟)4  for autosomes and 𝜖�,"� = 𝜖�(𝑠, 𝑎, 𝑟)4 . To this end, we sum the recursions over 𝑟 

to obtain recursions on the marginal distributions, 

								𝜖�,"� = 𝜖�,";,� + 𝜖&,,� + 𝜖�,,� ⋅ ,
k
𝑝�," and 𝜖�,"� = 𝜖�,";,� + ,

k
𝜖�,,� + 𝕀�d�𝜖&,,� ⋅ 𝑝�,",  

(S45) 

where we also require that 𝜖�,"��," = 𝜖�,"��," = 1. These recursions were solved by Pollack (5) for the 

case without endogenous reproductive variance, yielding 

𝜖�,"� = 𝑞�,"/2𝐺�, 𝜖&,"� = 𝑞&,"/3𝐺� and 𝜖�,"� = 2𝑞�,"/3𝐺�,     (S46) 

where 𝑞�,? ≡ 𝑝�,??S"  is the probability that a parent of sex s is at least j years old. Substituting these 

expressions into Eqs. S43 and S44, the recursions simplify to 

𝜖� 𝑠, 𝑎, 𝑟 = 𝜖� 𝑠, 𝑎 + 1, 𝑟 + ,
k(5

𝑝�," ⋅ 𝑔�," 𝑟       (S47) 

for autosomes and 

𝜖�(𝑠, 𝑎, 𝑟) = 𝜖�(𝑠, 𝑎 + 1, 𝑟) + ,;𝕀�®�
�(�

⋅ 𝑝�," ⋅ 𝑔�," 𝑟      (S48) 

for the X, where we further require that 𝜖�(𝑠, 𝑎, 𝑟)�,",4 = 𝜖�(𝑠, 𝑎, 𝑟)�,",4 = 1. The solution to these 

recursions is   

𝜖� 𝑠, 𝑎, 𝑟 = ,
k(�

𝜖 𝑠, 𝑎, 𝑟          (S49) 

for autosomes and  



	 17	

𝜖� 𝑠, 𝑎, 𝑟 = ,;𝕀�®�
�(�

𝜖 𝑠, 𝑎, 𝑟         (S50) 

for the X, where 𝜖 𝑠, 𝑎, 𝑟 ≡ 𝑝�,? ⋅ 𝑔�,? 𝑟?S" . 

 

The marginal stationary probability mass function of 𝑟 follows,  

𝜖4
� = 𝜖�(𝑠, 𝑎, 𝑟)�," = ?⋅o�,A

k(�
⋅ 𝑔�,?(𝑟)�,?        (S51) 

for autosomes, and  

𝜖4
� = 𝜖�(𝑠, 𝑎, 𝑟)�," = ,;𝕀�®� ⋅?⋅o�,A

�(�
⋅ 𝑔�,?(𝑟)�,?       (S52) 

for the X. These are proper probability mass functions since they are weighted averages of the probability 

mass functions 𝑔�,?, since 
?⋅o�,A
k(��,? = ,;𝕀�®� ⋅?⋅o�,A

�(��,? = 1.  

 

Similar to the haploid case, we rely on the stationary distribution to derive the probability of coalescence 

of two alleles. Consider the autosomal case first. For coalescence to occur at time t in the past, one of the 

alleles (A) would descent from the other (B) or both would descent from the same parental allele at that 

time. Specifically, if allele B is in an individual of sex s, age a and relative reproductive success 𝑟 at time 

t (with probability 𝜖�(𝑠, 𝑎, 𝑟)), then allele A must be in a newborn at time t-1 (with probability 𝜖&,, +

𝜖�,,), having descended from the same individual carrying allele B (with probability ,
k
𝑝�," ⋅

45
&5

) and from 

allele B specifically (with probability 1 2). Summing over the individual’s possible sexes, ages and 

reproductive success vectors, we obtain the probability 

        𝜖� 𝑠, 𝑎, 𝑟 ⋅ 𝜖&,,� + 𝜖�,,� ⋅ ,
k
𝑝�," ⋅ 	

45
k&�,5�,",4 = ,

¯ (� n
o�,5o�,A 45⋅j�,A 4pAq5

&�,5�,"   

= ,
¯ (� n

o�,5o�,A)�,5,AAq5

&�,5�," ,         (S53) 

where, for 𝑗 ≥ 𝑖, 

𝑊�,>,? ≡ 𝐸4~7�,A 𝑟> ⋅ 𝑟? = 𝐸4~j�,A 𝑟> = 𝑟> ⋅ 𝑔�,?(4 𝑟)     (S54) 

is the expectation of 𝑟> ⋅ 𝑟?  over individuals of sex s and age j. Further allowing for either allele or both 

to be the newborn (using the inclusion-exclusion principal to subtract the probability  

𝜖&,,� + 𝜖�,,�
k ,

k
𝑝�,"

k
⋅ 45j�,5(4)

k&�,5�,",4 = ,
¯ (� n

o�,5o�,5)�,5,5
&�,5�,"     (S55) 

that both alleles were in a newborn prior to coalescence), the autosomal stationary coalescence rate per 

year is 
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,
¯ (� n

o�,5n )�,5,5;k o�,5o�,A)�,5,AAt5

&�,5�," .       (S56) 

The per generation coalescence rate (in terms of the autosomal generation time 𝐺�) and corresponding 

effective population size are therefore 

,
krs�

= ,
¯⋅(�

o�,5n )�,5,5;k o�,5o�,A)�,5,AAt5

&�,5�," .       (S57) 

 

For the X,  the stationary coalescence rate per year is  

         2 𝜖&,,� + ,
k
𝜖�,"� 𝜖�(𝐹, 𝑎, 𝑟) ⋅ 𝑝�," ⋅ 	

45
k&�,5

¡,4 + 2 ⋅ ,
k
𝜖�,"� 𝜖�(𝑀, 𝑎, 𝑟) ⋅ 𝑝&," ⋅ 	

45
&�,5

¡,4  

         − 𝜖&,,� + ,
k
𝜖�,,�

k
𝑝�,"k ⋅ 45j�,5 4

k&�,5
",4  − ,

k
𝜖�,,�

k
𝑝&,"k ⋅ 45j�,5(4)

&�,5
",4   

= ,
° (� n (1 + 𝕀�d�)

o�,5n )�,5,5;k o�,5o�,A)�,5,AAt5

&�,5"�  ,    (S58) 

and the corresponding per generation coalescence rate, which defines the effective population size for the 

X, 𝑁$�, is  
,

�
k rs�

= ,
°(�

(1 + 𝕀�d�)
o�,5n )�,5,5;k o�,5o�,A)�,5,AAt5

&�,5"�      (S59) 

(defined in terms of the X-linked generation time 𝐺�). 

 

As outlined in Section 2.1, the effective population sizes, 𝑁$� and 𝑁$�, can be rewritten in terms of the 

effective age class sizes, to obtain expressions that are analogous to Eqs. 7 and S17 in the haploid case. 

To this end, the terms 𝐺, 𝑊 and 𝑀 in Eq. S17 need to be defined for the X and autosomes. First, we define 

these terms separately for males and females, by applying the haploid definitions. Specifically, we define  

𝑊� = 	 𝑝�,>k 𝑊�,>,>> + 2 𝑝�,>𝑝�,?𝑊�,>,?>x?        (S60) 

as a weighted average of the 𝑊�,>,?, and define 
,
&�
= y�,5

&�,5"             (S61) 

as a weighted harmonic average of the age classes sizes of sex s, with weights 

𝑤�,> = (𝑝�,>k 𝑊�,>,> + 2 𝑝�,>𝑝�,?𝑊�,>,??w> )/𝑊�       (S62) 

(note that 𝑤�,"" = 1).  

To extend the definitions of 𝐺, 𝑊 and 𝑀 to the X and autosomes, we define them as weighted averages 

over males and females. Specifically, G and W are defined as simple weighted averages, 
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𝐺� =
,
k
(𝐺& + 𝐺�) and 𝐺� =

k
�
𝐺� +

,
�
𝐺&       (S63) 

(this is Eq. 12 in the main text) and 

𝑊� =
,
k
(𝑊& +𝑊�) and 𝑊� =

k
�
𝑊� +

,
�
𝑊&.      (S64) 

The effective age class size M for X and autosomes is defined as a weighted harmonic average, 
,
±²

= , k(³´ ³²)
±´

+ , k(³µ ³²)
±µ

 and ,
±¶

= , �(³´ ³¶)
±´

+ k �(³µ ³¶)
±µ

.    (S65) 

Expressing Eqs. S57 and S59 in these terms, we find that 

𝑁$� =
k&�(�
)�

and	𝑁$� =
k&�(�
)�

.        (S66) 

The factor 2, which is absent in the haploid case (Eq. S17), reflects the effective number of age classes 

(i.e., 𝐺 classes of size M in the haploid model, but 2G classes in the diploid model with two sexes). 

 

Assuming the standard expressions for neutral heterozygosity, 𝐸 𝜋� = 4𝑁$�𝜇� and 𝐸 𝜋� = 3𝑁$�𝜇� 

(see Section 3), and rearranging the expressions in Eq. S66, we find that 
� ��
� ��

= �
�
⋅ 7 ��/�� ⋅7 (�/(�

7 ��/��
��/��

.         (S67)  

When the mutation rate, age structure, and endogenous reproductive variance are identical in both sexes 

Eq. S67 reduces to the naïve neutral expectation of ¾. When these factors differ among sexes, Eq. S67 

provides a simple expression for the effect of each factor.  

 

2.4 Reproductive variance  

To recast our results for the effective population sizes in terms of total reproductive variances in males 

and females, 𝑉& and 𝑉�, we follow the same steps as described for the haploid case (Section 1.3). First, 

we consider the case with non-overlapping generations in a diploid population of constant size, with 𝑁& 

males and 𝑁� females. We denote the total population size by 𝑁 ≡ 𝑁& + 𝑁�, the proportions of males 

and females by 𝛾� ≡
r�
r

, and the number of offspring of the ith individual of sex s by 𝑘>�. To maintain a 

constant population size, we require that the number of offspring arising from parents of each sex equals 

N, and therefore the sex-specific expectations are 𝐸 𝑘>� = ,
r�

𝑘>�> = r
r�

. We denote the sex-specific 

variances by 𝑉� ≡ 𝑉 𝑘>� . 
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We are interested in the probability that two distinct alleles descend from the same allele in the previous 

generation, as this probability equals 1 2𝑁$� for autosomes and 1 (3/2)𝑁$� for the X. For autosomes, 

the probability that the two alleles descend from individuals of sex s is ¼, the probability that they descend 

from the same individual of that sex is fz
�

r
⋅ fz

�{,
r{,

r�
>d, , and the probability that they descend from the same 

allele is 1/2 , therefore 
,

krs�
= ,

¯
fz
�

r
⋅ fz

�{,
r{,

r�
>d,� .        (S68) 

Substituting fz
�

r
⋅ fz

�{,
r{,

r�
>d, = ��

r{,
𝐸 𝑘>�

k − 𝐸 𝑘>� = ,
r{,

(𝛾�𝑉� +
,
��
− 	1) into Eq. S68, we find that 

𝑁$� =
�(r{,)

��|�;��|�;	
��
��

;	����
≅ �r

��|�;��|�;	
��
��

;	����
     (S69) 

(cf. (4)).  

 

For the X chromosome, the probability that two alleles descend from individuals of sex s depends on 𝛾& 

and 𝛾�. However, as we go further backwards in time, this probability approaches 1/9 for both being male 

and 4/9 for both being female, regardless of 𝛾& and 𝛾�. The probability that both alleles descend from the 

same individual of that sex is fz
�

r
⋅ fz

�{,
r{,

r�
>d, , and the probability that they descend from the same allele is 

½ for females and 1 for males, and therefore  

,
(�/k)rs�

= ,
°

fz
�

r
⋅ fz

�{,
r{,

r�
>d, + ,

k
⋅ �
°

fz
�

r
⋅ fz

�{,
r{,

r�
>d,  ,      (S70) 

and thus 

𝑁$� =
�(r{,)

n
���|�	;

�
���|�	;

n
�	
��
��

;��	
��
��

≅ �r
n
���|�	;

�
���|�	;

n
�	
��
��

;��	
��
��

 .     (S71) 

Assuming a sex ratio of 1 (i.e., 𝛾& = 𝛾� = 1/2), Eqs. S69 and S71 reduce to  

𝑁$� =
�r

k;cn|�;
c
n|�

 and 𝑁$� =
�r

k;c�|�;
n
�|�

.    (S72) 

 

To extend Eq. S73 to the case with overlapping generations, we consider the first two moments of an 

individual’s number of offspring, 𝑋�, throughout its lifetime. First, we note that an individual’s number of 

offspring can be expressed as a sum over the number at each age, i.e., 𝑋� = 𝑋�,"" , where 𝑋�," denotes 

the number of offspring at age a; and 𝑋�," = 0 if the individual does not survive to age a. In these terms, 

the first two moments are 



	 21	

𝐸(𝑋�) = 𝐸(𝑋�,")"  and 𝐸(𝑋�k) = 𝐸(𝑋�,"k )" + 2 𝐸(𝑋�,> ⋅ 𝑋�,?)?w> .   (S74) 

Denoting the event of surviving to age ³	𝑎 by 𝑆�,", we note that  

𝐸 𝑋�,"> = 𝑃𝑟 𝑆�," ⋅ 𝐸 𝑋�,"> 𝑆�," = &�,5
&�,c

⋅ 𝐸 𝑋�,"> 𝑆�," .    (S75)  

The latter term, 𝐸 𝑋�,"> 𝑆�," , can be simplified further by conditioning on 𝑟. Since the probability mass 

function of 𝑟 conditional on 𝑆�," is 𝑓�,", 

𝐸 𝑋�,"> 𝑆�," = 𝐸4~7�,5𝐸 𝑋�,"> 𝑆�,", 𝑟 .       (S76) 

Moreover, the distribution of 𝑋�," conditional on 𝑆�," and 𝑟 is  

𝑋�," 𝑟, 𝑆�," 	~𝐵𝑖𝑛 𝑀,, 𝑝�," ⋅ 𝑟"/𝑀�," ,       (S77) 

where 𝑀, = 𝑀&,, + 𝑀�,, is the number of newborns of both sexes per-year, and therefore 

        𝐸 𝑋�," 𝑆�," = 𝐸4~7�,5
&c45o�,5
&�,5

= &co�,5
&�,5

      (S78)  

and   

        𝐸 𝑋�,"k 𝑆�," = 𝐸4~7�,5 𝑀,
45o�,5
&�,5

+ 2 𝑀,
2

45o�,5
&�,5

k
= &co�,5

&�,5
+ 2 𝑀,

2
o�,5
&�,5

k
𝑊�,",".  

Substituting these expression into Eq. S75, we find that 

𝐸(𝑋�,") =
o�,5
��

  and	𝐸 𝑋�,"k = o�,5
��
+	&c{,

&�,5

o�,5n

��
	 ⋅ 𝑊�,",",     (S79) 

where 𝛾& and 𝛾� are the proportions of males and females at birth (i.e., 𝛾� = 𝑀�,,/𝑀,). To calculate the 

remaining terms in Eq. S74, 𝐸(𝑋�,> ⋅ 𝑋�,?) for 𝑗 > 𝑖, we note that conditioning on 𝑆�,?, and on 𝑟|𝑆�,?, 

𝐸 𝑋�,> ⋅ 𝑋�,? = 𝑃 𝑆�,? ⋅ 𝐸 𝑋�,> ⋅ 𝑋�,? 𝑆�,? = &�,A

&�,c
⋅ 𝐸4~7�,A𝐸 𝑋�,> ⋅ 𝑋�,? 𝑆�,?, 𝑟 . (S80)  

The latter term is easily calculated, since conditional on 𝑆�,? and 𝑟, 𝑋�,> and 𝑋�,? are independent binomial 

variables: 𝑋�,> 𝑟, 𝑆�,? ~𝐵𝑖𝑛 𝑀,, 𝑝�,> ⋅ 𝑟>/𝑀�,>  and 𝑋�,? 𝑟, 𝑆�,? ~𝐵𝑖𝑛 𝑀,, 𝑝�,? ⋅ 𝑟?/𝑀�,? , and therefore 

𝐸 𝑋�,> ⋅ 𝑋�,? = &�,A

&�,c
⋅ 𝐸4~7�,A

&cno�,zo�,A4z4A
&�,z&�,A

= &co�,zo�,A)�,z,A

��&�,z
.    (S81)  

Substituting the expressions from Eqs. S79 and S81 into Eq. S74 we obtain 

𝐸 𝑋� = ,
��
	 and 𝐸 𝑋�k = ,

��
+ &c

��
	o�,z
n ⋅)�,z,z;k o�,zo�,A)�,z,AAtz

&�,z
> − 	o�,5

n ⋅)�,5,5
��&�,5" . (S82) 

 

Assuming that the total population size is sufficiently large for the ratios 𝑀�,>/𝑀Z,? and terms 𝑊�,>,? to be 

approximated as fixed, and for the higher order terms 	o�,5
n ⋅)�,5,5
��&�,5"  to be negligible, we find that 
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𝐸 𝑋� = ,
��
	 and 𝐸 𝑋�k ≅ ,

��
+ &c

��

)�
&�

.        (S83) 

The total reproductive variances of sex s, are therefore 

𝑉� = 𝐸 𝑋�k − 𝐸k 𝑋� ≅ &c
��

)�
&�
− ,{��

��n
.       (S84) 

From Eqs. S66 and S84, we obtain that   

𝑁$� =
�(�&c

��|�	;	��|�	;	
��
��

;	����
 and 𝑁$� =

�(�&c
n
���|�	;	

�
���|�	;

n
�	
��
��

;��	
��
��

 ,   (S85) 

where 𝐺�𝑀, and 𝐺�𝑀, are the total numbers of newborns per-generation, for autosomes and the X, 

respectively. Eq. S85 thus generalizes Eqs. S69 and S71 to the case with age-structure. 

 

Assuming that 𝐸 𝜋� = 4𝑁$�𝜇� and 𝐸 𝜋� = 3𝑁$�𝜇� (see Section 3), we find that 
� ��
� ��

= �
�
⋅ 7 ��/�� ⋅7 (�/(�

𝑓
𝛾𝐹/𝛾𝑀	+	𝛾𝑀𝑉𝑀
𝛾𝑀/𝛾𝐹	+	𝛾𝐹𝑉𝐹

 .       (S86) 

Further assuming that the sex ratio at birth is 1 (i.e. that 𝛾& = 𝛾� = 1
2), Eqs. S85 and S86 reduce to  

𝑁$� =
�(�&c

k;cn|�;
c
n|�

, 𝑁$� =
�(�&c

k;c�|�;
n
�|�

 and  
� ��
� ��

= �
�
⋅ 7 ��/�� ⋅7 (�/(�

𝑓
2+𝑉𝑀
2+𝑉𝐹

,  (S87) 

which are the expressions presented in Eqs. 15 and 18 of the main text.  

 

2.5 Allelic reproductive variance 

In the main text, we derived the effective population size for X and autosomes in terms of alleles rather 

than individuals, on the premise that we can then use the expressions obtained in the haploid model (Eqs. 

10 and S29). Here we establish this premise, showing it to always be correct for autosomal alleles, whereas 

for the X it applies so long as the sex ratio at birth equals 1 (i.e., γ± = γ¹ = 1/2). 

 

Consider an allele m carried by an individual 𝐼§ of sex 𝑠§. We define the allele’s (realized) reproductive 

success as the number of 𝐼§’s offspring who endogenous a copy of m, and denote it by 𝑋§�  when m is 

autosomal and by 𝑋§�  when it is X-linked. To obtain expressions for the effective population size in allelic 

terms, we calculate the first two moments of 𝑋§�  and 𝑋§� , where m is chosen at random among alleles in 

newborns (in particular., m is carried by a male with probability 2𝑀&,,/(2𝑀&,, + 2𝑀�,,) for autosomes 

and 𝑀&,,/(2𝑀&,, + 2𝑀�,,) for the X).  
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First consider the case of an autosomal allele. To that end, we denote the total number of offspring of 

individual 𝐼§ by 𝑋_. Since each offspring of 𝐼§ carries a copy of m with probability ½, the conditional 

distribution 𝑋§� |𝑋_~𝐵𝑖𝑛(𝑋_,
,
k
). Based on the law of total variance, therefore  

𝐸 𝑋§� = ,
k
𝐸(𝑋_) and 𝑉 𝑋§� = ,

�
[𝐸 𝑋_ + 𝑉(𝑋_)].     (S88) 

Further conditioning on the sex of the individual carrying the allele, 𝑠_, we note that 𝐸 𝑋_ 𝑠_ = 1/𝛾�e 

(Eq. S83) and 𝑉 𝑋_ 𝑠_ = 𝑉�e, where the individual 𝐼§ is male with probability 𝛾& and female with 

probability 𝛾�. Applying the law of total variance again, we obtain 

𝐸 𝑋_ = 2 and 𝑉 𝑋_ = 𝛾&𝑉& + 𝛾�𝑉� +
��{�� n

����
.      (S89) 

Substituting these expressions into Eq. S89, we find that 𝐸 𝑋§� = 1 and 

𝑉�∗ ≡ 𝑉 𝑋§� = ,
�
[𝛾&𝑉& + 𝛾�𝑉� +

��
��
+ ��

��
].      (S90) 

When the sex-ratio at birth is 1, and thus 𝛾& = 𝛾� = 1 2, Eq. S91 reduces to Eq. 14 for 𝑉�∗ in the main 

text. From Eqs. S85 and S90, we obtain 

𝑁$� =
(�⋅&c
|�
∗            (S92) 

for any sex-ratio, which is Eq. 13 in the main text. While direct analogy with Eqs. 10 and S29 for the 

haploid case would result in an effective population size of 𝑁$ = 2𝐺� ⋅ 𝑀,/𝑉�∗, given that the effective 

population sizes are defined by requiring coalescence rates of 1/𝑁$ in haploids and  1/(2 ⋅ 𝑁$�) in 

diploids, Eq. S93 is, in fact, analogous to Eqs. 10 and S29. 

 

Next, consider the case of an X-linked allele. If the individual carrying the allele, 𝐼§, is a male, then only 

his female offspring will inherit the allele, and thus, 𝑋§�|(𝑠_ = 𝑀, 𝑋_)~𝐵𝑖𝑛(𝑋_, 𝛾�). Since 

𝐸 𝑋_ 𝑠_ = 𝑀 = 1/𝛾& (Eq. S83) and 𝑉 𝑋_ 𝑠_ = 𝑉�e, the law of total variance implies that 

𝐸 𝑋§� 𝑠_ = 𝑀 = 𝛾�/𝛾& and 𝑉 𝑋§� 𝑠_ = 𝑀 = 𝛾�k𝑉& + 𝛾�.    (S94) 

The case in which 𝐼§ is a female is similar to the autosomal case, and thus, 𝑋§�|(𝑠_ =

𝐹, 𝑋_)~𝐵𝑖𝑛(𝑋_, 1/2	), 

𝐸 𝑋§� 𝑠_ = 𝐹 = ,
k��

 and 𝑉 𝑋§� 𝑠_ = 𝐹 = ,
�
𝑉� +

,
���

.     (S95) 

Given that there are 𝑀&,, X-linked alleles in newborn males and 2𝑀�,, in newborn females, the 

probability that an X-linked allele in a newborn is in a male is 𝛾&/(1 + 𝛾�) and the probability it is in a 

female is 2γ¹/(1 + γ¹). Applying the law of total variance therefore implies that  
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𝐸 𝑋§� = 1 and 𝑉�∗ = 𝑉𝑎𝑟 𝑋§� = ����
n

,;��
𝑉& +

��
k(,;��)

𝑉� +
,;k����
k ,;��

+ ,{k�� n

k����
.  (S96) 

When the sex-ratio at birth is 1, and thus 𝛾& = 𝛾� = 1 2, Eq. S96 reduces to Eq. 14 for 𝑉�∗ in the main 

text. From Eqs. S85 and S96, we find that  

𝑁$� =
(�⋅&c
|�
∗ ,           (S97) 

which is Eq. 13 in the main text, only holds when 𝛾& = 𝛾� = 1 2. Thus, the haploid result (Eqs. 10 and 

S29) applies to X-linked alleles only when the sex ratio at birth equals 1.  

 

To gain some intuition as to why this result fails in the general case, consider the reproductive success of 

an X-linked allele in consecutive generations. As we have shown above, an allele’s  expected reproductive 

success is 𝛾�/𝛾& in males and 1/(2𝛾�) in females (averaged over the sexes the expectation is 1). Now 

consider the expected reproductive success in the next generation: if the allele was in a male in the previous 

generation it will necessarily be in a female, and the expected reproductive success of the offspring allele 

would be 1/(2γ¹); if the allele was in a female in the previous generation, the expected reproductive 

success is obtained by averaging over the sex of the offspring, and is ,
k
+ 𝛾�. Thus, unless 𝛾& = 𝛾� = 1

2, 

the reproductive success of an X-linked allele will be negatively correlated between parents and offspring. 

Thus, the assumption of the haploid model that the reproductive success of individuals and their offspring 

are independent variables is clearly violated in this case.  
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3. Mutational process 
 
Here we describe the assumptions on the mutational model and derive formulas for the expected levels of 

heterozygosity. To incorporate what has recently been revealed about the dependencies of mutation rates 

on sex and age (e.g., (6-8)), we allow for mutation rate in the diploid model to depend on sex and age. 

Namely, we assume that the number of de novo mutations that a parent of sex s and age a bequeaths to its 

newborn is a random variable with expectation 𝜇�," per base pair. While in the main text, we consider a 

specific model for 𝜇�," motivated by pedigree studies in humans, our derivation here treat (𝜇�,")"d,ª  as 

parameters and assumes no specific form. Since mutation rates vary with sex and age, the mutation rates 

per generation in males and females depend on the distributions of their breeding ages (i.e. 𝐴& and 𝐴�, 

which were defined in Section 2). We denote the expected mutation rate per generation in males by 𝜇& =

𝐸�� 𝜇&," = 𝑝&," ⋅ 𝜇&,""  and the expected rate in females by 𝜇� = 𝐸��(𝜇�,"). The average rates on 

the autosomes and the X are given by 𝜇� =
,
k
𝜇& + 𝜇�  and 𝜇� =

k
�
𝜇� +

,
�
𝜇&. For the haploid model, 

we assume the expected number of mutations 𝜇" to be dependent of age and define the per generation rate 

as 𝜇 = 𝐸�(𝜇"). In the special case in which the parameters 𝜇�," (or the 𝜇" in the haploid case) depend 

linearly on age, these expectations will depend only on the expected generation times 𝐺& and 𝐺�, i.e., they 

are insensitive to higher moments of the distributions of breeding ages in males and females. As we show 

below, higher moments of the distributions of mutation rates per generation do not affect our results, which 

is how we avoid any further assumptions about these distributions.  

 

The standard expressions for heterozygosity (e.g., 𝐸 𝜋� = 4𝑁$�𝜇�) are usually derived assuming that the 

genealogical and mutational processes are independent (9). This assumption is violated in our case, 

because both the time to the most recent common ancestor and the number of accumulated mutations 

depend on the ages of the individuals along the lineage. To derive the expected autosomal heterozygosity 

𝐸 𝜋�  under these conditions, we track alleles A and B backwards in time. Let 𝑋> denote the number of 

mutations occurring on the lineage leading from allele A in the ith generation and T denote the number of 

generations until the alleles coalesce. The number of mutations on the lineage leading to allele A is then 

𝑋>¼
>d, . Although 𝑋> and T are dependent variables, Wald’s equation (10) implies that 𝐸( 𝑋>) =¼

>d,

𝐸 𝑇 ⋅ 𝐸(𝑋>) (to see that Wald’s equation holds, note that the indicator function 𝕀¼S¾ is independent of 

𝑋¾, since the first depends on the sexes and ages in the first 𝑛 − 1 generations, and the second on the 𝑛th 

generation). We have shown previously that 𝐸 𝑇 = 2𝑁$�. Since 𝐸 𝑋>|𝑠>, 𝑎> = 𝜇�," (where 𝑠> and 𝑎> are 
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the sex and age in the ith generation), it follows that 𝐸 𝑋> = 𝐸 𝜇�," = 	𝜇�. We conclude that the lineage 

leading to allele A has on average 𝐸( 𝑋>) = 2𝑁$� ⋅ 𝜇�¼
>d,  mutations and therefore 𝐸 𝜋� = 4𝑁$�𝜇�. A 

similar argument shows that for the haploid model 𝐸 𝜋 = 2𝑁$𝜇.  

 

The same argument cannot be readily applied to the X-chromosome, as the sexes 𝑠> and 𝑠>;, in consecutive 

generations along the lineage are dependent variables, leading to a dependence between 𝑋>;, and 𝑠>, in 

violation of the conditions for Wald’s equation to hold. Instead, we define T as the number of females on 

the lineage until the coalescence occurs, and define 𝑋> as the number of mutations between the 𝑖th and 𝑖 +

1 females on the lineage. Under this definition, Wald’s equation holds and 𝐸 𝜋� = 2𝐸( 𝑋>¼
>d, ) =

2𝐸 𝑋> 𝐸(𝑇). It is easily shown that 𝐸 𝑋> = �
k
𝜇� and 𝐸 𝑇 = 	𝑁$�, so that 𝐸 𝜋� = 3𝑁$�𝜇�. 
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