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1 Derivation of Eq. (5) in the main text — Turnover rate
for mixed inhibition with generally distributed transition
times
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Figure S1: A generic scheme for mixed inhibition at the single enzyme level. Transition rates
were replaced by generally distributed transition times.

A generic scheme describing enzymatic catalysis under mixed inhibition is illustrated in Fig. S1.
We will now analyze this scheme to derive an expression for the enzymatic turnover rate, and
will later on show that results in the main text follow as special cases.

Consider a single enzyme that is found initially in its free state (F), and further consider the
random time it takes the enzyme to reach state (E + P). We refer to this time as the turnover
time of the reaction, denote it by Ty, and further note that it is given by

Fps  if Tpp < TET
Fgr if Ty, >TOETLI.

Here, Fg, Frs, and Fg; denote the random times taken to reach the (E + P) state, for the
first time, having started at states (E), (ES), and (EI) correspondingly. In addition, Ty, is
the random time taken to bind a substrate molecule, TEI is the random time taken to bind
an inhibitor molecule, and Wg = min(T,,, TE!) is the random time spent at state (E) prior
to its departure. What determines the nature of the transition from state (E) to one of its
two neighboring states is whether binding of a substrate molecule preceded that of an inhibitor
molecule, T,,, < T(ff , or vice versa T,, > TOI’;I . In the former case Tiyrn, = Wg + Fgg while in
the latter we have T}y, = Wg+ Fgr. We thus see that T},,, cannot be determined in isolation
as it also requires knowledge of Fpg and Fgj.
To proceed, let us first note that Fg; is related to other times in the problem via the following
relation
Fgr = Wgr + Tyurn = T of f + Tiurn s (2)

where we noted that Wgy = Tf}lf since the random time spent in state £ prior to its departure
is simply the time it takes for the inhibitor to unbind the enzyme. In addition, we see that

0 if Toar < Topy, TEST
FES = WES + Tturn if Toff < Tcat P TOE7;81 (3)

Frsr if TESI<Tff,Tcat

on

where T, is the random time taken to complete the catalytic step, and T,;; and TE5! are

respectively the random times taken for the substrate to unbind and the inhibitor to bind the
(ES) state. Finally, we note that



Fgsi = Wgsi + Fgs =T + Fis, (4)

where we have again noted that Wggr = Tf}?l since the random time spent in state EST is
simply the time taken for the inhibitor to unbind this state.

Equations (1-4) completely specify the set of relations between the random times Tyyn, Frr, FEs
and Fggy. Taking expectations we then have a set of four equations

(Trurn) = (Wg) + Pr (Ton < T5!) (Fes) + Pr (Ton > T (Fer)

(Fpr) = (Tof}) + (Tourn)

(5)
(Fps) = (Wes) + Pr (Togs < Teat s THZ") (Tourn) + Pr (T5" < Togy , Teat) (Fusi)
<FESI> = <T0Ef§1> + <FES> )
for the unknowns (Tyyrn) , (FEI), (FEs) and (Fgsr), and solving for (Tiy.r) gives
(1—Pr(TE <Tops Teat) ) (W) + (Wes)
P’I‘(Tcat <Toff,T£LSI)PT(T0n<TOE;‘LI) PT(Tcat <Toff ,TOL:lSI)
(Tourn) = " (1=Pr(Ton<TH!)) (1—Pr(TES <Top s, Tear) ) (T5) (6)

Pr(Teat<Topf TEST)Pr(To, <TEI)

Pr(T55" <Tops Teat){To75")
Pr(Teat<Toys, TEST)

The right hand side of Eq. (6) depends on certain probabilities and expectations values but
these can all be computed given information on the underlying transitions times which govern
the problem. Indeed, with fx(¢) denoting the probability density of a random variable X and
Fx(t)=Pr(X >t)=1- fg fx(#')dt’" as the complimentary cumulative distribution function
of this random variable, we have

Pr(TEST < Topp,Tear) = [;° fres: (t) Fr,,, (t) Pr,,, (t) dt,

Pr(Tear < Togs, TEST) = [° fr.a, (t) Fr,,, (t) Fres: () dt, (7)

Pr(Ton <TEN) = [07 fr,, (t) Fre: (t)dt.

The mean times (Wg) and (Wgg) can also be written in a similar way exploiting the fact
that the time spent at a state is a minimum over the occurrence times of competing processes
governing the departure from this state. For example, Wg is nothing but a minimum over T,
and TEI. We thus have Fyy, (t) = Pr(Wg > t) = Fr, (t) FTO%I (t) and hence

We) = [ B0t = [ Fr,, () Frg (0)dr. @
0 0
Similarly, we find that

W%QAme@ﬁAwﬂmﬁﬁmﬁ@E@@ﬁ- (9)

1.1 Simplified expressions for the case of exponential binding times

The result in Eq. (6) can be simplified by taking advantage of the fact that many substrate
molecules independently compete for the binding of the same enzyme. And so, while the stochas-
tic time characterizing the binding of a single substrate molecule may be complex, the amalga-
mation of many independent binding attempts will follow Poisson statistics. This in turn means
that the binding time T,, comes from an exponential distribution with density



I, (8) = kon [S] e~ konlSIt (10)

Using the same rational for the binding time of the inhibitor to the enzyme, TZ! and to the
enzyme substrate complex, TE5T gives

Frei(t) = KEL (1) e~ kom0t

on

fT(ngI (t) — kfnSI [I] e*kff[[l]t,

for the probability density functions of these random variables.

1.1.1 Turnover in the absence of inhibition

In the absence of inhibitor molecules the probability of binding one is zero, and we thus have
Pr (Tfﬁl < Toff,Tcat) =0, Pr (T,m < TOI”;I) =1,and Pr (th < T£SI,Toff) = Pr(Teat < Togf)-
It then follows that the mean time spent in state F is simply the time it takes a substrate to
bind the enzyme, (Wg) = (T,,), and Eq. (6) becomes

<Ton> + (mm (Tcata Toff)> )

Turn = 12
< ! > Pr (Tcat < Toff) ( )
Equation (10) then implies that (T,,)~ " = kop [S] and rearmament of (12) gives
1 min (Tear, Ty
<Tturn> < ( t ff)> (13)

T Pr (Toat < Togf) kon [S] | Pr(Tear < Topr)

Comparing the result in Eq. (13) to the classical Michaelis-Menten equation (Tjy.,) = 2= ﬁ +
1

Umaz’

we identify the constants

1

_ 1 _ ) .
Ko = o tminTeae Do 1) — Fon I Frony (0Fz,;, (048 7

. ) (14)
v _ Pr(Teat<Togy) jooo chat(t)FToff(t)dt
maz — (min(Teat,Toff)) — [5° F‘Tcm(t)FToff(t)dt ’

and note that in order to get these expressions we did not make any assumptions on the distri-
butions of the catalysis time T¢,; and unbinding time T, .

1.1.2 Turnover with inhibition

To progress analysis in the case where inhibitors are present, we first note that Eq. (14) asserts
that

i T /Uma:r
t) F t)dt = 1
| I 0P, = e (15)
and - )
Fr.,, @) Fr,,, (t)dt = . 16
0 Teat ( ) Togy ( ) K, kon ( )
Using this fact, we define two normalized probability density functions fys (t) and fp (¢)
Im (t) = KmkonFTcat (t) FToff (t) )
(17)

fp (t) = %chat (t) FToff )

Umax

and their corresponding Laplace transforms fy (s) and fp (s)



fﬂf(s) = fooo eisthkOnFTcat (t) FToff (t) dtv
. B (18)
fP(S) = fooo e_St%chat (t) FToff (t)dt :

Umax

Using these definitions, and by use of Eq. (11), Eq. (7) can be simplified and written in the
following form

ESI

0o _pESI ESI[] ~
Pr (TOEnSI < ToffaTcat) = ];g:lk([i] fo e Fon [I]th (t) dt = ’;g:nk([i] fM (koEnSI [ID )

Pr (Tur < Togy, TEST) = gimas [ k0T Ut fp (1) dt = pmee fo (KEST(T)) . (19)
EI\ _ _ konlS]
Pr(Ton <T53') = moqstnermm -

Doing the same for Eqgs. (8-9) we find

1
— e 2
W) = g ST+ kBT 2
(Wis) = —— /maﬁ?Wnuwﬁ: L (kEST (D)) (21)
Kmkon 0 Kmkon on
Substituting Eq. (19-21) back into Eq. (6) the latter can be simplified to give
Ko (1 REL(TEN ) 4y (1+ REST(TES) 1) B (1)
<Tturn> = v [S] + v ’ (22)
where
ESI ~
)
A1) = —EnFen TV , (23)
Ip (kon [I])
and

fo (KESTT
B([I]) = w (24)

fP (kon [ID

Equations (23-24) coincide with Eqs. (M3-M4) in the methods section of the main text. Re-
—1 —1

Cauing that <Tturn> = ]-/kturn; KEI - (kfnl <TOEfIf>) 5 and KESI = <kOEnSI <T£‘c§[>> , we
see that Eq. (22) coincides with Eq. (5) in the main text, and we will now show that all of the
results in the main text could be derived from it.

2 Proof that Eq. (5) in the main text reduces to Eq. (1)
when all transition times are exponentially distributed

When all the transition times in Fig. S1 are exponentially distributed Egs. (10-11) remain valid,
and in addition we have



chat (t) = kcate_kcat,t ,

fToff (t) = kOffe_kofft’

(25)
Frzs (= Kty
_LESI
Frgip (0 = K,
for the probability density functions of T¢q¢, Tosf, Tf}lf, and Tf}?l . We then find that
o0 _ oo k(.a
Pr (Tear < Topyp) = / JTowe (t) Fr, ), (1) dt = / egre Featte Rosstqy — — Tcat ,  (26)
0 ] 0 koff + kcat
and
oo B o) 1
min (Toat, Tors)) = Fr.., (t)Fr, .. (t)dt = e Reatte=horstgy — — — (27
(min (Tt T ) = [ Pree () Pr, 0t = [ o @
from which it follows that
_ PT(TCat<Toff) —
Umazx = i (Teat Tor 1)) keat
(28)
_ 1 _ korrtkeat
Km - kon<min(TcataToff)> - kon :
In addition, from Eqgs. (17-18) we now have
r ESI _ kosstkeat 00 _KESIE —keart ,—ko _ kogrtkeat
Far (kT 1)) = =t keon [ e For MlteReortemker st dt = gt ierry
(29)

kofftkcat k

f (LESI _ " kon  Mom oo _gESI[q]t —kecatt p—kosst gy — _ Forftkear
fe(kyy " [1]) = e fo e keare e At = o R TREST -

Substituting the above back into Eq. (23-24) we conclude that

ko kear + KEST[I kKESIIT ko kea
A(]) = Kers & kear & Ko H{_ on ] g T Fear ]:17 (30)
koff + kcat koff + kcat koff + kcat + kon [I}
and
B([I]))=1. (31)
Equation (25) moreover asserts that k2, = 1/ <T£I§> and kF5H =1/ <T£;§I >, which in turn
means that
ETI ESI
ETRE D
Tiurn) = - Tl = y 32
< k > VUmax [S] + Umax ( )

and we see that the result in Eq. (32) coincides with Eq. (1) in the main text.



3 Derivation of Eq. (2) in the main text from Eq. (5) —
Turnover rate for competitive inhibition with generally
distributed transition times

Competitive inhibition can be seen as a special case of mixed inhibition in which the binding
rate of the inhibitor to the enzyme-substrate complex is zero (k£ = (). Keeping in mind Egs.
(15-17), and the definition in Eq. (18), we see that

Pkt (1) =0) = [§° Kmkon Pr,,, (t) Fr,,, () dt = [§° far(t)dt =

3 (33)
FR(EIT ] = 0) = [;° fmten fr,, (t) Fr,, ()dt = [ fp(t)dt =
and thus have
AKEST I =0)=B (K511 =0)=1. (34)
Equation (22) then becomes
Ko (1+ k2T Tb}if 1) 4 1
<Tturn> - ( v < 2 > ) ﬁ + v 9 (35)

which coincides with Eq. (2) in the main text.

4 Derivation of Eq. (3) in the main text from Eq. (5) —
Turnover rate for uncompetitive inhibition with generally
distributed transition times

Uncompetitive inhibition can also be seen as a special case of mixed inhibition. Here, the
binding rate of the inhibitor to the free enzyme is zero (kZ! = 0), and since A[I] and B[I] do
not dependent on kZ! Eq. (22) reduces to

Ko A([I]) (1 +hgn ! <TESI> [I]) B([1))

Umazx [S] Umax

<Tturn> = ) (36)

which coincides with Eq. (3) in the main text.

5 The two-state model

The two-state model disscussed in the main text, and illustrated in Fig. S2, is a special case
of the general scheme for uncompetitive inhibition (Fig. 4, main text). Indeed, the two can
be shown to coincide by allowing the catalysis time in the general scheme to come from a
distribution whose density is

<2)t

chat( ) pkcate catt + ( )kcate Feat (37)

and otherwise taking all transition times to be exponentially distributed with proper rates. To
see this, note that in the two state model the ES complex can be found in one of two states:
ES, or ES;. However, these states have the same substrate unbinding rate, ks ¢, and inhibitor
binding rate, kZ5![I], and only differ in their catalytic rates which are correspondingly given by

kD) and £ )

ot cat- Moreover, a transition from the free enzyme E occurs with rate k,,[S] and leads



keogs

Figure S2: A two-state model that is a particular instance of the generic scheme in Fig. 4 (main
text). Binding of a substrate to the enzyme can occur in one of two ways with probabilities
p and (1 — p), each leading to a different enzyme substrate complex (ES; or ESs), that is
furthermore equipped with a distinct catalytic rate (kgl or kgi)t) The inhibitor binds each of
the enzyme-substrate complexes with the same rate, kZ5/[I], and when it unbinds these states

are once again reached with probabilities p and (1 — p).

to ES7 with probability p and to ESs with probability 1 — p, and these states are reached with
the exact same probabilities after an inhibitor unbinds, with rate kffé}f , from the EST complex.
We thus see that £S; and E S could be effectively merged mto asingle E'S state whose catalysis
rate is randomly drawn to be k; t with probability p and k t with probability 1 — p every time
this state is visited. This asserts that the probability den51ty function of T, is given by Eq.
(37) above, and we further note that from the construction of the two state model it follows
that Ty, Tor s, TEST and Tf}?l are all exponentially distributed with rates ko, [S], koss, kEST[I]

and kJY, respectively.
5.1 Derivation of explicit expressions for the functions A([I]) and

B([I]) in the case of the two-state model

With the above at hand we can derive explicit expressions for A ([I]) and B ([I]). We first note
that in the case of the two state model Eq. (18) can be written as

; BSI 1—f ko p+kEST[I
fM(koEnSI [I} =Kn on fO k (] +k°ff) F ut (t) dt = Kmkon : sz:tf(eri(fljr;gl[I] LD 5
Fr(KEST(I)) = Embon (o0 o= (b Ulthors)t () dt = Kombon . 1 (kypp + KEST 1)),

(38)
with
: * e kG k)
Frouo) = [ € (0t = pie b (1= p) gt (39)
0 kcat +s k('af + 5

standing for the Laplace transform of fr. , (¢). Substituting Eq. (38) into Egs. (23-24) then

gives
A() = Umas oy CRESTI) . (o)
(Fogs + RESTI) Kokon \ Frv. (hoyy + EST 1)




and

/Umax 1
Bl = (kors + k521 1) <fth (kops +KESTIT) 1> | "

To further proceed, we observe that in the case of the two state model Eq. (14) reduces to

—k ~
ST e eI Al Kops Freg (Ross) _ Kopr (kG +(1—p)ESC) +k (D kD)

Umaw = By (e oI =1 (o) (1—p) kL, +PRC) +hoss
(42)
K. — 1 — kors Ul Aoy ) (kD) A hory)
m Ko Fr.., (t)e Forrtat kon(l—chat(koff)) kon((l p)ki)ﬂrpkﬁarkkoff) .
Substituting Eq. (42) into Eqgs. (40-41) and making use of Eq. (39) we find
2
boss (1= (= oy ) RS0
A(l) =1 - ;o (43)
(1 * k<1)t> (1 + k<2>t) ( (k“i + k<2>> (Kor s + k52T [ﬂ))
and
o (i ity ) Kot
B([I))=1- (44)

tlop g herr ) (14 (Lop gy kops + KESL[I
<kg(11)t k(2> k‘i}l)f i?t) ( <k‘£1) k(2) > ( ff [ ])

It could now also be observed that at high inhibitor concentrations both A([I]) and B([I])
approach asymptotic values

cat cat

2
kos(1—p)p (k<11) - k<12> )

A(T] = 00) ~ 1 — , (45)
(” kg;a) (” k<>> <k v )
and
2
(1 —P)P (kmt - k(12)t)
B([I] - 0) ~1 - = ~ (46)

1 p Off
1 1 2 1 2

6 Derivation of a general condition for the emergence of
inhibitor-activator duality

To derive a general condition for the emergence of inhibitor-activator duality we start from the
expression for the mean turnover time in Eq. (22), and ask when will d@'ﬁ[ﬁ‘” lin=0 < 07 In other
words, we would like to determine when will an increase in the concentration of the inhibitor,
from an initial value of zero, result in a decrease of the mean turnover time, and hence in an

increase of the turnover rate. To answer this question we first note that

A(Tyurn Kmkg, (To7) kon (1053
<d[I] > [1]=0 = vmaf[S]ff> + vimff ;
47)
Km [1]) dB([1]) (
Umaz[s] |[I =0 + Vmaz  d[I] |[I]:O ’

10



Now, since fys (s) and fp (s) are the Laplace transforms of the random variables M and P
defined by the normalized densities in Eq. (17) we have

Far (REST (1)) = 1= kS5 I)(M) + O(1)) (48)

and
fo (KEST (1) =1 k55T (11 (P) + O([1]%), (49)
from which we find that

ES
1— k [I]f (kESI [I]) kESI (1]
A([I) = =1+ k2SI (P) — 22 L O(1]), 50
(1) = —Fete pre -t Do), 60
and
Far (K551 10D) BESI ESI 2
B([I])—7=1+kon [ {P) = ko™ U] {(M) + O([1]7) - (51)
fr (K55 [])
Plugging these equations back into Eq. (47) we find
A Tvurn Kmkgn (To7, ko (To73
gub | = ol ) . 27
2)
R G ®
( #it) | KESTP)KESTOM)
Umaz [S] Umazx
Rearranging we see that %h n=o < 0 if and only if
kB (TEL)
mton I f K 1
_ 1+ =2 ) (P TESHY - _— M) .
s+ (1 ) 19+ () - g < 00 9

To make sense of this condition, and some more progress, we return to the definitions of (P)
and (M) and recall that these are given by

(M) = K, kon t-Fr,, (t)Fr,,, (t)dt, (54)
0
and Kok o
(P) =222 [t (0 Py, (00, (55)
max 0

which in turn means that they could be related to the life time, Wg = min (Tvat, Tosy), of the
enzyme substrate complex in the absence of inhibition. Indeed, recalling the definitions of K,
and vUp,q, in Eq. (14) we observe that

= FTear @) Fry (1)
fp(t) = Emken fr (1) Pr,, (1) = ;T(WSTZ,)

(56)
= f{Tcatchat<Tuff}(t) = f{WgS\ES%EJrP}(t) )

where fryo g5 pypy(t) is simply the probability density function of the life time W2 given
that the stay in the E'S state resulted in product formation (catalysis occurred prior to unbind-
ing). This in turn means that

(P) = [t g, ipsoper) (it = (WES|ES —» B+ P) (57)

11



Regarding (M), we first note that
Fyo_ (t) = Pr(Wgg >t) = Pr(min (Tea, Toss) > 1)

_ — 58
— Pr (Tow > 1) Pr(Togy > t) = Fr.,, (1) Fr,,, (1) (58)

i.e., that the life time of the ES state (in the absence of inhibition) is larger than ¢ if and only
if neither catalysis nor unbinding occurred by that time. Equation (54) could then be written
as

Joot Fro, () Fr,,, ()dt _ Jo~t- Fwg, (t)dt
(min (Teat, Togs)) <W1%S> ’
(59)
where we have once again used the definition of K, in Eq. (14). The nominator can be worked
out using integration by parts and we find

o0
(M) = Kpkon / t-Fr,, (t)Fr,,, (t)dt =
0

o] _ t2 B 0 1 o] ) ) 1 9 = 1 0 \2

(60)
We now assume that fwgs(f) decays to zero “fast enough” in the sense that there exists some

e > 0 such that lim {fwgs(t)/t_(3+5)} = 0. This condition asserts that lim {%tQFW}%S (t)} =

. oo 0 2 . .
tlirgo {%tzft fwo, (z)dz} =0 and that 5 [~ ¢*- fwo (t)dt = z <(W]%S) > < o0o. Substituting
back into Eq. (59) we obtain

_ R 2
M) = 3 gy = 2 Wes) (CVikg, +1) oy
o2 (WO WO N2\ o \2
where CVI/%/O = (VOVESQ) = <( Bs) Z <2 Bs) is the normalized variance, a.k.a coefficient of
ES <WES> <WES>

variation, of Ws.

Substituting Eqs. (57) and (61) back into Eq. (53) we rewrite the condition for the emergence
of inhibitor-activator duality in terms of the mean, conditional mean, and coefficient of variation
in the stochastic life time of the ES complex in the absence of inhibition

LW, (CV&V}gS + 1) >

kBT K,, <TEI (62)

kfnSI[S?ff> + (1 + ﬁ]) (WOs|ES — E+ P) + <T§§1> - -

Rearranging and recalling that K, k., = <Wg’s>71 we get

(Toie) +(TE) 1, (Whs|ES — E+ P) K,
w30 ) (- EEREER) ()

ET
where (T).) = % <T£ff> Equation (63) provides a general condition for the emergence

of inhibitor activator duality.

12



6.1 Derivation of Eq. (M6) in the methods section

Equation (M6) in the methods section of the main text can be derived from Eq. (63) by noting
that in the case of uncompetitive inhibition k2! = 0 and (T},,;) = 0. Equation (63) then reduces
to

TEY WO ES » E+P -
(T57) (WhlES — 5+ »<1 AN

1
AL (ovE, — 1) 1-—
gy < 2 (CVin, *( WEs)
which coincides with Eq. (M6) in the methods section of the main text.

6.2 Derivation of Eq. (4) in the main text

To derive Eq. (4) in the main text from Eq. (M6) (Eq. (64) above), we first recall that
K, ko = <Wgs>_1 and slightly rearrange Eq. (64) to give

1 1 K
TES) < o (CViy 1) —(WeES 5 E+P)) (1+22) . (65
< of f >< 2K mkon Wos + Ko kon < ESl + > + [S} (65)
We will now show that when substrate unbinding times are taken from the exponential distribu-
tion <WgS|ES — FE+ P> could be expressed in terms of CVV%,0 to greatly simplify the above
ES
condition.
We start by noting that Eqgs. (59) and (61) could be used to give

1 o )
m (OVV%/Q;S + 1) = Kinkon . t-Fr, (t) Fr,,, (t)dt. (66)

However, when unbinding times are taken from the exponential distribution, Fr, s () = e Forst,
and the integral on the right hand side of Eq. (66) reduces to

[eS) B B [eS) B b oo
|t Fr O Fn, @at= [ eFr e trtd =22 [ Fr e tertar. (o)
0 ’ 0 a]’%ff 0
Integrating by parts, we find
< 1—f 1—f - f
/ t-Fth (t) e—koff'tdt — _ 8 chat (koff) — chat (koff) +2k0ff f Teat (koff) ;
0 Okoss kors kors

. (68)
where f7. (kops) is the derivative, with respect to k,yy, of the Laplace transform of fr,,, (t).
Substituting Eq. (68) back into Eq. (66), we conclude that

1 K,k ~ _
—— (OVijo +1) = =52\ 1= fro,, (kogs) + kors - f'1a, (Bopr)]| (69)
2K kon ( BS ) koff [

and solving Eq. (69) for f{pm(kof ) then gives

Fons (kopy) =1 .

_ koff
1 [ I S 2
S Tear (Royy) = <CVW]%S + 1) + kory

2 (Knkon)”
We now go back to treat (Wpg|ES — E + P). Combining Egs. (56) & (57) we obtain

Kukon [yt f1.0, (t) Fr,,, (t)dt

Umaz

(Wps|ES — E+ P) =

13



The integral on the right hand side could once again be treated by taking advantage of the fact
that Fr,,, (t) = e *or7"*. Doing so, we find

/0 b fro, (t) Fr,,, (t)dt = — / o B e ot =~ (kogp), (72)

o s
and substituting back into Eq. (71) gives

_ Knkonf i (kofs)

Uma:c

(Wgg|ES — E+ P) =

Substituting Eq. (70) into Eq. (73) then gives

Kmkon ko f + ko _1
(Ws|ES = E+ P) = — [( i 2(cvv2v55+1)+—cha( 1) 1 (74)

Umax 2 Kmkon) koff

Finally, we use Eq. (15) to obtain

Un _

e / a0 Fr (e = [ fr, @bt = Fr oy (79
and substituting for fr., (koss) in Eq. (74) then gives
kor v — Kk
0 of f 2 max mhvon
E F+P)=——7—""—— ( 1) -
<WES| 5= M > 2Kmkonvmaw CVW%S * koffvmam (76)

To finish, we substitute Eq. (76) back into Eq. (65) to obtain
s 1
(55" < me (CVig, 1)

1 ko 2 Ymaz—Kmkon K
(it + et (CViy, +1) + ) (1+ %

mkonVmaz koffVmax

(77)
).

and further rearrangement of Eq. (77) gives
(255) < o [Peiient + ety ] 5 (OVidg, 1)

1 (vmaﬁko” B Kmkon—'umw> (1 s ]) (78)

Umaa Kmkon kogs

We now note that in the case of exponential substrate unbinding times, Eq. (14) becomes

Ky, = — “Eorrtg . Foss
kon [§° Firag, (t)e” "ol f0dt kon 1—fr.,, (kosy)
(79)
I g (e I Al Kopg frey, (Ross)

(% = = — % s
maw jooo FTcat (t)e Fofs ‘dt 1_chat (kOff) ’

and it is then easy to see that in this case
K kon = koff + Umaz - (80)

Substituting Eq. (80) into Eq. (78) kills the second term in this equation and simplifies the first
to give

ESI 1 2 _ ! Fos 1
(TES) < 3 (CVW0 1) T {1+ =i S]] . (81)

Equation (81) coincides with Eq. (4) in the main text.
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7 Numeric simulations validating results shown in Fig. 5D

0
kturn/ kturn

%

\

005 050 5 50
1], uM

Figure S3: Numerical simulations (points and error bars) were preformed to validate the an-
alytical results presented in Fig. 5D (curves). Complete turnover cycles were simulated, with
the catalysis time T,,; randomly drawn from Log-normal (dashed green), Weibull (solid blue)
and Gamma (dash-dot orange) distributions — all with a mean of 7.544 [ms| and variance
of 897.85 [ms2]. All other transition times o, Toyy, TEST and Tf}fc*’ were randomly drawn
from exponential distributions with rate constants ko, = 0.1[uM ~tms™1], kopp = 0.1[ms™1],
EEST = 2[uM~'ms~!] and kfgf =1 [msil], respectively; and the substrate concentration was
taken to be 1[uM]. Each point in the plot represents an average taken over N = 5,000 inde-
pendent simulations, and errors were estimated by dividing the sample standard deviation in

k‘turn/k?urn = (Tturn/Tt%Tn) - by \/ﬁ
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