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Supplementary Figure 1: Histogram of area under the curve (AUC) ratios comparing enrichment
of BioGRID-supported edges in a GroupGM network versus networks created by inverse correla-
tion (red), correlation (yellow), and random edge score assignment (grey). Specifically, we compared
the area under enrichment—edge density curves from 10,000 bootstrap samples from chromatin fac-
tors, excluding edges between different cell types (Figure 3A). P-values represent the number of
bootstrap samples with a ratio of AUC’s less than 1.
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Supplementary Figure 2: Enrichment of BioGRID-supported edges in the K562 cell line of
three different modeling approaches using three different pre-processing methods. For binary
peaks (blue), we used MACS2 with paired controls and a lenient peak threshold. For control-
adjusted pileup (red), we took MACS2 pileup output and adjusted with a paired control. For
transformed control-adjusted pileup (yellow), we took the square root of the control-adjusted pileup.
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Supplementary Figure 3: Precision when predicting BioGRID interactions using inverse covari-
ance (blue), a binary Markov random field model from [55] (red), and partial correlation (yellow).
A tilde (7) indicates we took Markov random field precision numbers directly from the published
precision-recall plot in [55]. To generate inverse covariance and partial correlation results, we started
with processed data from [55]. Then, we calculated bootstrap-averaged performance on BioGRID
interactions as Zhou et al. did in their article. We compared methods under three different testing
regimes. Continuous represents testing on the original control-adjusted, normalized, and binned
data. Binary represents testing on binarized data, without regularization. L; binary represents
testing on binarized data, with L; regularization of both models.
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Supplementary Figure 4: One-sided hypergeometric test negative log;, P-values for enrichment of
BioGRID-supported edges within cell types that have 25 supported edges or more (Figure 3C).
The hypergeometric test is less conservative than the bootstrap approach used in Figure 5. Cell
types with more datasets will likely have more significant P-values, since they have more edges to
compare. Dashed line indicates 99% confidence level (P = 0.01). Beneath each cell type name is
the number of datasets in that cell type.
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Supplementary Figure 5: Histogram of area under the curve (AUC) ratios comparing enrichment
of BioGRID-supported edges in a GroupGM network versus networks created by inverse corre-
lation (red), correlation (yellow), and random assignment (grey). Specifically, we compared the
area under enrichment—edge density curves from 10,000 bootstrap samples from chromatin factors,
including edges between different cell types (Figure 3B). Variability was much higher than in an
examination of edges within cell types (Figure 1). This is because resampling chromatin factors
measured in many cell types alters many edges across cell types.
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Supplementary Figure 6: Enrichment of BioGRID-supported edges in a GroupGM created from
a binary data matrix of MACS peaks called at two different thresholds (P < 0.05, blue; P <
0.001, red). Within the larger network we examined BioGRID enrichment among datasets from
K562 myeloid leukemia cells, GM12878 lymphoblastoid cells, and H1-hESC embryonic stem cells.
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Supplementary Figure 7: Enrichment of BioGRID support in edges with a given weight. Nega-
tive coeflicients indicate negative correlation. Dark grey line indicates the fraction of BioGRID-
supported edges in a randomly connected network (8.4%). Light grey shaded area represents those
edges with coefficient magnitude less than the 0.03 minimum used in the ChromNet interface.
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Supplementary Figure 8: Force-directed 2D embedding embedding of a correlation network of
human ENCODE data, estimated by naive correlation. In contrast to the GroupGM network (Fig-
ure 6), marginal dependence drives the forces here. Datasets targeting the same chromatin factor
are more tightly clustered and spatial relationships between related chromatin factors are much
weaker than in Figure 6.
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Supplementary tables

Supplementary Table 1: Summary of all ENCODE datasets processed by ChromNet broken down
by cell type. This summarizes the full listing of all 1,415 datasets with ENCODE experiment
identifiers (Supplementary Data 1). The transcription factor and histone columns represent how
many unique transcription factors or histones were measured in that cell type. The treatments
column lists the number of additional treatment conditions each cell type was measured under.

Transcription Histone
Cell type Datasets factors modifications Treatments
K562 238 156 12 2
GM12878 146 107 11 1
HepG2 116 82 11 3
A549 93 51 11 2
HeLa-S3 87 64 11 1
H1-hESC 81 60 11 0
MCF-7 53 35 5 1
SK-N-SH 44 27 6 1
endothelial cell of umbilical vein 28 9 12 0
HCT116 28 22 5 0
ECC-1 24 21 0 5
fibroblast of lung 22 2 11 0
keratinocyte 18 2 12 0
mammary epithelial cell 16 2 11 0
SUDHLG6 14 2 12 0
Karpas-422 14 2 12 0
CD14-positive monocyte 14 1 11 0
Pancl 13 4 6 0
fibroblast of dermis 13 2 11 0
T-cell acute lymphoblastic leukemia 13 2 11 0
skeletal muscle myoblast 13 2 11 0
astrocyte 13 2 11 0
myotube 13 2 11 0
DOHH2 12 1 11 0
HEK?293 12 7 5 0
cardiac mesoderm 12 0 3 0
MCF 10A 12 5 0 2
osteoblast 12 2 10 0
Oci-Ly-1 11 0 11 0
Oci-Ly-3 11 1 10 0
Oci-Ly-7 11 1 10 0
IMR-90 10 10 0 0
NT2/D1 9 3 6 0
GM12891 9 8 0 1
T47D 9 6 0 4
neural cell 8 8 0 0
B cell 8 2 5 0
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Cell type

Datasets

Transcription
factors

Histone
modifications

Treatments

GM12892

HL-60

PFSK-1

NB4

U208

mononuclear cell

bronchial epithelial cell
foreskin fibroblast

kidney epithelial cell
GMO06990

Caco-2

BJ

LNCaP clone FGC
erythroblast

WI38

cardiac fibroblast

H7-hESC

H54

SH-SY5Y

GMO08714

WERI-Rb-1

SK-N-MC

epithelial cell of proximal tubule
fibroblast of villous mesenchyme
retinal pigment epithelial cell
fibroblast of pulmonary artery
fibroblast of mammary gland
HFF-MYC

epithelial cell of esophagus
choroid plexus epithelial cell
cardiac muscle cell

brain microvascular endothelial cell
astrocyte of the cerebellum
astrocyte of the spinal cord
GM12875

GM12865

GM12864

BE2C

fibroblast of the aortic adventitia
fibroblast of skin of abdomen
fibroblast of gingiva

fibroblast of pedal digit skin
fibroblast of upper leg skin
GM15510

GM19193
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Transcription Histone
Cell type Datasets factors modifications Treatments

GM18951
GM19099
GM18505
GM18526
GM10847
Loucy
spleen
pancreas
medulloblastoma
lung
kidney
GM20000
GM13977
GM13976
GM10266
GM10248
Raji
skeletal muscle cell
Jurkat
GM12874
GM12873
GM12872
GM12801
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Total 1,415 803 353
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Chromatin factor Max edge weight Known in BioGRID

MAX 1.403 +
POLR2A 0.685 +
CTCF 0.358 -
FOS 0.345 -
MXI1 0.322 —
JUND 0.306 —
TBP 0.247 +
MAZ 0.247 +
HCFC1 0.233 =
GTF2F1 0.223 +
EP300 0.187 +
STAT3 0.185 -
E2F6 0.172 —
PHF8 0.172 -

RCOR1 0.167 -
BHLEH40 0.166 -

Supplementary Table 2: Top 16 chromatin factors with a strong connection to MYC in ChromNet.
Scores are strongest group edge connecting MYC to the listed factor in any cell type.

Supplementary Note 1: Benefits of binary data

ChIP-seq datasets comprise many sequence reads, and these reads match true chromatin factor lo-
cations to varying degrees of quality. Processing of these reads influences the quality of the learned
chromatin factor interactions and the computational resources required to rebuild the network with
new user-provided data. Binary values representing presence or absence of a chromatin factor at
a specific location provided the most effective representation of a ChIP-seq dataset (Supplemen-
tary Figure 2).

We compared three different signal representations across three different estimation methods
on all K562 datasets. For all methods, we binned the resulting signal into 1,000 bp regions. For the
binary peaks method, we called peaks from MACS2 with a lenient P = 0.05 cutoff. For the control-
adjusted pileup method, we took quality filtered (> level 13) non-multimapping reads and calculated
the depth of read pileup in each bin by averaging the depth of the pileup track computed by MACS2
during peak calling. For the transformed control-adjusted pileup method, we took the square root
of the control-adjusted pileup to make the marginal densities better fit a normal distribution.

The binary peaks method showed the best overall enrichment of BioGRID-supported edges,
although the inference method affected performance more than the pre-processing method (Sup-
plementary Figure 2. The binary peaks method likely showed the best performance because it
damped noise in large regions without any chromatin factors present. Binary data also vastly re-
duced data matrix file size. This allows users to download the entire data matrix and add their
own datasets.
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Supplementary Note 2: Simulation study of estimating a binary Markov random
field using the inverse covariance matrix

ChromNet uses an efficient matrix inverse in place of a computationally intensive Markov random
field model. An inverse covariance (or correlation) matrix and a Markov random field edge matrix
have equivalent sparsity structures if the graph of overlaps between the maximal cliques in the
Markov random field graph forms a tree [30]. Trees are a well-known subclass of this set of graphs.
However, many networks fall outside this class, specifically those with chordless cycles of four or
more nodes. For these graphs the inverse covariance matrix and a Markov random field do not
have equivalent sparsity structures [30].

We compared the sparsity structure of a general Markov random field estimated using the
inverse covariance matrix against the structure of a Markov random field using node-wise logistic
regression. We used node-wise logistic regression because it provides a consistent estimator for
Markov random field structure. For comparison with [30], we focus on the inverse covariance
matrix. The same observations hold for the inverse correlation matrix used in the main paper,
which is just the covariance matrix of normalized data.

A chordless loop of four variables provides the simplest network where the sparsity structures of
an inverse covariance matrix and a Markov random field model are not equivalent for binary data.
We created such a four-variable Markov random field model, with the same parameters ® used in
[30]:

®= : (3)

The entries of this matrix are the parameters to Equation 1 (Methods). Estimating an inverse
covariance matrix € from an infinite number of samples from the ® model results in [30]:

51.37 —5.37 —0.17 —5.37
—-5.37 5137 —-5.37 —-0.17
2= —-0.17 —-5.37 51.37 —5.37 )

-5.37 —-0.17 —-5.37 51.37

While Q and ® do not have equivalent sparsity structures, the off-diagonal values in 2 that match
zeros in @ are small in magnitude. Only the off-diagonal values matter since we are not including
self-self edges in our network. In this case, while asymptotically the sparsity structures do not
match, the relative ordering of off-diagonal coefficient magnitudes is fairly consistent. Without
regularization, inverse covariance matrix entries will never be exactly zero, so relative magnitude
of an entry matters most.

To examine how well the true edges separate from the “false” edges when modeling ® with
an inverse covariance matrix, we calculated P(i)i,j < 0) for each entry in the estimated matrix
across a range of sample sizes. We calculated this empirically from the underlying model using
1,000 replicates. This gave an empirical estimate of P(Cf)m < 0) at each sample size. A low value
for P(fi)i,j < 0) represents a confident detection of a positive edge in the Markov random field.
Then, we compared the P(Cili,j < 0) computed using € to an equivalent value computed using
logistic regression run on each node. That logistic regression is asymptotically consistent with the
underlying Markov random field [30]. We seek to use the inverse covariance matrix instead of
node-wise logistic regression because GroupGM relies on inverse covariance matrix properties not
found in a matrix estimated by node-wise regression.
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Supplementary Figure 9: Power to detect positive entries in ® estimated using (A) the inverse
covariance matrix or (B) node-wise logistic regression. P(i)i,j < 0) represents the probability that
an edge is estimated as negative or zero under each method. A small value represents a confident
detection of a positive edge. We computed P((i)m < 0) empirically by re-running the estimation
procedure 1,000 times, while varying the number of samples used to learn the model. Each sample
size represents the number of times a sample was drawn from the true network. More samples
provides more power to detect positive edges. We plot the estimated P(@i’j < 0) for the two true
zero edges (red) and four true non-zero edges (blue) in ®.
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Supplementary Figure 10: The power the inverse covariance matrix to detect true edges is similar
to logistic regression, but unlike logistic regression it eventually identifies false edges as well. The
key point to note is the 100-fold separation in power between the true and false edges.

Logistic regression and inverse covariance have very similar power to detect true edges in @,
although only logistic regression is asymptotically consistent in the considered scenario (Supple-
mentary Figure 9). Supplementary Figure 10 extends the range of sample sizes considered for the
inverse covariance matrix estimation. After a 100-fold increase in sample size, false edges not in ®
also begin to be detected, confirming the theoretical inconsistency of the inverse covariance matrix
on graphs with chordless cycles. However, the power separation between the true and false edges is
very strong. This suggests that, in practice, a proper threshold may be able to separate true from
false edges.

When analysing ChIP-seq data in ChromNet we do not test against the null hypothesis of zero
edge weight, we instead use a variable threshold controlled by the user, constrained to capture
edges enriched for prior interactions (Supplementary Figure 7). We compared the ability of logis-
tic regression and the inverse covariance to separate the true edges from the false edges using a
magnitude threshold. This comparison demonstrated nearly equal power between the two methods
(Supplementary Figure 11).

While for simulation we compare against logistic regression, we also observe similar perfor-
mance between a full Markov random field model and inverse covariance in modENCODE data
(Supplementary Figure 3, Methods).

Supplementary Note 3: Proof that the group graphical model preserves edge
magnitudes in the presence of arbitrary collinearity

The inverse covariance matrix (a symmetric matrix) can be interpreted in terms of multiple regres-
sion [22], where for simplicity of notation we assume infinite data samples so ¥ = X:
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Supplementary Figure 11: Random 8-node Markov random field models were generated with 40%
of the pairwise weight parameters set drawn from N(—0.5,1), 1% were set to a large value of 3
to create outliers, and the remaining entries were set to zero. 1,000 such models were drawn and
then sampled from. The minimum separation error of true edge from false edges by magnitude was
computed for both logistic regression and the inverse covariance matrix across a range of sample
sizes. In practive both methods performed equally, even though the inverse covariance matrix is
often not asymptotically consistent.

1/Eu(1 =R —Bui/Eu(l—RY)] -+ —pfun/[En(l — RY)]
s1_q_ —B21/[B22(1 = R3)]  1/[S2(1-R3)] -+ —Pan/[S22(1 — R3)]
Bt /S = B2)] —Bua/[San(1 = B2)] -+ 1/[Sun(l — B2)]

where f3;; is a parameter of the ith regression that predicts the ith variable from all the others, and
Ri2 is the proportion of the variance in variable ¢ explained by the ith regression. For correlation
matrices then on-diagonal ¥;; entries will be one:

1/01-R})  —Pi2/(1-RT) - —P1a/(1 - RY)
0 —fBn/(1—=R3)  1/(1—R3) -+ —Pan/(1—R3)
B /(1= R2) —fn2/(1—R:) -+ 1/(1-R})
To further simplify, we can define S; = 1:]1%2:
=51 S1B12 -+ S1Bin
B Saffor =82 - Safop,
Sn/Bnl San? T _Sn

Consider an arbitrary edge between two nodes A and B with that correspond to rows A; and
B; in Q. The strength of the connection in the symmetric matrix €2 is S4,84,B, = SB,5B,4, -
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Now consider a new data set with a superset of the variables in the original network represented
by Q. This new dataset, represented by Q)| has a second B variable with index Bs. These two
B variables (B; and Bj) are arbitrarily similar to one another but not identical, and the second
variable bears no relationship to other variables in the network beyond what it gains by being
similar to By. The regression problem for A; would be unstable, because By and Bs are highly
correlated to each other, which makes it unclear how the weights should be distributed to these
two predictor variables. However, the sum of the coefficients for the B group remains the same:

2 2
6&1331 + 621)32 = 5141317

In addition, no new information has been provided about A, so S4 remains unchanged (because
the amount of variance explained remains the same):

s =54,

which means the following:

2 2 2 2
554)61(41)31 + 51(4)/31(41)32 = SA6A1317

which is equivalent to:

2 2
9541)31 + 9541)32 = QAlBl'

This means that the connection strength that was present in between A and B in 2 is now preserved
as a sum of two entries in Q3. This argument generalizes to any number of variables in the B
group.

Now after adding a redundant B variable consider adding a redundant A variable to create a
new data set Q). Since the B variables cannot choose between A; and As their coefficients are
unstable but still sum to their previous value:

3 3 2

/B(Bl)Al + Bj(Bl)AQ = /B(Bl)Al (5)
3 3 2

»31(92),41 + »BJ(BQ)AQ = »31(92),41 (6)

adding A, provided no new explanatory power for the B variables so

3 2
g =S5 (7)
Sk = Spn, (8)
which means
3) (3 3) (3 2) (2
SWBE . + S5 BY,, = 8585, 9)
3) (3 3) (3 2) (2
Si B, + SiuBinas = St By (10)
and
3 3 2
o, +95),, =of) (11)
3 3 2
QSBQ)Al + QSBQ)AQ = QSBQ)Al- (12)
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Because 2 is symmetric we know that

2 2 2 2
9541)31 + 9541)32 = anl)fh + Q(BQ)AI'

Using this we can now calculate the original connection strength Q4, p, as a sum of entries in Q).
This can be directly generalized to any number of variables in each group, which means that the
connection strength of an edge between two variables in a non-redundant data set can be recovered
by summing edges in a data set where both variables are in groups of redundant variables.

2 2
QAlBl = QE‘ll)Bl + Qf‘h)Bg ]'3

(13)
2 2
Q141151 = Q§31)A1 + 9532)141 <14)
3 3 3 3
Q14131 = QSBEAl + Q(Bl)Az + Q(B2)Al + Q(32)142 (15)
(16)

Supplementary Note 4: Comparison of Markov random field and inverse covari-
ance for network estimation from binary data

Motivated by the computational advantages of the inverse covariance matrix we compared the
performance of both methods applied to binary data from 73 modENCODE ChIP-chip datasets
on Drosophila melanogaster embryonic S2-DRSC cells from Zhou et al. [55] (Supplementary Fig-
ure 3). The authors reported 10 known positives in the top 15 predicted interactions when using an
Li-penalized Markov random field (max entropy) model. We obtained the same performance us-
ing Lj-penalized inverse covariance methods (graphical lasso [12]) when choosing a regularization
parameter that maximized the precision. Similarly the performance of unregularized estimation
was also equivalent between the two models. Partial correlation is a rescaled version of the in-
verse covariance matrix used by the authors on real valued data. We found it performed similarly
to the inverse covariance matrix. For the tested ChIP-chip datasets, using binary data and L
regularization shows a clear advantage (Supplementary Figure 3). For ENCODE ChIP-seq data,
however, we found a benefit for binarization, but not L regularization. This may be because the
human genome is much longer than the fly genome, and so provides many more positional samples
to prevent overfitting.
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