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Figure S1. Overview of the challenge to integrate multiplexed proteomics 
measurements into confidence intervals. A) Multiplexed proteomics allows the 
comparison of protein abundance among multiple conditions. For simplicity, only two 
conditions are shown. A protein with true protein ratio (red-blue bar) is digested into 
peptides. The peptides are labeled with isobaric tags e.g. TMT to encode the different 
conditions. The peptides are combined and ionized and injected into the mass 
spectrometer. B) The different peptides derived from each protein results in separate 
spectra, which allow quantification using accurate multiplexed proteomics methods, e.g. 
MultiNotch MS3 or TMTc+. The relative intensity of the peptide signal can be used to 
quantify protein abundance. Each spectrum contains the information of relative 
abundance and signal i.e. the number of ions by which this ratio was measured. C) The 
challenge is how the information of different peptide intensity and 
agreement/disagreement between measured peptide ratios can be integrated to 
accurately reflect confidence intervals for the underlying true protein ratio. 

  



 

 

Figure S2. The versatile beta distribution. Illustration of various shapes of the PDF of 
a binomial fraction, that can be expressed by a Beta distribution with two respective 
parameters as illustrated. The diagonal corresponds to symmetric distributions with the 
mode at .5 but different confidence. Above the diagonal distributions skewed towards 0, 
below the diagonal – towards 1. Any fraction between zero and one can be therefore 
represented with various degree of confidence, using two parameters α and β.  



 
Figure S3: Summing up peptide signal works for the artificial protein case. Artificial 
proteins are generated by summing from several peptides from a sample in which all 
peptide ratios are identical. A) 3 peptides were selected per artificial protein. The correct 
mixing ratio for this sample is 0.745. The 95% confidence intervals are below bottom 2.69 
% and above top limits 3.15 % of the time. B) 20 peptides were assigned per artificial 
protein. Bottom limit of 95% confidence intervals is 2.29 % above true ratio, and top limit 
is 2.47% of the time below true ratio. 
  



 
Figure S4: Intuitive explanation for the Monte Carlo Markov Chain method. We 
construct a large set of samples representing the distribution as a histogram. The process 
starts by taking samples from a proposal distribution (e.g. uniform) and constructing a 
chain of sequential samples selecting the next sample based on the likelihood of the 
current sample (and ignoring the rest of the history, therefore chain has the “Markov 
property”).  

 
 



 

Figure S5.  An illustration of joint multi-dimensional uncertainty representation for the 

case of a 3-plex projected into 2-plex.  

  



Supplementary Material 
 
Mathematical foundations 

The functional form of this dependency for a coin toss represented by a binomial 
distribution is as follows. The mean of the binomial distribution with parameters n (number 
of tosses) and p (probability of success) is m = np and the standard deviation 

is s = np(1- p) thus the coefficient of variation is  Cv = 1- p
np

.  

We fit a single parameter m as a multiplier to an S/N value s where n=ms to the binned 
data as illustrated in Figure 2B. The data of 10534 points is binned by 500 data points 
into 21 bins, andCv is calculated for each bin the MATLAB’s Nonlinear-Least-Squares 

fitting method is used which naturally produces not only most likely estimate but also the 
confidence intervals on the conversion parameter.   
 

The confidence intervals are obtained from the Beta distribution by inverting the 
distribution in the following way. The likelihood function of the parameter q (Binomial 
probability of success) is a Beta distribution q ~ Beta (α, β), where PDF of Beta is x

a-1(1- x)b-1

B(a,b)

 

where B(a,b) =
G(a)G(b)

G(a + b)

 defined via the Gamma function.  

If S/N values for two channels are k1 and k2 for an instrument with a multiplier m we have 
a Beta function with parameters α= k1m and β= k2m . The values of q where the 
cumulative distribution function (CDF) of this function get to (1-ξ)/2 and (1+ξ)/2 
respectively are the limits of the 100*ξ percent confidence interval.  
The multi-peptide case is modeled using the Bayesian inference language Stan as 
follows: the fraction in two channels for i-th peptide is qi ~ Beta (α, β), for peptides 1..K, 
then the number of events observed in the first channel between two channels which 

have a total of Ni events is ni ~ Binom(qi, Ni) where Binom(n | q,N)  qn (1-q)N-n  
 

Implementation details 

In addition to the peptide data file, which is expected in TSV or CSV format, our 
implementation of BACIQ takes the following parameters:  

- the S/N conversion factor; 
- the confidence level;  
- the channels identity.   

 

MCMC remarks 

We illustrate the general intuition behind Monte-Carlo Markov Chain method in Figure 
S4. The key point is that in order to approximate the distribution which we cannot compute 
in a closed form, we construct a large set of samples representing the distribution as a 
histogram. The process starts by taking samples from a proposal distribution (e.g. 
uniform) and constructing a chain of sequential samples selecting the next sample based 
on the likelihood of the current sample (and ignoring the rest of the history, therefore chain 
has the “Markov property”). In the context of protein ratios estimation, we are essentially 
asking “what is the probability for the observed peptide data to have come from a situation 
where the protein fraction is q ?”. If the probability is high, the sample will be accepted 



and the next sample will be drawn not far from it, if it is low, the sample will likely get 
rejected.  

 

 


