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Materials and Methods  

Terminology 

 

The label “Synthetic” in text, table, or figure refers to what is referenced in the main text 

as “random genome datasets” or “random genome networks”. 

 

The label “Random” in text, table, or figure refers to what is referenced in the main text as 

“random reaction datasets” or “random reaction networks”. 

 

References to “archaea parsed” (or any variation thereof) refers to a subset of all analyzed 

archaea genomes. Starting with all archaea genomes, we selected one representative 

genome containing the largest number of annotated ECs from each genus. Unique genera 

(genera only represented by a single genome) were also included in our parsed data. 

Uncultured/candidate organisms without genera level nomenclature are left in the parsed 

dataset. The “bacteria parsed” dataset was created in the same way.  

 

Rationale for choosing data to be analyzed 

 

We calculate all network measures on the largest connected component (LCC) of each 

network, for the following reasons: 1. Several network measures only make sense to 

calculate on connected components (e.g. diameter, average shortest path), focusing on the 

LCC therefore permits all network measures implemented in our study to be calculated for 

all networks; 2. The largest connected components have the vast majority of nodes (>90%) 

for the vast majority of networks in each dataset (the only exception is the random reaction 

networks, of which only ~76% have a largest connected component with at least 90% of a 

network’s nodes). See Table S1 and Fig. S1 for distribution of sizes of the LCC by 

dataset. 

 

Comparing candidate degree distributions 

 

In our analyses, the goodness of a distribution’s fit to a particular dataset (e.g., a network’s 

degree distribution) is assessed comparative to other distributions. Practically, this means 
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fits from two candidate distributions are compared using a log-likelihood ratio (R) using 

standard methods (19, 28). Here we report the normalized log-likelihood ratio, 𝑅/(𝑛 ∗ √_ ), 

where n is the number of data points ≥ xmin, and 𝛔 is the standard deviation on R), along 

with its significance (p). If the p value is small (p < 0.1), then the observed sign of R is 

likely a reliable indicator of which candidate distribution is a better fit to the dataset. For 

our analyses, a positive R indicates a preference for the power law distribution (we always 

put R in the numerator of the log-likelihood ratio). For each dataset, we compared a power 

law distribution to three other common distributions for goodness of fit: exponential, log-

normal, and truncated power law. This produces an R and p for each comparison. 

  

We conclude it is not unreasonable to fit the dataset to a power law distribution if both of 

the following conditions are met: 

a)    When compared to an exponential distribution, R>0 and p<0 (i.e. the power law 

distribution is favored compared to the exponential distribution, and thus the distribution 

is heavy-tailed(20, 29). 

b)    When compared to each other distribution, R>0 or p≥0.1 (i.e. the power law distribution 

is favored or the observed sign of R is not statistically significant) 

 

[Note: In the main text, we report on a version of plausibility where we compared the power 

law distribution to only two other distributions: exponential and lognormal; thus excluding 

the truncated power law in the main discussion.] 

  

We are less concerned with verifying if our data truly follows a power law distribution than 

verifying that a power law distribution is a reasonable description to use—even if other 

descriptions may also be reasonable. We therefore did not perform a goodness-of-fit test 

to determine, in absolute terms, whether the data is drawn from a power-law distribution 

(23). For example, even if we used bootstrapping and the Kolmogorov-Smirnov test to 

determine the validity of a power law fit to the datasets irrespective of any other 

distributions, we may find that our data does not fit strictly to a power law distribution. We 

use the power law distribution because it is frequently implemented to describe 

heterogeneity in biochemical network structure, and importantly it can be described with a 

single scaling parameter, making comparisons across different datasets easier than in the 

case of comparing log-normal distributions which have two scaling parameters. 

Additionally, we are interested in knowing if our dataset is more favorably fit to a heavy-

tail distribution than to a non-heavy-tail distribution (e.g., the exponential distribution).  

  

We use the Python power law package to find xmin (see Fig. S4) as well as to calculate the 

log-likelihood ratio and its significance for each candidate distribution comparison (20). 

For more details and nuances of distribution fitting and comparison, see Clauset et al., 2009 

(19). 

 

Power law Fits for Degree Distributions 

 

Using our above definition of power law plausibility, the vast majority of all networks 

could plausibly fit a power law distribution, when compared to the candidate distributions 
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of exponential, lognormal, and truncated power law distributions (Table S2 col 2). If we 

remove the comparison to truncated power law distributions, that number increases (Table 

S2 col 3). 

 

Additionally, we compare the α values of networks which can plausibly be fit by a power 

law distribution. α references the scaling exponent of the power law distribution, given by 

P(k) =  ck-ɑ. The distribution of α values obtained across all datasets can be seen in  Fig. 

S5. 

 

We do this across all networks for two scenarios: 1. When we include the truncated power 

law as a candidate distribution for comparison, and 2. When we remove the truncated 

power law as a candidate distribution for comparison. The results indicate not comparing 

to a truncated power law causes the spread of α to increase, while the range of values and 

median α value remain similar. The results can be seen for real and random genome/random 

reaction networks in Fig. S2. The only exception to this result is for the random reaction 

network dataset, where roughly half of the networks fit significantly better to a truncated 

power law distribution than a power law distribution, when a truncated power law 

distribution is included in the comparison. In case where we do not compare to the 

truncated power law, the distribution is noticeably shifted downward in addition to the 

increased spread of the data. We highlight the difference between these two groups of data 

by separately plotting the subsets of the random reaction networks which are and are not 

power law plausible as a boxplot and scatterplot in Fig S3 a and b, respectively. 

 

Fitting network measure scaling and permutation tests 
 

For each network measure, a scaling relationship was fit as a function of the size of the 

largest connected component  (LCC) of the network. For each measure, three different 

models were tested, a power law of the form y = y0 xβ, a linear relationship of the form y 

=βx + y0, and a quadratic function of the form y= β1x + β2x2  + y0, for both the assortativity 

measures, the preferred  fit was also compared to a constant y= β. The preferred model was 

chosen as the one which minimized cross validation errors, according to 10-fold cross 

validation, across the entire data set.  

 

Once a model was chosen, a simulated permutation test was performed to determine 

whether the scaling relationship for a given attribute was the same for ecosystems and 

individuals or if it was distinct (24). We took as the null hypothesis the scaling relationship 

across different levels of organization are constant, and used the fitted scaling parameters 

(for individuals and ecosystems) as the test statistic. We used fitted 1,000,000 resamples 

of the complete dataset to estimate the likelihood of the fit for individuals (or ecosystems) 

to have been drawn randomly from the complete dataset.  We performed this test for both 

the ecosystem and individuals, if there was a difference in the estimated likelihoods we 

took the greater of the two. These likelihoods are the (two-sided) p values reported in Table 

1 (main text). The same procedure was followed to determine the distinguishability of 

ecosystem networks with the randomized controls (random genome networks, and random 

reaction networks).  
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To estimate the true scaling parameters, and 95% confidence intervals a bootstrap sample 

of 100,000 was used for each network attribute(24). If the permutation test allowed us to 

reject the hypothesis of a constant scaling relationship across individuals and ecosystems 

to a confidence greater than 0.01, the scaling parameters were estimated separately for the 

individuals and ecosystems, otherwise the complete dataset was fit. The scaling parameters 

(and confidence intervals) for distinct domains were also estimated using a bootstrap of 

100,000 samples.  

 

For scaling fits and confidence intervals see Table S5. 

Predicting evolutionary domain from topology 

 

To demonstrate topological features of genomes from different domains are distinct, 

multinomial regression was used(30). Specifically, we implemented models where the 

domain of the network was the response class and a single topological feature, normalized 

by the size of the largest connected component (LCC) of the network was the dependent 

variable. We found topological features of networks alone were often not predictive of the 

domain but the ratio of the topological properties to the size of the network was often more 

predictive. Prior to the regression these normalized topological measures were scaled and 

centered(24). The regression was implemented in base R using the glm(..), function. 10-

fold cross validation was used to estimate the prediction accuracy of any one measure, 

which is reported in Table 1 (main text).  

 

Obtaining genomic and metagenomic information 

Genomes (PATRIC)  

Archaea and bacteria genomic datasets were obtained from PATRIC(10). Enzyme 

commision (EC) numbers were obtained from “ec_number” column in the pathway data of 

each taxon. Eukarya genomic datasets were obtained from the Joint Genome Institute’s 

(JGI) integrated microbial genomes database and comparative analysis system 

(IMG/M)(11). All eukarya data used in this study was sequenced at JGI. All EC numbers 

used to construct eukarya biochemical networks were obtained from the list of total 

enzymes associated with each eukaryote. EC numbers were used in conjunction with 

KEGG enzyme and reaction data in order to build biochemical networks for each taxon. 

Metagenomes (JGI)  

Metagenomic data was obtained from JGI IMG/M(11). All metagenomic data used in this 

study was sequenced at JGI. All EC numbers used to construct metagenomic biochemical 

networks were obtained from the list of total enzymes associated with each metagenome. 
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These EC numbers were used in conjunction with KEGG enzyme and reaction data in order 

to build biochemical networks for each metagenome. 

Enzyme Classes (EC numbers) 

 

In the main text, what we refer to as enzyme classes are EC numbers. All reaction data 

associated with each EC number was obtained from KEGG(12). 

Constructing networks 

 

In this study, we construct three different types of biochemical reaction networks: 

biological networks, random genome networks and random reaction networks. These 

biochemical reaction networks consist of chemical compounds that are involved in 

biochemical reactions: two chemical compounds are connected to each other when one is 

a reactant and the other is a product of the same biochemical reaction. The process to 

encode a biochemical reaction as the network representation can be described with the 

diagram below as follows:  

 

 

 

 

 

 

 

 

 

 

(a) Catalyzed Reaction  (b) Reaction Diagram  (c) Network Representation 

 

 

  

 

(a) Suppose that a chemical reaction R catalyzed by an enzyme E is given, which 

transforms chemical compounds C1 and C2 to C3 and C4.  

(b) The reaction, R,  can be described in a reaction diagram, or a directed bipartite 

network representation, where the reactants C1 and C2 are connected to the reaction node 

and the products C3 and C4 are connected as products from the same reaction. 

(c) The network representation of the reaction R shows how the reaction 

information is embedded in the network. In the network representation, nodes are 

substrates and a reactant is connected directly to a product if they are connected to the same 

reaction in the corresponding reaction diagram.  
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Regardless of the types of networks, all chemical network representations in this paper 

follow the same methods. Therefore, the distinctions between different types of 

biochemical reaction networks come from how we select reactions to be included in each 

network, which is described below. Note that all edges in the networks in this paper are 

represented as undirected and unweighted since our interests lie on the presence or absence 

of particular reactions in given networks and, in principle, all biochemical reactions can 

happen in both directions depending on the environment. 

 

Biological Networks  

 

For each biological network, we include all catalyzed biochemical reactions annotated in 

each genome or metagenome. More specifically, we consider three different levels of 

organization: individual organisms, ecosystems and the biosphere. For the construction of 

individual networks, we utilize the genome data of 21,637 bacterial taxa and 845 archaeal 

taxa from the Pathosystems Resource Integration Center (PATRIC)(10), as well as 77 

eukaryotic taxa from the Joint Genome Institute (JGI)(11). From this data, we obtain the 

set of classes of enzymes for each genome. All reactions catalyzed by this set of enzymes 

and present in the Kyoto Encyclopedia of Genes and Genomes (KEGG)(12) database are 

included in the network representation of the corresponding genome. Similarly, for the 

network representation of each of the 5587 ecosystems from JGI, we include all reactions 

catalyzed by the ecosystem’s coded enzymes, provided they are catalogued in the KEGG 

dataset. Finally, for the biosphere network, we include all catalyzed reactions in KEGG.  

Random Genome Networks 

To construct a random genome network, we sample genome level networks uniformly at 

random from the set of all individual organisms in our data set and merge them into one 

random genome network. When a set of multiple individual networks are merged, every 

node and edge present in any individual network are added to the resulting network with 

equal weight regardless of how many individual networks include them.  

 

We built random genome networks with individual networks sampled from only archaea, 

only bacteria, only eukarya and from integration of all the three domains. The number of 

individual networks randomly selected and merged into a random genome network is 

defined as its rank. For this study, we generated 10 random genome networks with ranks 1 

- 200 for archaea, 1 - 200 for bacteria, 1 - 77 for eukarya, 1 - 447 for all three domains.  

The maximum rank for each domain is determined so that it is larger than minimum number 

of  distinctive individual networks that are needed to be integrated to contain all reactions 

annotated in the corresponding domain. To find the maximum ranks, we investigate how 

the number of distinct reactions increases as individual networks are integrated one by one 

in the order of decreasing size of the networks for each domain and for all three domain 

together as shown in Fig. S8. 
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In total, we generated 2,000 random genome networks from 730 individual archaea 

networks, 2,000 from 21,213  individual bacteria networks, 770 from 77 individual eukarya 

networks, and 4770 from merging all individual networks in the three domains. 

  

Random Reaction Networks 

In this paper, random reaction networks are generated by merging randomly sampled 

reactions from all chemical reactions from KEGG data regardless of whether a known 

enzyme is cataloged for the reaction. We note 31.46% of chemical compounds in the 

biosphere network are not included in the genomic data in our study, therefore our 

construction uniformly sampling the entire KEGG database, the random reaction networks 

can include enzymatically catalyzed reactions not included in our genomic data. 

Nonetheless our sampling procedure is biased to generate networks with similar 

biochemistry to that of the genomic networks, due to reasons explained in the main text 

(compounds common to all three domains tend to be highly connected (participate in many 

reactions) such that a uniform sampling procedure yields random networks biased to 

include the most common compounds used by life). As shown in Fig. S9, most biological 

networks for real individual organisms and ecosystems contain 200 - 5000 reactions. 

Hence, to build similar size of random reaction networks to real individual organisms and 

ecosystems, we selected the total number of reactions in each network from the range 

between 200 and 5000, sampling for each size the appropriate number of reactions from 

KEGG data uniformly and at random. Merging these into networks, we constructed 5,000 

random reaction networks in total.  

 

 

Topological Measures  

 

To characterize the topology of biochemical networks, we utilized some of the most 

frequently used topological measures. These measures are well established and detailed 

descriptions can be found in(18, 31, 32)).  Below, we briefly review these measures and 

related terms. For computing each measure, we used functions provided by Python 

software package, NetworkX(33).  

 

The topological measures implemented in this paper include average degree, average 

clustering coefficient, average shortest path length, assortativity (degree-degree 

correlation), attribute assortativity (assortativity pattern with the number of reactions as a 

node attribute), and node and edge betweenness as well as the total number of reactions. 

Note we applied these measures on the largest connected component of every networks in 

this study. When every pair of nodes in a subset of a given network are connected through 

series of edges in the network, the subset is called connected component and the largest 

subset amongst such subsets is called the largest connected component or the giant 

component.  
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The average degree, degree sequence and degree distribution: The degree of a node 𝑖 is 

the total number of connections between 𝑖  and rest of the network and is denoted as 𝑘𝑖 . 

The average degree < 𝑘 > is average of 𝑘𝑖for all nodes in a given network. The degree 

distribution is the sequence of degrees for all nodes in a given network and usually it is 

ordered in a non-decreasing order (rank ordered). The degree distribution is the probability 

distribution over values of degrees, which provides the probability for a randomly selected 

node to have particular degree. 

 

The average clustering coefficient: The local clustering coefficient for a node, 𝑖, measures 

the local density of edges in a network by considering the number of connected pairs of  

neighbor nodes of 𝑖. Hence, the clustering coefficient for a node 𝑖 is defined as, 

 

 
where 𝑘𝑖  is the degree of node 𝑖 and 𝐿𝑖 is the number of edges between the 𝑘𝑖  neighbors 

of node 𝑖. The large values of 𝐶𝑖 indicates the highly interconnected neighborhood of 𝑖. We 

computed the average of 𝐶𝑖 over all nodes in each network to measure the degree of 

clustering of the entire network. 𝐶𝑖 is measured by using a Networkx method clustering(..). 

 

The average shortest path length: The shortest path length between a given pair of two 

nodes is defined as the minimum number of edges connecting the two nodes in a given 

network. The shortest path length between two nodes is measured by using a Networkx 

shortest_path_length(..). We averaged the shortest path length for every pair of nodes in 

a given network over the entire network.  

 

The attribute assortativity (The assortativity for the number of local reactions): 

Assortativity measures the tendency of two nodes with similar properties to be connected 

in a given network. The assortativity coefficient proposed by Newman(34, 35) is 

formulated as follows: 

 

 
where 𝑒𝑥𝑦is defined as the fraction of edges between a node with value 𝑥 and one with 

value 𝑦 for a given node attribute, and  𝑎𝑥 and 𝑏𝑦 are the fraction of edges coming into and 

going out from nodes of value 𝑥 and 𝑦 respectively. _𝑎 and _𝑏 are the standard deviations 

of the distributions of 𝑎𝑥 and 𝑏𝑦. Hence, on undirected network in our study, 𝑎𝑥 =  𝑏𝑦 and 

_𝑎_𝑏  =  _2. For our study,  we consider this assortativity coefficient when the node attribute 

is the number of local reactions, i.e. reactions for each node to be involved. Also, it is 

referred to as attribute assortativity in this paper. For any network, −1  𝑟  1.  If 𝑟 <  0, the 

network is assortative, meaning nodes in the network tend to be connected to other nodes 

with similar number of local reactions. If 𝑟 <  0, nodes in the network tend to be paired to 

other nodes with different number of local reactions. We used a Networkx method 

attribute_assortativity_coefficient(..) to measure the attribute assortativity for our study.  
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The assortativity (the degree correlation coefficient):  When the considered characteristics 

of nodes is degree, the assortativity coefficient becomes the degree correlation coefficient. 

It is called assortativity in this paper. Similar to the attribute assortativity above, If 𝑟 <  0, 

the network is assortative, i.e. nodes with similar degree tend to be connected to each other. 

If  𝑟 >  0, the network is disassortative, i.e. nodes in it tend to be paired to other nodes 

with different degrees. For any network,  −1  𝑟  1. It is measured by using a Networkx 

method degree_assortativity_coefficient(..). 

 

 

The node (edge) betweenness: Betweenness centrality of a node, 𝐵(𝑣) is defined as (36–

38),  

 

 
where _(𝑠, 𝑡)and _(𝑠, 𝑡|𝑣)denote the number of all shortest paths from 𝑠 to 𝑡, and the 

number of the shortest paths through a given node 𝑣, respectively. Replacing _(𝑠, 𝑡|𝑣)with 

_(𝑠, 𝑡|𝑒) for an edge, one can also formulate the edge betweenness. Under the assumption 

importance of connections is equally distributed amongst all shortest paths between each 

pair of nodes, the node (edge) betweenness can be considered as a measure of degree of 

influence of the given node (edge) over connectivity of the given network. We computed 

the betweenness for each node and edge by implementing Networkx methods 

betweenness_centrality(..) and edge_betweenness_centrality(..), respectively.  
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Fig. S1. The percentage of networks in each dataset with at least the percentage of nodes in the 

largest connected component (minimums specified on x-axis). From top to bottom: All real 



datasets, all random genome datasets (labeled as synthetic), all random reaction datasets (labeled 

as random). 

 

 

  

 

 



 
Fig. S2. The spread in alpha values for networks which can be plausibly fit to a power law 

distribution. The top row includes only real networks, and the bottom row includes only random 

genome (labeled synthetic) and random reaction networks (labeled random). The left column is for 

candidate distribution comparisons, which includes comparing to a truncated power law. The right 

column is for candidate distribution comparisons where the truncated power law is not compared 

to the power law. In the bottom row, the label ‘kegg’ refers to the random reaction networks. 

  



 

 
Fig. S3. Top: Boxplot showing the alpha value of the subset of random reaction networks which 

can plausibly be fit to a power law (blue) and the subset of networks which cannot be plausibly fit 

to a power law (green), when including comparisons to the truncated power law distribution. 

Bottom: Scatterplot showing the alpha value of the subset of random reaction networks which can 

plausibly be fit to a power law (blue) and the subset of networks which cannot be plausibly fit to a 

power law (green), when including comparisons to the truncated power law distribution. The x-

axis shows the size of the network of each scatter point. The networks in green would be a plausible 



fit to a power law distribution if we did not compare to the closely related truncated power law 

distribution. 

  



 

 

 

 



 
Fig. S4. The percent of each dataset with a given xmin. From top to bottom: real networks, random 

genome networks (titled synthetic networks), and random reaction networks (titled random 

networks). 

  



 

 
  

 
Fig S5. Scatterplot of alpha as a function of network size. Top: Biological networks. Bottom: 

Random genome and random reaction networks (labeled as KEGG). 

 



 
Fig. S6. Scaling behavior for additional network topology measures to those shown in Fig. 1. From 

top to bottom, number of edges (NEdges), average edge betweenness (<NEdge>), average node 

betweenness (<NNode>), average assortativity (<r>), number of enzyme classes (NEC). 



 

Fig. S7. Scaling behavior for additional network topology measures to those shown in Fig. 3. 

From top to bottom: number of edges (NEdges), average edge betweenness (<NEdge>), average node 

betweenness (<NNode>), average assortativity (<r>). 



 

 
Fig. S8. The increase in the number of distinct reactions when individual organism networks are 

merged starting from the genome-level network with the largest number of reactions for each 

domain (Top) and for all the three domain combined (Bottom). Top: Shown are the trajectories for 

merging archaea (purple), bacteria (green) and eukarya (blue). Bottom: Shown are trajectories for 

successively merging archaea (purple), bacteria (green) (merged to the complete archaea network), 

and eukarya (blue) (merged to the complete archaea and bacteria network). 

 



 
Fig. S9. The frequency of biochemical networks with a given number of reactions in the individual 

parsed (See Terminology)  networks (purple) and ecosystem networks (green). 

  



Table S1: Percentage of networks in each dataset with x% of nodes in the LCC 
  

   group >85% >90% >95% 

Real Arcahaea 99.17 97.75 86.39 

  Arch_pars 98.49 97.49 80.90 

  Bacteria 99.84 99.65 87.53 

  Bact_pars 100.00 100.00 75.63 

  Eukarya 100.00 100.00 98.70 

  JGI 98.10 97.06 88.42 

  KEGG 100.00 100.00 100.00 

Random 

genome 

Arcahaea 100.00 100.00 99.75 

  Arch_pars 100.00 100.00 99.17 

  Bacteria 100.00 100.00 100.00 

  Bact_pars 100.00 100.00 99.56 

  Eukarya 100.00 100.00 100.00 

  All 100.00 100.00 100.00 

  JGI 100.00 100.00 100.00 

Random 

reaction 

KEGG 95.72 76.86 13.54 

  
 

 

Table S2: Percentage of networks plausibly fit to a power law. 



  

   groups # nets % plausible 

(w/truncated) 

% plausible (w/o 

truncated) 

Real Arcahaea 844 81.87 98.82 

  Arch_pars 198 73.23 98.48 

  Bacteria 21631 87.96 98.43 

  Bact_pars 1153 90.81 98.61 

  Eukarya 77 100.00 100.00 

  JGI 5545 92.37 98.90 

  KEGG 1 100.00 100.00 

Random 

genome 

Arcahaea 2000 99.90 99.90 

  Arch_pars 1200 99.5 99.83 

  Bacteria 2000 99.90 100.00 

  Bact_pars 1800 100.00 100.00 

  Eukarya 770 100.00 100.00 

  All 4770 100.00 100.00 

  JGI 4000 100.00 100.00 

Random 

reaction 

KEGG 5000 48.22 96.90 

  



Table S3: Percentage of networks with preferred degree distributions fit functions which 

are heavy tailed. 
 

   groups # nets % heavy tail 

preferred 

(exponential fit 

is significant) 

% heavy tail 

ambiguous (no fit 

significant over 

another) 

Real Arcahaea 844 0.00 1.20 

  Arch_pars 198 0.00 2.53 

  Bacteria 21631 0.00 0.23 

  Bact_pars 1153 0.00 0.00 

  Eukarya 77 0.00 0.00 

  JGI 5545 0.00 1.12 

  KEGG 1 0.00 0.00 

Random 

genome 

Arcahaea 2000 0.00 0.05 

  Arch_pars 1200 0.00 0.00 

  Bacteria 2000 0.00 0.00 

  Bact_pars 1800 0.00 0.00 

  Eukarya 770 0.00 0.00 

  All 4770 0.00 0.00 

  JGI 4000 0.00 0.00 

Random 

reaction 

KEGG 5000 0.00 1.16 

 



 

 

Table S4: Optimal xmin for candidate distribution fitting, shown are percentage of 

networks in each dataset with xmin at or below x. 

 

 Dataset  Name 2 or 3 <=4   

Real Arcahaea 85.80 96.09   

  Arch_pars 83.92 95.48   

  Bacteria 20.33 93.00   

  Bact_pars 19.95 84.30   

  Eukarya 1.30 97.40   

  JGI 13.27 96.06   

  KEGG 0.00 100.00   

Random 

genome 

Arcahaea 1.05 99.65   

  Arch_pars 2.08 99.25   

  Bacteria 0.15 100.00   

  Bact_pars 0.06 99.72   

  Eukarya 0.00 100.00   

  All 0.06 99.94   

  JGI 0.00 100.00   

Random 

reaction 

KEGG 57.52 94.46   



  

  

Table S5: Scaling parameters for topological measures with 95% confidence intervals. 

See SI text for description of the column parameters. 

 

beta betaM betaP level scaling y.var alpha alphaP alphaM group 

-0.2307793119 -0.2534135103 -0.2081451134 ecosystem mean assortativity_lcc 0 0 0 JGI 

-0.2164502257 -0.255753717 -0.1771467343 individual mean assortativity_lcc 0 0 0 all 

-0.2150657196 -0.2617221709 -0.1684092684 individual mean assortativity_lcc 0 0 0 archaea 

-0.2164004508 -0.2554764538 -0.1773244477 individual mean assortativity_lcc 0 0 0 bacteria 

-0.2385421647 -0.2581214935 -0.2189628359 individual mean assortativity_lcc 0 0 0 eukarya 

-0.2034697694 -0.2040738983 -0.2028707001 

syn_individu

al linear assortativity_lcc -6.96E-06 -6.82E-06 -7.11E-06 all 

-0.2033751815 -0.204134781 -0.2026202076 

ranRxn_indi

vidual linear assortativity_lcc -4.53E-06 -4.34E-06 -4.72E-06 

ranRxn_individu

al 

-0.002237782086 -0.01242700197 0.007951437799 ecosystem mean 

attribute_assortat

ivity_lcc 0 0 0 JGI 

0.004635407956 -0.01862052503 0.02789134095 individual mean 

attribute_assortat

ivity_lcc 0 0 0 all 

0.01114971242 -0.01764965817 0.039949083 individual mean 

attribute_assortat

ivity_lcc 0 0 0 archaea 

0.004493296291 -0.01856432585 0.02755091843 individual mean 

attribute_assortat

ivity_lcc 0 0 0 bacteria 

0.001780111 -0.007092809337 0.01065303134 individual mean 

attribute_assortat

ivity_lcc 0 0 0 eukarya 

-0.07577713199 -0.07646216882 -0.07508969488 

ranRxn_indi

vidual linear 

attribute_assortat

ivity_lcc 1.16E-05 1.18E-05 1.14E-05 

ranRxn_individu

al 

0.0009791817545 0.0005687775301 0.001410427812 

syn_individu

al linear 

attribute_assortat

ivity_lcc -9.13E-07 -8.16E-07 -1.02E-06 all 

2.681983848 2.596582868 2.771908934 ecosystem powerlaw 

ave_betweennes

s_edges_lcc -1.333557743 -1.323097687 -1.344452509 JGI 

2.63010053 2.592990457 2.668421148 individual powerlaw 

ave_betweennes

s_edges_lcc -1.324922687 -1.320155573 -1.329794933 all 

1.489701578 1.285518794 1.687031638 individual powerlaw 

ave_betweennes

s_edges_lcc -1.171415133 -1.143838195 -1.198802682 archaea 

2.78753471 2.752213466 2.822319685 individual powerlaw 

ave_betweennes

s_edges_lcc -1.345838956 -1.341168967 -1.35048308 bacteria 

3.18240934 2.138639068 4.635360669 individual powerlaw 

ave_betweennes

s_edges_lcc -1.400705784 -1.269771971 -1.58570036 eukarya 

1.599689335 1.55262854 1.649563527 

ranRxn_indi

vidual powerlaw 

ave_betweennes

s_edges_lcc -1.149566377 -1.143467349 -1.15610303 

ranRxn_individu

al 

1.912863709 1.17307362 2.37572118 

syn_ecosyste

m powerlaw 

ave_betweennes

s_edges_lcc -1.240466967 -1.153490235 -1.294853881 all 

1.966673527 1.918606421 2.015112105 

syn_individu

al powerlaw 

ave_betweennes

s_edges_lcc -1.243668436 -1.237628536 -1.249670977 all 

1.851532151 1.804906112 1.897822017 ecosystem powerlaw 

ave_betweennes

s_nodes_lcc -1.136804548 -1.131139768 -1.142582387 JGI 

2.012405653 1.988850845 2.036306455 individual powerlaw 

ave_betweennes

s_nodes_lcc -1.158145161 -1.154871499 -1.161399378 all 

1.390358005 1.263802468 1.518275936 individual powerlaw 

ave_betweennes

s_nodes_lcc -1.076803844 -1.058399699 -1.094883419 archaea 

2.133002115 2.110282827 2.155462494 individual powerlaw 

ave_betweennes

s_nodes_lcc -1.174130262 -1.171122796 -1.177169135 bacteria 

1.975193201 1.014326179 2.515695368 individual powerlaw 

ave_betweennes

s_nodes_lcc -1.154817191 -1.03556797 -1.224547758 eukarya 

1.372048855 1.335198467 1.410103253 

ranRxn_indi

vidual powerlaw 

ave_betweennes

s_nodes_lcc -1.059532228 -1.054624502 -1.064610887 

ranRxn_individu

al 



0.9577048055 0.6015624276 1.210896266 

syn_ecosyste

m powerlaw 

ave_betweennes

s_nodes_lcc -1.028028494 -0.9859516223 -1.057494185 all 

1.237871182 1.20011364 1.273240277 

syn_individu

al powerlaw 

ave_betweennes

s_nodes_lcc -1.059686319 -1.055122584 -1.064194637 all 

0.1133435466 0.1113121285 0.1154322204 ecosystem linear 

ave_clustering_c

oeff_lcc 3.32E-05 3.37E-05 3.26E-05 JGI 

0.09072950006 0.08992450513 0.0915470737 individual linear 

ave_clustering_c

oeff_lcc 3.77E-05 3.82E-05 3.73E-05 all 

0.1248096793 0.1172497175 0.1327026047 individual linear 

ave_clustering_c

oeff_lcc 1.40E-05 1.94E-05 8.51E-06 archaea 

0.09020213201 0.08942968967 0.09098594656 individual linear 

ave_clustering_c

oeff_lcc 3.79E-05 3.83E-05 3.75E-05 bacteria 

0.1020962312 0.08924806815 0.1181610154 individual linear 

ave_clustering_c

oeff_lcc 4.22E-05 4.76E-05 3.60E-05 eukarya 

-7.190443076 -7.244080599 -7.135813277 

ranRxn_indi

vidual powerlaw 

ave_clustering_c

oeff_lcc 0.6402690658 0.646515648 0.6337497909 

ranRxn_individu

al 

-3.815630862 -4.030552979 -3.595648125 

syn_ecosyste

m powerlaw 

ave_clustering_c

oeff_lcc 0.2920747808 0.3178179809 0.2656702928 all 

0.1465611133 0.1458008761 0.1473259738 

syn_individu

al linear 

ave_clustering_c

oeff_lcc 2.21E-05 2.23E-05 2.19E-05 all 

4.488665789 4.461928843 4.516055365 ecosystem linear ave_degree_lcc 

0.000545242443

4 

0.000552416975

7 

0.000537872341

7 JGI 

4.169956135 4.160440884 4.179592243 individual linear ave_degree_lcc 

0.000679587129

3 

0.000684462821

8 

0.000674735771

3 all 

4.316196618 4.241304113 4.393987306 individual linear ave_degree_lcc 0.000612137081 

0.000667302884

7 

0.000553163211

3 archaea 

4.158957706 4.148982852 4.168840882 individual linear ave_degree_lcc 

0.000684534400

8 

0.000689462339

3 

0.000679641935

2 bacteria 

4.165699789 3.717547379 4.608899517 individual linear ave_degree_lcc 

0.000731419730

1 

0.000914725622

2 

0.000557490973

7 eukarya 

3.647509899 3.641913636 3.653123557 

ranRxn_indi

vidual linear ave_degree_lcc 

0.000352261371

3 

0.000353691156

1 

0.000350840316

1 

ranRxn_individu

al 

0.5490346513 0.3618753781 0.7474150822 

syn_ecosyste

m powerlaw ave_degree_lcc 0.1638509013 0.1856358054 0.1406779587 all 

5.037734181 5.028919844 5.046321727 

syn_individu

al linear ave_degree_lcc 

0.000370925387

7 

0.000373069467

6 

0.000368873428

1 all 

1.81524011 1.794360853 1.836016412 ecosystem powerlaw 

ave_shortest_pat

h_length_lcc -0.08422048919 -0.0816306453 -0.08676167857 JGI 

2.072169359 2.060409332 2.083916254 individual powerlaw 

ave_shortest_pat

h_length_lcc -0.1179516357 -0.1163972991 -0.1194772248 all 

1.63824713 1.555132136 1.718391144 individual powerlaw 

ave_shortest_pat

h_length_lcc -0.06163791821 -0.05014150789 -0.07311933084 archaea 

2.131804212 2.120817592 2.142607806 individual powerlaw 

ave_shortest_pat

h_length_lcc -0.1257996939 -0.1243471542 -0.1272338367 bacteria 

1.814103636 1.306257742 2.115769798 individual powerlaw 

ave_shortest_pat

h_length_lcc -0.08534171635 -0.02059579196 -0.1241236057 eukarya 

1.662925867 1.651851365 1.674053055 

ranRxn_indi

vidual powerlaw 

ave_shortest_pat

h_length_lcc -0.05439981021 -0.05303317558 -0.05578635389 

ranRxn_individu

al 

1.089655589 0.9590196937 1.219302042 

syn_ecosyste

m powerlaw 

ave_shortest_pat

h_length_lcc 0.003003309311 0.01825911805 -0.0124586992 all 

1.37899377 1.370904545 1.387424155 

syn_individu

al powerlaw 

ave_shortest_pat

h_length_lcc -0.02959813939 -0.02861887811 -0.03062638057 all 

-7.482753919 -7.557499362 -7.408219833 ecosystem powerlaw nbr_ec 1.838449545 1.847519874 1.829380121 JGI 

-3.371922104 -3.438542156 -3.304884462 individual powerlaw nbr_ec 1.294009276 1.30315703 1.285255519 all 

1.929150163 1.598316778 2.228198103 individual powerlaw nbr_ec 0.5440910994 0.5874250147 0.5023431713 archaea 

-3.19173524 -3.252611453 -3.130685572 individual powerlaw nbr_ec 1.270178027 1.27824967 1.262236563 bacteria 

-5.324882394 -6.168185187 -4.390111911 individual powerlaw nbr_ec 1.569133609 1.676210559 1.443734174 eukarya 

-0.8211351999 -0.8379795527 -0.8046490267 ecosystem powerlaw nbr_edges_lcc 1.243813761 1.245819206 1.241770482 JGI 



-0.648360844 -0.6597761376 -0.6371400607 individual powerlaw nbr_edges_lcc 1.219314446 1.220800229 1.217901476 all 

-0.3872105249 -0.4901558906 -0.273748425 individual powerlaw nbr_edges_lcc 1.185072189 1.199196917 1.169709648 archaea 

-0.6494426206 -0.6596918541 -0.6390714717 individual powerlaw nbr_edges_lcc 1.219410206 1.220728916 1.218030409 bacteria 

-1.000663809 -1.435923792 -0.5805854499 individual powerlaw nbr_edges_lcc 1.2682855 1.323584689 1.213711244 eukarya 

-1.104301078 -1.119578929 -1.088787641 

ranRxn_indi

vidual powerlaw nbr_edges_lcc 1.245940062 1.247810134 1.244122806 

ranRxn_individu

al 

0.07964556041 -0.03273361671 0.2016258751 

syn_ecosyste

m powerlaw nbr_edges_lcc 1.137618738 1.150499743 1.122595102 all 

-0.5051692175 -0.5119621071 -0.4984291016 

syn_individu

al powerlaw nbr_edges_lcc 1.203785287 1.204577665 1.202988505 all 

-2.542243888 -2.564455158 -2.519415832 ecosystem powerlaw nbr_rxn 1.319772651 1.32251581 1.317001746 JGI 

-1.86827931 -1.883225158 -1.853312026 individual powerlaw nbr_rxn 1.229494885 1.231434296 1.227495112 all 

-1.252784933 -1.333655287 -1.172387776 individual powerlaw nbr_rxn 1.144161148 1.155104172 1.133007571 archaea 

-1.853543987 -1.868385848 -1.838386665 individual powerlaw nbr_rxn 1.227518198 1.229483376 1.225619214 bacteria 

-2.719131619 -3.052474626 -2.378718193 individual powerlaw nbr_rxn 1.342993444 1.38659353 1.298149597 eukarya 

-3.174019772 -3.194913858 -3.153404429 

ranRxn_indi

vidual powerlaw nbr_rxn 1.35908598 1.361531312 1.356672602 

ranRxn_individu

al 

-1.021832355 -1.181723618 -0.8408302368 

syn_ecosyste

m powerlaw nbr_rxn 1.139751689 1.158156047 1.118757052 all 

-2.003291852 -2.009127544 -1.997477283 

syn_individu

al powerlaw nbr_rxn 1.253612529 1.254296954 1.252941754 all 

 

 

  



Table S6: Distinguishability of synthetic ecosystem networks (randomly genome 

networks) scaling from that of real ecosystem.   

 

Network Measure P-value of permutation test 

Number of Reactions 10-5 

Number of Edges (LCC) 10-5 

Average Degree (LCC) 10-5 

Average Shortest Path Length (LCC) 10-5 

Ave Clustering Coefficient (LCC) 10-5 

Average Node Betweenness 0.14 

Average Edge Betweenness 0.08 

Attribute Assortativity  0.256 

Assortativity  0.210 
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