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1 Measuring social fluidity

Our analysis concerns a closed system containing a set N of N
individuals who can interact with each other in some way. The
model has only one tunable parameter which we call “social fluid-
ity” and can be interpreted as both the heterogeneity of relationship
strengths, and the level of mixing in the population. From the de-
scription of the model we derive, analytically, the expected value of
the the observed number of interaction partners of an individual,
ki, as a function of the number of times they been observed in an
interaction, si. By using maximum likelihood methods we are able
to measure and compare social fluidity quantity across a wide range
of data.

1.1 Mathematical model of social behavior. We start by con-
sidering one focal individual i and its relationship to another in-
dividual j. Suppose that i is observed interacting with one other
individual. We use xj|i, for all j ∈ N \ {i}, to denote the proba-
bility that the interaction will be with j. If at least one interaction
has been observed between i and j then we say that an edge exists
between them. The probability that this is the case after i has been
observed si times is

Ψi→j(si) = 1− (1− xj|i)si . (1)

When we consider the entire system, xj|i must satisfy two condi-
tions: first, since xj|i is a probability conditioned on the fact that
i has interacted, we must have

∑
j xj|i=1. Second, the probability

that i interacts with j at any given time, which can be expressed
aixj|i where ai is the rate of activity of i, is equal to the probability
that j interacts with i at any time, ajxi|j . These constraints can
be expressed as AX = XTA and X1 = 0, where X is a matrix
whose i, j entry is −1 if i = j and xj|i otherwise, A is any diagonal
matrix whose ith entry is ai, and 0 and 1 are column vectors of
length N containing only 0 and 1, respectively.

We now introduce heterogeneity into the distribution of relation-
ship strengths. We make no assumptions about the relationship
between i and j other than that xj|i is drawn from some distri-
bution ρ(x) (the distribution of marginal xj|i values of the joint
distribution P (X)). The probability that an edge exists between i
and any node in the network after s interactions is

Ψ(s) = 1−
∫
ρ(x)(1− x)sdx. (2)

Letting ki be the degree of i, the expectation is simply E(ki) =
(N − 1)ψ(si). For a given distribution (ρ) of relationship strengths
in a population we now have a formula that connects the number
of interactions to the degree.

Our goal is to choose the distribution ρ that produces an accurate
recreation of the behavior seen in real social systems. We therefore
choose the truncated power law,

ρ(x) =


φεφ

1− εφ
x−(1+φ) if ε < x < 1

0 otherwise

(3)
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The reason for choosing a power law is that it allows the hetero-
geneity of the relationship strengths to be controlled by a single
parameter φ making it adaptable to a wide variety of social sys-
tems. The distribution is truncated at ε so as not to include an
asymptote at x = 0. It is truncated 1 to ensure that all values of
xj|i, which are probabilities, are less than 1.

1.2 Choosing ε. The value of ε is determined by the choice of φ.
To find ε, consider that interactions are pairwise; when i interacts,
exactly one other individual is involved. Hence, the expectation of
the sum of the xj|i’s over all j ∈ N \ {i} is equal to 1. Another
way to express this is

(N − 1)〈x〉 = 1 (4)

where 〈x〉 denotes the mean of the distribution ρ(x), and is

〈x〉 =
φεφ(1− ε1−φ)

(1− φ)(1− εφ)
. (5)

In the limit as N → ∞ this constraint in expectation becomes a
hard constraint, with

∑
j xj|i = 1. In the finite N case the con-

straint in expectation due to its mathematical tractability. Com-
bining (4) and (5) we find that ε is a solution of

(C + 1)εφ − ε− C = 0 (6)

where C = (1 − φ)/(N − 1)φ. Since the function on the left hand
side of (6) has only one turning point, (6) can have either 0 or 2
solutions. One solution is ε = 1 so the other solution is the only
possible choice of ε. Thus, to compute ε for any given values of
φ and N , we solve (6) numerically using ε = 0 as the starting
estimate.

1.3 Degree distribution. Substituting (3) into (2) we have, for
an individual that has had s interactions, that

Ψ(s) = 1−
φεφ

1− εφ

∫ 1

ε
x−(1+φ)(1− x)sdx. (7)

This simplifies to

Ψ(s) = 1−
φεφ(1− ε)s+1

(1− εφ)(s+ 1)
2F1(s+ 1, 1 + φ, s+ 2, 1− ε) (8)

The notation 2F1 refers to the Gauss hypergeometric function [17].
Recall that Ψ(si) is the probability that an edge exists from i to j,
for any j ∈ N \{i}, after i has been involved in si interactions. The
existence of any edge is therefore determined by a Bernoulli trial
independent of the existence of any other. After s interactions the
degree of any node should therefore follow a binomial distribution
k(s) ∼ B(N − 1,Ψ(s)), however, this gives non-zero probabilities
for cases where k > s. This only occurs for 0 < s < N so we
replace the formula in this region with a binomial distribution with
the same mean, (N − 1)Ψ(s), but bounded by s. Thus

ki(s) ∼


B

(
s,

(N − 1)Ψ(s)

s

)
if 0 < s < N

B (N − 1,Ψ(s))) if s ≥ N
(9)



Figure 1: Every data-set used in our analysis as detailed. Each point represents one individual in the system. Motivated by these data, we hypothesize that
the form for ρ is power-law. In each case, the parameter φ has been tuned to maximize the likelihood of the model. The optimal φ is given and the curve
shows the expected degree (according to the model) of an individual as a function of the number of interactions. The shaded area and the lighter shaded
area represent intervals that are one and two standard deviations (according to the model) from the mean respectively. Data points for which the number of
interactions is more than 90 are excluded from the figure but not from the inference of φ.



Since the first part of (9) is an ad-hoc estimate to the true dis-
tribution, it is important to clarify that it is consistent with the
conditions we would expect for a probability distribution. In par-
ticular, we want to show that (N − 1)Ψ(s)/s ≤ 1 in all cases.
Consider first that since the least heterogeneous possible situation
is when xj|i = 1/(N − 1) for all i and j. Putting this into (1) we
have

max(Ψ(s)) = 1−
(

1−
1

N − 1

)s
(10)

This gives

(N − 1)Ψ(s)/s ≤
N − 1

s

[
1−

(
1−

1

N − 1

)s]
. (11)

The value of right hand side hand side decreases with s (since its
derivative is negative), therefore the largest possible value of the
right hand side occurs when s = 1, giving

(N − 1)Ψ(s)/s ≤ 1. (12)

1.4 Estimating φ in empirical data. The model we have de-
scribed is based on the assumption that the system is closed; over
some sampling period the N individuals only interact with oth-
ers from the same population. For each node i we need to know
the number of times they interacted, si, and the number of part-
ners with whom they interacted, ki. We write this as two vectors
k = {k1, k2, ..., kN} and s = {s1, s2, ..., sN}.

The family of distributions in (9) allow us to calculate P (k|s),
the probability that an individual will have degree k given that
they have interacted s times, for any value of the global parameter
φ. The log-likelihood function is

logL(φ|k, t) =

N∑
i=1

log[P (ki|si)]. (13)

We then compute the maximum likely estimate of φ, φ =
argmaxφ logL(φ|k, s). Our estimation is based on the marginal
distribution of the degree of each node and does not take into ac-
count the interdependencies of the network structure. As such, we
do not report standard errors or confidence intervals for our point
estimates. For discussion of the use of marginal distributions in
likelihood estimation see [60].

To measure model fidelity we compare the likelihood of the pro-
posed model it to a null model that represents the most random, i.e.
uniformly distributed, possible degree distribution for each given t.
The null model equivalent of (9) is

k(s) ∼


U(0, s) if 0 < s < N

U(0, N − 1) if s ≥ N.
(14)

Model fidelity, fφ, quantifies the amount to which the proposed
model fits the data when compared to an equivalent null model.
We define it as

fφ = (1/N)[logL(φ|k, s)− logL(null|k, s)]. (15)

Because we are using observed values of si this approach controls
for the variation in activity levels between data sets.

Finally, to find a benchmark to compare the model fidelity we
measured fφ for several synthetically generated data sets. These
data were generated by first selecting 100 values of s between 1 and
100 uniformly at random, then, for each one we select a value of k
either from the model distribution given by (9) or from the noise
distribution given by (14) (N = 100 and phi = 0.6). When less than
8% of the synthetic values of k come from the noise distribution,
fφ is positive. We conclude that positive values of fφ found in any
data-set implies that the model is a good fit to the data.

2 Modelling the spread of disease

The disease model is described as follows: We consider a fully sus-
ceptible population of N individuals. At a randomly selected point
in time, one individual, i, becomes infectious. They remain in-
fectious for a duration of length τ , where τ is a random variable
drawn from an exponential distribution P (τ) = γ exp(−γτ). This
is equivalent to i being able to recover at any point in time and
γ being the probability that recovery occurs at any point during
an interval of length 1. The times for which infected individual, i,
engages in interaction follows a Poisson process with rate param-
eter ai. Given that i is engaged in an interaction, the probability
that the interaction is with individual j is xj|i. Once contact is
established, the probability that the disease will transmit is β.

2.1 The number of secondary infections. We are interested in
r(ai), the expected number of other individuals infected by i, given
that the rate of interaction of i is ai.

The transmission probability, the probability that i infects j dur-
ing an infectious period of length τ , is equal to the probability that
at i makes infectious contact with j at least once during that time.
Since the rate of infectious contact between i and j follows a Pois-
son process with rate aixj|iβ, the transmission probability for an
infectious period of length τ is derived from the Poisson distribution
and is

Ti→j(τ, ai, xj|i) = 1− exp(aixj|iβτ). (16)

As in Section 1.1 we make no assumptions about the relationship
between i and j other than that xj|i is drawn from the distribution
given by (3). The probability that transmission occurs from i to
any other node in the network is

T (τ, ai) =

∫ ∞
0

ρ(x)Ti→j(τ, ai, x)dx

= 1−
φεφ

1− εφ

∫ 1

ε
x−(1+φ) exp(aixj|iβτ)dx

= 1− φ
∞∑
k=0

(−aiβτ)k

(k − φ)k!

εφ − εk

1− εφ
.

(17)

The probability that i was infectious for a period of duration τ is
γ exp(−γτ). Integrating (17) across all possible values of τ we get

T (ai) =

∫ ∞
0

γe−γτTi(τ, ai)dτ

= 1− φ
∞∑
k=0

(−aiβ/γ)k

k − φ
εφ − εk

1− εφ
.

(18)

The quantity T is the probability that i will infect j for any j ∈ N \
{i}. To get the expected number of secondary infections that come
from i we simply have to multiply by the number of susceptibles.
We therefore have that

r(ai) = (N − 1)T (ai). (19)

It is not possible to express Ti(ai) in terms of N so we instead
express it in terms of ε. By substituting N−1 = 1/〈x〉 and (5) into
(19) we get

r(ai) =
Ti(ai)

〈x〉

=
1− φ

φ(εφ − ε)

[
1− εφ − φ

∞∑
k=0

(−aiβ/γ)k

k − φ
(εφ − εk)

] (20)

which can also be expressed using hypergeometric functions

r(ai) =
1− φ

φ(εφ − ε)

[
1− εφ + εφ2F1(−φ, 1, 1− φ;−aiβ/γ)

−2F1(−φ, 1, 1− φ;−εaiβ/γ)]

(21)



Table 1: Summary of parameters and variables

Social behavior Disease transmission

N Number of nodes∑
si/2 The total number of interactions of all nodes
φ The mixing parameter. The optimal value calcu-

lated from the process described in Section 1.1
ε The lower cut-off for the relationship strength dis-

tribution, (3)
SEφ The standard error of the estimate of φ
fφ Model fidelity. Given by (15)

β The probability of transmission given that contact
has occurred

γ Recovery rate of the disease model. Chosen so
that the mean number of infectious contacts is
the same across all data-sets (29)

R0 Basic reproductive number based on either (24)
or disease simulation.

SEr Standard error of the reproduction number based
on disease simulation

|e| Absolute error. Sum of the differences between ri
predicted by (24) and ri simulated

2.2 Calibration of time-scales. The collection of data-sets we
compare is diverse and social activity happens on different time-
scales. Additionally, the types of disease that affect one species are
unlikely to affect another. Instead of choosing parameter values
that relate to some specific disease, it is more informative to select
parameter values for each system separately in a way that exposes
the effects of population size and social fluidity. To achieve this
the two temporal variables, γ and the mean activity rate, 〈ai〉, are
calibrated to each other in such a way that R0 would always be
the same value if, hypothetically, the effects of social fluidity and
population size were not present.

We define R∗ to be the value of R0 in a large population with
homogenous mixing. In this case, the infectious individual, i, will
never repeat an interaction with an individual whom they previ-
ously infected. In other words, every interaction during the infec-
tious period will, with probability β, cause a new infection, and so
R∗ can be found by multiplying the mean infectious period by β
and the mean rate interactions,

R∗ =
β〈ai〉
γ

. (22)

By estimating the rate parameter ai from the number of observed
interactions si as ai = si/∆t where ∆t is the duration of the time-
frame of the data, (22) becomes

γ =
β〈s〉

∆tR∗
, (23)

where 〈s〉 is the mean of si over all individuals. Additionally, by
substituting this value of gamma into (21) we get

r(s) =
1− φ

φ(εφ − ε)

[
1− εφ + εφ2F1(−φ, 1, 1− φ;−R∗s/〈s〉)

−2F1(−φ, 1, 1− φ;−εR∗s/〈s〉)] .
(24)

Note that no temporal information appears in this equation. In all
the analysis presented we have arbitrarily chosen R∗ = 2.

2.3 Large population size limit. From section 1.2 we can see
that as N grows large, A goes to 0 and the solutions of (6) are
ε = 0 and ε = 1. Expressing R0 in terms of N is not possible
so we instead find the limit as ε → 0. We cannot directly infer
limε→0 r(ai) from (20) since both the numerator and denominator
go to 0. Applying l’Hopital’s rule we get

r′(ai) =
(1− φ)

(1− φεφ−1)

[
εφ−1 +

∞∑
k=0

(−aiβ/γ)k

k − φ
(φεφ−1 − kεk−1)

]
(25)

For φ > 1 we we can find limε→0 r′(ai) directly by substituting
ε = 0,

lim
N→∞

r(ai) = aiβ/γ. (26)

For φ < 1, we first multiply numerator and denominator by ε1−φ

before substituting ε = 0. We get

lim
N→∞

r(ai)(ai) =
1− φ
φ

[
−1−

∞∑
k=0

(−aiβ/γ)k

k − φ

]
(27)

which can also be expressed using a hypergeometric function

lim
N→∞

r(ai)(ai) =
1− φ
φ

[−1 + 2F1(−φ, 1, 1− φ;−aiβ/γ). (28)

(At φ = 1, ρ(x) is not defined).

2.4 Simulating the spread of disease. Because the fidelity of
the social behavior model, i.e. the extent to which it agrees with
the data, varies across the different social settings, we expect that
the predictions made in Section 2.1 are only applicable to a some
of our data-sets. To test how accurate the prediction of (24) is, we
simulated the effects of transmission on the real contact data.

The collection of data-sets we are comparing is diverse, and social
activity happens on dramatically different time-scales. To control
for this variability the recovery rate γ is adjusted. We choose γ to
be

γ =
2β
∑
ti

N∆ts
(29)

where ∆t is the duration of the time-frame of the data. (29) is
equivalent to choosing γ such that, if the system is well-mixed,
then an individual with the mean rate of activity is expected to
directly infect s others. In all the results presented we set s = 2.

For every individual, i, the simulated reproduction number rsimi
is found by averaging the number of successful infections caused
by i over 103 simulation trials. Each trial followed the following
procedure:

1. A time t is chosen randomly and uniformly between the be-
ginning and end of the time-frame of the data

2. The length of infectious period τ is generated from an expo-
nential distribution with rate parameter γ

3. A list L of interactions that involved i between time t and
t + τ is generated. If t + τ is beyond the time-frame of the
data then interactions from the beginning of the sampling
time-frame are used in place of the missing data.

4. Each interaction in the set L is removed with probability 1−β
and ri is the number of remaining individuals j ∈ N \{i} that
have interactions in L

This gives a reproduction number for every individual in the sys-
tem. In Table 3 we provide the mean R0 and standard error SEr
over the population.

Finally, to measure the accuracy of (21) we calculate the mean
absolute error |e|. We first calculate the rate of activity ai = ti/∆t



Figure 2: Comparison of social fluidity with other network-based statistics.

which, along with the associated values of N , phi, and ε, is used in
(21) to compute ri. The error is given by

|e| =
1

N

∑
i∈N
|ri − rsimi | (30)

3 Sources of empirical data

3.1 Human face-to-face interaction. We use human contact
data from the Sociopatterns project (sociopatterns.org). Partici-
pants wore radiofrequency identification sensors that detect face-
to-face proximity of other participants within 1-1.5 meters in 20-
second intervals. Each dataset lists the identities of the people
in contact, as well as the 20-second interval of detection. The
timing and duration of contacts are known with a resolution of
20-seconds. To exclude contacts detected while participants mo-
mentarily walked past one another, only contacts detected in at
least two consecutive intervals are considered interactions.

The data we use comes from two studies: an academic conference
which occurred over the course of 3 days [21], a primary school for
which there are 2 days of data [22], a high school which spanned 5
days [23], and a hospital which spanned 4 full days [24]. In each case
the data were divided into 24 hour subsets beginning at midnight.

3.2 Ant trophallaxis. We collected data from three carpenter ant
Camponotus pennsylvanicus colonies. In nature, carpenter ant for-
agers consume liquid food and, upon returning to the nest, regur-
gitate it into the mouths of their nest-mates, a process known as
trophallaxis. Typically, foragers will only give food to a small num-
ber of other ants; to feed the entire colony it gets passed through
a complex network of feeding interactions ?. Trophallaxis is also
an important form of communication and a way that information
about the state of the colony can be shared by all of its members
??.

We placed colonies of approximately 80 ants in a nest designed to
replicate the conditions found in nature. The colony was first given
a restrictive area of 65× 42mm to live (high density) the ants were
given several days to adjust before 4 hours of trophallaxis activity
was recorded. The nest was then expanded by a factor of 4 (low
density) and after another adjustment period another 4 hours were
recorded. The process was repeated for 3 unrelated colonies.

3.3 Ant antennal Contact. The antennae of ants contain highly
sensitive olfactory cells. By touching the cuticle of another ant they
are able to perceive information (primarily the status of the other
ant) which is expressed through hydrocarbons secreted on their
cuticle. We use data from [25] which was collected by constant
human observation of video footage of ant colonies over a period
of approximately 30 minutes. The experiment was performed on
3 unrelated Temnothorax rugatulus colonies, each of which was
recorded in two sessions separated by a two week period.

3.4 Bat food-sharing. Vampire bats share food with each other
through regurgitation. In order to initiate such an event a hun-
gry bat will lick the mouth of another bat from whom they hope
to receive food. The data we use is a record of mouth-licking ob-
servations originally collected to address questions of altruism and
reciprocity in bat communities [26].

A population of vampire bats Desmodus rotundus were kept cap-
tive in an enclosure. Out of the 25 bats, 20 were subjected to ex-
perimental treatment. In each case, the subject was removed from
the enclosure and starved for 24 hours. The observation period of
2 hours began when the starved bat was let back into the enclosure
and during this time the usual sources of food were not available.
Thus, for the subject bat to feed, interaction with others was nec-
essary. The starvation treatment and observations occurred on a
different day for each bat. Some bats were tested more than once
so to avoid biasing our results we select only the first day they were
tested.

3.5 Vole territory sharing. Data were collected from a popula-
tion of wild voles Microtus agrestis to assess the role of space in
determining the structure of social networks [27]. [Sentence about
vole behavior and what an interaction is].

In each of four field sites 100 traps were placed in a square grid
covering 0.3 hectares. Bait was put into the traps and then three
days later observers would check the traps for voles, those who were
found were tagged so that they could be recognized should they be
caught again. During each trapping session the traps were checked
on several consecutive days. If a vole is observed in a trap at any
point during a trapping session then we say that they interacted
with any other vole that was observed in the same trap at any point
during the same trapping session. The time of the interaction is
the day that the trapping session began.

We then discard any voles that had 10 or less interactions and
all interactions in which they participated. Since the voles have a
very short lifespan and cyclic fluctuations in population size we use
only a sub-sample of each data-set. We chose periods of 130 days
selected at times of high activity for each of the four experiment
sites.

3.6 Association by group membership. Since foraging groups
and social groups can change from one day to the next, a com-
monly way to measure the strength of a pairwise relationship is to
consider the number of times that the pair were observed in the
same group. In most studies of this kind the data is processed
in a way that attempts to correct for observation bias and group
size heterogeneity, which makes it incompatible for our method of
analysis. We were, however, able to use 3 experiments from which
the raw data is available. These are kangaroos Macropus giganteus
[28], barn swallow Hirundo rustica erythrogaster [29], howler mon-
keys Alouatta palliata [30], and sharks [31]. The data from each of
these papers were collected through intermittent, rather than con-
tinuous, observation. We define an interaction as belonging to the
same group during one round of observation.



3.7 Grooming. Grooming in monkeys, and other primates, is
used to build and social bonds, avoid conflict, and maintain social
structures including the dominance hierarchy. We used grooming
data from two studies of macaques Macaca mulatta [32,33] and one
of stumptailed macaques Macaca arctoides [34]. Data were col-
lected intermittently rather than through continuous observation.
If one animal was grooming another during one round of observa-
tions then this would be recorded as a directed interaction. For
our analysis we neglect the direction of the interaction (it is un-
clear whether the direction would have consequences relevant to
the spread of disease).

3.8 Aggression and dominance. Aggression between animals
can be in the form of a physical fight or a display of dominance
that causes one individual to concede. From the literature we ob-
tained aggression data from macaques Macaca fuscata fuscata [35],
female bighorn sheep Ovis canadensis [36], bison Bison bison [37],
cattle [38], and parakeets Myiopsitta monachus [39]. The data from
each of these papers were collected during intermittent observation
periods. When an animal was determined to be the winner of a
dominance encounter then this would be recorded as a directed in-
teraction between the winner and the loser. For our analysis we
neglect the direction of the interaction (it is unclear whether the
direction would have consequences relevant to the spread of dis-
ease).

4 Rejected data

There were numerous studies of animal social behavior that we were
not able to adapt for this study because the format of the data
was not appropriate. For example, a number of studies publish
the results of calculations, such as the half-weight index, rather
than the the raw information that they must surely have originally
collected. We urge scientists in this field to consider making their
raw data available to allow studies such as this one to benefit from
their hard work. We mention the following two additional sources
of data that were unusable for other reasons.

4.1 Mouse territory sharing. Mice Mastomys natalensis [59]
were kept in a large enclosed space that contained nine evenly
spaced feeding stations. Four feeding stations had sensors that
recorded the moment when a mouse passed through its door. In-
teractions were recorded when two mice pass through the same
feeding station within 30 seconds of each other. Since only the
interactions that occur at the feeding stations were observed, the
networks are sparse, disconnected, and only a small proportion of
the entire population were observed interacting. We tested to see
whether increasing the time threshold between visits to the feeding
station would create higher density networks. Only at threshold
values on the order of hours, which we consider biologically unre-
alistic, did the networks become dense enough to be considered for
our analysis.

4.2 Twitter mentions networks. Mentions on Twitter act as
way to send messages directly to particular individuals. Although
the message is broadcast to all the followers of the account of the
sender it will appear in the inbox of the receiver and is therefore
likely to be noticed. We count an interaction as a reciprocated
twitter mention, i.e. the motif A→B, B→A is an interaction for
A. We ignore all mentions that are not followed by reciprocation
i.e. the motif A→B, A→B, B→A, B→A is counted as exactly 1
interaction for A.

In the study from which we take this data [40], communities
were first identified before their intensive data collection began. A
range of community detection algorithms were used to decide which
user accounts belong to the group and which do not, the goal being
to find communities such that its members send messages within
their community significant more than to user accounts outside the

Figure 3: Each point represents a human or animal data-set. For each indi-
vidual, i, in the population, r(si) is calculated from (24) and the mean, R0

(± one standard error), is plotted against its corresponding value of φ.

community. The N individuals in the community form their own
sub-population.

The main reason for not including these data is that they do
not relate to biological contagion. However, this electronic commu-
nication data did provide a useful comparison to the direct com-
munication data that we did choose to use in our study. We used
the last 24 hours of activity in each of the 17 communities. We
discard those for which the number of active users (during the
24 hour period) is either less than 20 or more than 250, leaving
9 networks. Model fidelity scores for these 7 networks was fund
to be -0.016 (twitter_1), 0.176 (twitter_3), 0.018 (twitter_5), -
0.322 (twitter_6), 0.184 (twitter_10), -0.002 (twitter_11), 0.374
(twitter_13), 0.162 (twitter_15), 0.354 (twitter_16).



Table 2: Basic statistics for all networks

Data set System Interaction N
∑
si/2

∑
di/2 w̄ σ2

w/w̄

conference_0 Conference Face-to-face 93 663 262 2.531 3.571
conference_1 Conference Face-to-face 92 650 239 2.720 3.742
conference_2 Conference Face-to-face 84 477 134 3.560 6.367
hospital_0 Hospital Face-to-face 51 778 213 3.653 9.183
hospital_1 Hospital Face-to-face 49 1075 250 4.300 8.815
hospital_2 Hospital Face-to-face 51 855 242 3.533 5.986
hospital_3 Hospital Face-to-face 50 743 198 3.753 9.439
school_0 Primary school Face-to-face 237 6420 1744 3.681 5.815
school_1 Primary school Face-to-face 238 6514 1769 3.682 5.915

highschool_0 High school Face-to-face 312 4919 1058 4.649 11.072
highschool_1 High school Face-to-face 311 4419 997 4.432 10.553
highschool_2 High school Face-to-face 299 3415 746 4.578 8.510
highschool_3 High school Face-to-face 294 3331 732 4.551 9.010
highschool_4 High school Face-to-face 233 1084 316 3.430 3.763
ants_1_high Ant Food sharing 74 496 293 1.693 0.892
ants_2_high Ant Food sharing 68 318 196 1.622 0.799
ants_3_high Ant Food sharing 76 674 399 1.689 0.898
ants_1_low Ant Food sharing 70 606 356 1.702 0.826
ants_2_low Ant Food sharing 79 547 324 1.688 1.220
ants_3_low Ant Food sharing 82 610 342 1.784 1.095

Blonder_ants_1_1 Ant Antennal contact 89 1834 649 2.826 2.399
Blonder_ants_1_2 Ant Antennal contact 72 1721 556 3.095 3.094
Blonder_ants_2_1 Ant Antennal contact 71 943 505 1.867 0.904
Blonder_ants_2_2 Ant Antennal contact 69 1880 549 3.424 3.021
Blonder_ants_6_1 Ant Antennal contact 33 647 258 2.508 1.185
Blonder_ants_6_2 Ant Antennal contact 32 362 162 2.235 0.953

bats_0 Bat Food sharing 16 290 54 5.345 6.131
voles_BHP Vole Space sharing 195 1339 640 2.092 1.311
voles_KCS Vole Space sharing 193 1874 865 2.166 1.171
voles_PLJ Vole Space sharing 233 2126 1048 2.029 1.041
voles_ROB Vole Space sharing 77 381 214 1.780 0.962

parakeet_1_1 Parakeet Aggression 21 175 98 1.733 0.742
parakeet_1_2 Parakeet Aggression 21 222 110 1.930 2.826
parakeet_1_3 Parakeet Aggression 21 325 107 2.664 5.518
parakeet_1_4 Parakeet Aggression 21 291 131 2.094 1.573
parakeet_2_1 Parakeet Aggression 19 399 113 2.978 7.737
parakeet_2_2 Parakeet Aggression 19 273 105 2.505 1.931
parakeet_2_3 Parakeet Aggression 19 247 99 2.330 1.552
parakeet_2_4 Parakeet Aggression 19 441 126 3.291 2.267

Bison_dominance Bison Aggression 26 897 222 2.857 2.467
Sheep_dominance Sheep Aggression 28 658 235 2.632 1.806
cattle_dominance Cattle Aggression 28 498 205 2.295 1.544
macaque_dominance Monkey Aggression 62 2435 1167 2.051 0.908
Macaques_Massen Monkey Grooming 28 2025 228 5.853 15.949
Macaques_Sade Monkey Grooming 16 647 69 5.829 10.074

stumptailed_macaque Monkey Grooming 19 742 113 4.609 5.351
Howler_monkeys Monkey Association 17 502 85 2.953 2.135

Kangaroo_proximity Kangaroo Association 17 1161 91 6.184 12.532
Swallow_proximity Swallow Association 17 886 122 7.262 6.808

shark_0 Shark Association 41 463 161 2.876 2.427
shark_1 Shark Association 65 2571 452 5.688 5.207
shark_2 Shark Association 83 3619 670 5.401 3.749
shark_3 Shark Association 79 8926 805 11.088 13.778
shark_4 Shark Association 85 11955 953 12.545 14.040
shark_5 Shark Association 76 6248 758 8.243 7.414
shark_6 Shark Association 75 4471 626 7.142 7.178
shark_7 Shark Association 74 2731 489 5.585 4.015



Table 3: Model parameters and disease results for all networks

Data set φ ε× 103 fφ R0 (Pre.) γ × 104 R0 (Sim.) Error

conference_0 0.631 0.356 0.221 1.254 0.206 1.173 0.187
conference_1 0.521 0.150 0.016 1.234 0.204 1.141 0.250
conference_2 0.288 0.005 0.424 1.054 0.164 0.880 0.222
hospital_0 0.614 0.878 0.769 1.223 0.441 1.144 0.130
hospital_1 0.592 0.825 0.845 1.239 0.635 1.129 0.168
hospital_2 0.681 1.244 0.803 1.279 0.485 1.260 0.128
hospital_3 0.584 0.759 0.713 1.213 0.430 1.127 0.148
school_0 0.620 0.070 1.245 1.378 0.784 1.296 0.139
school_1 0.630 0.076 1.148 1.368 0.792 1.294 0.151

highschool_0 0.422 0.003 0.830 1.175 0.456 0.993 0.233
highschool_1 0.419 0.002 0.685 1.167 0.411 0.981 0.231
highschool_2 0.369 0.001 0.765 1.129 0.330 0.949 0.224
highschool_3 0.367 0.001 0.669 1.130 0.328 0.947 0.237
highschool_4 0.291 0.000 0.345 1.073 0.135 0.829 0.254
ants_1_high 0.962 2.030 0.450 1.556 1.164 1.501 0.110
ants_2_high 0.936 2.105 0.427 1.506 0.812 1.324 0.183
ants_3_high 1.107 2.752 0.655 1.615 1.540 1.598 0.125
ants_1_low 1.116 3.075 0.782 1.606 1.503 1.603 0.088
ants_2_low 0.972 1.926 0.626 1.561 1.202 1.489 0.108
ants_3_low 0.956 1.763 0.548 1.525 1.291 1.498 0.116

Blonder_ants_1_1 0.763 0.794 0.806 1.461 35.825 1.545 0.150
Blonder_ants_1_2 0.761 1.065 0.763 1.450 34.166 1.547 0.144
Blonder_ants_2_1 1.106 2.970 0.825 1.631 23.091 1.707 0.103
Blonder_ants_2_2 0.760 1.124 0.810 1.416 37.926 1.548 0.175
Blonder_ants_6_1 1.190 8.320 1.105 1.604 25.555 1.726 0.145
Blonder_ants_6_2 1.006 6.407 0.751 1.516 16.115 1.619 0.148

bats_0 0.427 3.105 0.640 1.228 6.380 1.083 0.339
voles_BHP 0.666 0.141 0.368 1.412 132.051 1.375 0.169
voles_KCS 0.719 0.206 0.632 1.459 186.728 1.509 0.147
voles_PLJ 0.743 0.183 0.448 1.476 175.470 1.517 0.145
voles_ROB 0.765 0.982 0.243 1.454 95.155 1.290 0.182

parakeet_1_1 1.738 22.574 0.738 1.671 - - -
parakeet_1_2 1.437 18.361 0.061 1.619 - - -
parakeet_1_3 0.869 8.568 0.268 1.446 - - -
parakeet_1_4 1.717 22.304 1.151 1.675 - - -
parakeet_2_1 1.148 15.418 0.878 1.532 - - -
parakeet_2_2 1.374 19.537 0.957 1.593 - - -
parakeet_2_3 1.358 19.266 1.032 1.588 - - -
parakeet_2_4 1.157 15.592 1.204 1.551 - - -

Bison_dominance 1.058 9.130 0.884 1.546 - - -
Sheep_dominance 1.349 12.166 0.940 1.649 - - -
cattle_dominance 1.354 12.230 0.946 1.647 - - -
macaque_dominance 1.883 7.795 1.442 1.860 - - -
Macaques_Massen 0.523 1.573 1.913 1.320 - - -
Macaques_Sade 0.350 1.917 0.912 1.208 - - -

stumptailed_macaque 0.602 4.776 0.958 1.344 - - -
Howler_monkeys 0.538 4.605 1.009 1.321 - - -

Kangaroo_proximity 0.507 4.030 1.247 1.245 - - -
Swallow_proximity 1.048 15.619 1.578 1.505 - - -

shark_0 0.683 1.773 0.707 1.389 - - -
shark_1 0.577 0.454 1.080 1.356 - - -
shark_2 0.607 0.366 1.153 1.370 - - -
shark_3 0.604 0.390 2.009 1.378 - - -
shark_4 0.565 0.256 2.442 1.333 - - -
shark_5 0.573 0.332 1.929 1.338 - - -
shark_6 0.590 0.387 1.727 1.366 - - -
shark_7 0.542 0.274 1.161 1.330 - - -


