Supplementary Materials
1. Algorithm details

1.1 Step 1. Fitting the logistic mixed model under the null hypothesis

1.1.1 Generalized linear mixed model and penalized quasi-likelihood
Details of fitting the null logistic mixed model and estimating the parameters for fixed effects and variance components are provided in this section. Note that although we use the same restricted log likelihood and average information matrix as in GMMAT1, we use a different approach to estimate parameters to make our method feasible for very large datasets. In particular, we use the preconditioned conjugate gradient method2,3 to solve linear systems instead of obtaining an inverse of the covariance matrix of the phenotypes. For the derivation of the likelihood and information matrix, please refer the GMMAT paper1. 
Logistic mixed model is a part of the larger generalized linear mixed model (GLMM) with the logistic link function for binary outcome. The model can be written as 

where  is the probability for the ith individual being a case given the covariates  and genotypes as well as the random effect , assumed to be distributed as 𝑁(0, 𝜏), where  is an  genetic relationship matrix (GRM)33 and  is an additive genetic variance. The phenotype  is assumed to be conditionally independent given ( and follows the binomial distribution with mean and variance , where  is the variance function, and the dispersion parameter .  
Under the null hypothesis that , to estimate , the log integrated quasi-likelihood function can be written as 
          (1)
where  is the quasi-likelihood for the ith individual given the random effect . Let Approximation for the integral  can be obtained using Laplace’s method with the first and second derivatives. Let  denote the solution of , which maximizes , and denote the weight matrix, which is a diagonal matrix with diagonal terms  Note that since logistic is a canonical link function, the diagonal element of W can be simplified as  Equation (1) can be written as 
            (2)

1.1.2 Estimate parameters using AI-REML
Here we describe iterative steps to estimate (. To obtain the estimates of the fixed effect coefficients and the random effects given (, , that jointly maximize the , we take the derivative of equation (2) with respect to  and  and get the solution for the derivatives to be zero. Assuming the weight matrix  varies slowly as a function of the conditional mean, the last term in the expression of  in equation (2) can be ignored.  Let ,  and  be a working vector with the ith element being ), and then
      (3)
   (4)
Given  and  estimated, 
 (5)
The restricted maximum likelihood (REML) version:
  -  (6)
To obtain the estimates of the variance components, , that jointly maximize the, we take the derivative of equation (6) with respect to and :
  (7)
 (8)
To obtain the solutions to make equations (7) and (8) equal to zero, an average information matrix AI is then defined and used in place of the expected information matrix to estimate  and  iteratively1.  Note that for the logistic mixed model,  , so we do not need to obtain (7).

1.1.3 Approaches to reduce computation and memory cost. 

Preconditioned Conjugate Gradient (PCG): To obtain equations (3)-(8), we need to compute expression forms containing a product of  and a vector or a matrix, such as , which is very challenging for large cohorts. Computing the  empirical genetic relationship matrix (GRM)  costs O(M1N2), where   is an matrix with genotypes for  genetic markers of  individuals that are normalized with the means and standard deviations of raw genotypes. Moreover, the Cholesky decomposition used by GMMAT1 to invert  takes  computation and very large memory space, which are not practical for studies with large sample sizes (). 
Similar to BOLT-LMM4, we use two strategies to reduce the computation and memory cost. First, instead of requiring the pre-computed GRM  as an input, we store genotypes for computing GRM in a binary vector and calculate elements of  as needed, which reduces the memory usage from  bytes, given double precision floating number is used to store  to  bytes. For instance, with N =408,961 white British participants and M1 = 93,511 markers, the memory usage drops from 669 Gb to 9.56 Gb with this strategy. Second, the conjugate gradient method is used to calculate the product of  and a vector by iteratively solving the linear system , where  and  is a known vector, such as any column vector in  matrix. The number of iterations required for convergence of the conjugate gradient algorithm is proportional to , where  is the condition number for 5. To make the convergence faster, a preconditioner matrix  is used so that = and  Here,  is an diagonal matrix with the diagonal elements of  and the calculation of Q requires O(NM1). 

Randomized trace estimator for and  : The computation of (7) and (8) requires the traces of matrices  and. For this, we use Hutchinson’s randomized trace estimator6,7. The trace of a matrix , such as  and  , is estimated by , where ’s are R independent random vectors whose entries are i.i.d Rademacher random variables (). A vector with size  is randomly drawn from the Rademacher distribution, followed by the calculation for . This procedure is repeated for  times and the average of the results for  is the estimate for the trace of the  matrix. The by default value for  is set to be 30. 
Parallel computation for the vector multiplication: The most time-consuming step of the proposed algorithm is performing PCG, which involves computing a product of the GRM and a vector x, i.e. x. We use parallel computing techniques to speed up this procedure. In particular, we use Intel Threading Building Block (TBB) implemented in RcppParallel package8 for the multi-threading computation. Our approach utilized nearly all CPU cores allocated. For example, the CPU usages on average were 14.6 when 16 CPU cores were allocated.

1.2 Step 2. Single variant score tests with SPA

1.2.1 Score tests based on logistic mixed model
Given the estimates from step 1 for fixed effect coefficients , random effects , and the variance component parameters  and  under the null hypothesis Ho: , the score test can be constructed for each genetic marker to be tested. Suppose  is the  genotype vector,  is estimate for , are the probabilities for study individuals being a case given the covariates  and the estimated random effect  from step 1,  is a diagonal vector with diagonal elements and is the covariate adjusted genotype vector with covariate effects projected out from the raw genotypes9. Suppose  and  , and then.  The score test statistics can be written as 
where  is the working vector previously defined. The variance of T, Var(T) .

1.2.2. 	Estimation of Var(T)
Calculating  is required for the estimation of Var(T), which is computationally expensive. To avoid to calculate  to all the variants, we use similar approximation approaches used in BOTL-LMM4 and GRAMMAR-GAMMAR10 in which we obtain the ratio between  and  using a small number of variants, and estimate variant as , where  / . Note that  is a variance estimator without accounting the fact that the random effect b is estimated from data, and the calculation of  only requires O(N) computation. 

Here we show that the ratio r is approximately constant across all variants. For this, we assume that , for all i=1, …, N, where wi is the ith element of W. Note that this assumption can only be violated when the covariates are extremely sparse, which rarely happens in real data. First,  can be written as


Since  is adjusted by covariates, it can be shown that  and hence .  The first term in (3) is , so (3) can be approximated by . Let  be the mean of the diagonal element of  and . And then 


With the assumption , it can be shown , therefore (4) can be approximated by the first term, in which 

where U and are eigenvector and eigenvalue matrices of , and . Since correlation matrix of  is an identity matrix, asymptotically, (4) is closely approximated by the trace of , which is  where c=MAF(1-MAF). As the same way, . And hence the ratio is

which is constant across all variants.  The variance adjusted score test statistic is 

,where is the estimated r. In simulation and real data analysis, we used 100 variants to estimate r . The adjusted test statistic, has mean zero and variance is approximately unity. 
Supplementary Figure 1 shows the ratio r by minor allele counts (MAC) from 1000 simulated markers. The ratio was nearly identical for markers with MAC > 20 and then variation was increased for extremely rare variants. This figure provides empirical evidence that the equal ratio assumption holds.

1.2.3 	P-value calculation using SPA
The traditional score test, such as GMMAT, used the fact that the score test statistic asymptotically follows a normal distribution under the null hypothesis of no association. When the case-control ratios are unbalanced and MAC is small, this asymptotic result does not hold and type I error rates can be inflated. To obtain more accurate p-value, we use a fast-version of SPA (fastSPA)9, which we have previously developed for logistic regression model.  For this, we utilize the fact that phenotype Yi independently follows Bernoulli distribution given , and Tadj is a weighted sum of independent Bernoulli random variable. The approximated cumulant generating function (CGF) of Tadj is

where the constant c=Var*(T)-1/2, which provide K’(0)=0 and K’’(0) = 1, where K’ and K’’ are first and second derivate of K with respect to t. Note that since K uses , which is estimated from data, it is an approximation of the true CGF. Now we use the saddle point method to estimate the p-value. To calculate the probability that , where q is an observed test statistic, we use the following formula31 35 36. 

,where  ,  and  is the solution of the equation .  As the fastSPA9, we exploit the sparsity of genotype vector when MAF of variants are low. In addition, since normal approximation performs well when the test statistic is close to the mean, we use normal distribution when the test statistic is within two standard deviations of the mean. 

1.2.4	Effect size estimation 
To rapidly estimate the effect size , which equals to the natural logarithm of the odds ratio, we use the variance component estimate under the null hypothesis. Note that a similar approach has been used in EMMAX11 and GRAMMAR-Gamma10. Our  estimate is

Since  and ,  can be written as . In the section 1.2.2, we have shown that =. Therefore,  can estimated using and , which have already been calculated for association p-value estimation. To estimate the standard error and confidence interval, we use p-values. The standard error of , , where z-score corresponds to the association p-value/2. 

2. Supplementary figures


Supplementary Figure 1.  Plot of the ratio of the variances of the score statistics with and without incorporating the variance components for the random effects for A. 1,000 simulated markers with MAF spectrum shown in Supplementary Figure 8 and B. 669 out of 1,000 markers that have MAC < 200. 1,000 families were simulated based on the pedigree structure shown in Supplementary Figure 4 with case control ratio 1:9.  
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Supplementary Figure 2. Log-log plots of the estimated run time (A) and memory use (B) as a function of sample size (N). Numerical data are provided in Supplementary Table 1. Benchmarking was performed on randomly sub-sampled UK Biobank data with 408,458 white British participants and 200,000 markers for the cardiovascular diseases (PheCode = 411). The plotted run time is the projected computation time for testing 71 million markers with info ≥ 0.3. The reported run times are medians of five runs with samples randomly selected from the full sample set using different sampling seeds. Software versions: BOLT-LMM, v2.3; GEMMA, v0.96. BOLT-LMM: compute association statistics under the non-infinitesimal model; BOLT-LMM_lmmInfOnly: compute mixed model association statistics under the infinitesimal model 
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Supplementary Figure 3. Histogram of case-control ratios of 1,663 disease-specific binary phenotypes in the UK Biobank data. Phenotypes were constructed based on ICD-9 and ICD-10 codes using a previously described scheme12. 
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Supplementary Figure 4. Pedigree of families, each with 10 members, in the simulation study. 
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Supplementary Figure 5. Quantile-quantile plots of association p-values for 1,000,000 variants having MAF = 0.005 from the simulation study. The first column is p-values from SAIGE. The second column is for p-values from SAIGE-NoSPA. The third column is for p-values from the GMMAT1 program. The fourth column is comparing the p-values from SAIGE and from GMMAT1. The fifth column is comparing the p-values from SAIGE-NoSPA and from GMMAT1.  The black lines indicate x = y. 
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Supplementary Figure 6. Quantile-quantile plots of association p-values for 1000,000 variants with 10,000 samples with very unbalanced case-control ratio 1:99 from the simulation study. The first column is p-values from SAIGE. The second column is for p-values from SAIGE-NoSPA. The third column is for p -values from the GMMAT1 program. The fourth column is comparing the p-values from SAIGE and from GMMAT1. The fifth column is comparing the p-values from SAIGE-NoSPA and from GMMAT1. The black lines indicate x = y.
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Supplementary Figure 7. Empirical power of SAIGE, SAIGE-NoSPA (asymptotically equivalent to GMMAT), BOLT-LMM_lmmInfOnly (compute mixed model association statistics under the infinitesimal model), and BOLT-LMM (compute mixed model association statistics under the non-infinitesimal model) at the test-specific empirical  levels that yield type I error rate  = 5x10-8
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Supplementary Figure 8. Distribution of the minor allele frequency spectrum for randomly selected 1,000,000 markers in the simulation study.
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3. Supplementary tables

Supplementary Table 1. The estimated run time (A) and memory use (B) across different sample sizes. Benchmarking was performed on randomly sub-sampled UK Biobank data with 408,458 white British participants and 200,000 markers for the cardiovascular diseases (PheCode = 411). The plotted run time is the projected computation time for testing 71 million markers with info ≥ 0.3. The reported run times are medians of five runs with samples randomly selected from the full sample set using different sampling seeds. Software versions: BOLT-LMM, v2.3; GEMMA, v0.96. BOLT-LMM: compute non-infinitesimal association statistics; BOLT-LMM_lmmInfOnly: compute mixed model association statistics under the infinitesimal model


	Sample Size(N)
	Time (CPU hours)
	Memory(Gb)
	Tests

	5,000
	497.19
	3.17
	GMMAT

	10,000
	2109.83
	11.88
	GMMAT

	20,000
	9046.04
	47.09
	GMMAT

	5,000
	95.18
	0.94
	BOLT-LMM_lmmInfOnly

	10,000
	98.40
	1.05
	BOLT-LMM_lmmInfOnly

	20,000
	104.05
	1.28
	BOLT-LMM_lmmInfOnly

	50,000
	117.80
	2.03
	BOLT-LMM_lmmInfOnly

	100,000
	137.16
	3.23
	BOLT-LMM_lmmInfOnly

	200,000
	189.28
	5.67
	BOLT-LMM_lmmInfOnly

	408,458
	335.00
	10.98
	BOLT-LMM_lmmInfOnly

	5,000
	93.89
	0.93
	BOLT-LMM

	10,000
	99.39
	1.04
	BOLT-LMM

	20,000
	103.15
	1.29
	BOLT-LMM

	50,000
	119.03
	2.04
	BOLT-LMM

	100,000
	150.02
	3.24
	BOLT-LMM

	200,000
	214.71
	5.69
	BOLT-LMM

	408,458
	360.63
	10.98
	BOLT-LMM

	5,000
	397.00
	1.64
	GEMMA

	10,000
	835.59
	3.99
	GEMMA

	20,000
	1431.69
	11.03
	GEMMA

	5,000
	117.50
	0.50
	SAIGE

	10,000
	118.83
	0.56
	SAIGE

	20,000
	133.32
	0.72
	SAIGE

	50,000
	153.60
	1.45
	SAIGE

	100,000
	211.21
	2.58
	SAIGE

	200,000
	312.81
	5.16
	SAIGE

	408,458
	517.38
	10.32
	SAIGE



Supplementary Table 2.  Number of genetic variants and loci that passed the genome-wide significant threshold (P < 5x10-8) for the three ‘real data’ phenotypes identified by SAIGE, SAIGE-NoSPA(asymptotically equivalent to GMMAT), and BOLT-LMM in the UK Biobank data. Since results from SAIGE-NoSPA and BOLT-LMM contain many false positive signals for colorectal cancer and thyroid cancer, the numbers of loci are not provided.  
	
Phenotype
	Tests
	Number of variants with p-value < 5x10-8
	Number of
all loci with top p-value < 5x10-8
	Number of
all loci with top p-value < 5x10-8 and have not been previously reported

	Cardiovascular diseases
PheCode 411
case:control  1:12
	SAIGE
	1,733
	40
	6

	
	SAIGE-NoSPA
	1,820
	101
	68

	
	BOLT-LMM
	1,886
	89
	58

	Colorectal cancer 
PheCode 153
 case:control  1:84
	SAIGE
	77
	3
	3

	
	SAIGE-NoSPA
	2,950
	NA
	NA

	
	BOLT-LMM
	3,349
	NA
	NA

	Thyroid cancer 
PheCode 193 
case:control=1:1138
	SAIGE
	125
	1
	1

	
	SAIGE-NoSPA
	73,382
	NA
	NA

	
	BOLT-LMM
	79,269
	NA
	NA



Supplementary Table 3.  Loci that passed the genome-wide significant threshold (P < 5x10-8) for the three phenotypes identified by the SAIGE in the UK Biobank data.
	Phenotype
	Location
	Chr:Pos
	rsID
	Ref
	Alt
	Function
	Gene
	MAF
	Sample Size
	P value
	Known for CAD
	Previous Findings

	Cardiovascular diseases
PheCode 411
case:control =1:12
	1p32.3
	1:55505647
	rs11591147
	G
	T
	Exonic
	PCSK9
	0.018
	408,458
	2.30E-12
	known
	13

	
	1p32.2
	1:56966350
	rs17114046
	A
	G
	Intronic
	PLPP3
	0.092
	408,458
	1.36E-11
	known
	14

	
	1p13.3
	1:109817590
	rs12740374
	G
	T
	UTR3
	CELSR2
	0.222
	408,458
	1.68E-25
	known
	14

	
	1q41
	1:222814442
	rs2133189
	C
	T
	Intronic
	MIA3
	0.286
	408,458
	2.35E-11
	known
	14

	
	2p24.1
	2:19942473
	rs16986953
	G
	A
	Intergenic
	OSR1;
LINC00954
	0.068
	408,458
	9.96E-09
	known
	14

	
	2p11.2
	2:85767735
	rs2028900
	C
	T
	Intronic
	MAT2A
	0.450
	408,458
	1.82E-08
	known
	14

	
	2q33.2
	2:203968973
	rs72934535
	T
	C
	Intronic
	NBEAL1
	0.108
	408,458
	7.14E-09
	known
	14

	
	3q22.3
	3:136294757
	rs13065626
	C
	G
	Intronic
	STAG1
	0.137
	408,458
	1.63E-08
	known
	14

	
	4q32.1
	4:156645513
	rs13139571
	C
	A
	Intronic
	GUCY1A3
	0.233
	408,458
	2.94E-10
	known
	14

	
	6p24.1
	6:12903957
	rs9349379
	A
	G
	Intronic
	PHACTR1
	0.405
	408,458
	6.30E-19
	known
	14

	
	6p21.33
	6:31881731
	rs685031
	G
	A
	Intronic
	C2
	0.389
	408,458
	9.26E-09
	known
	14

	
	6p11.2
	6:57113816
	rs430918
	C
	T
	Intergenic
	RAB23;
LOC100506188
	0.066
	408,458
	4.79E-08
	potential novel
	

	
	6q14.1
	6:82459034
	rs78707197
	T
	C
	UTR3
	FAM46A
	0.022
	408,458
	3.75E-10
	potential novel
	

	
	6q23.2
	6:134204247
	rs12194592
	A
	G
	ncRNA_intronic
	TARID
	0.307
	408,458
	1.95E-10
	known
	14

	
	6q26
	6:161005610
	rs55730499
	C
	T
	Intronic
	LPA
	0.081
	408,458
	4.48E-62
	known
	14

	
	7p21.1
	7:19049388
	rs2107595
	G
	A
	Intergenic
	HDAC9;
TWIST1
	0.152
	408,458
	4.23E-10
	known
	14

	
	7q36.1
	7:150690176
	rs3918226
	C
	T
	Intronic
	NOS3
	0.081
	408,458
	1.92E-10
	known
	15

	
	8p21.3
	8:19870271
	rs35237252
	C
	A
	Intergenic
	LPL;SLC18A1
	0.251
	408,458
	4.68E-08
	known
	14

	
	9p21.3
	9:22103813
	rs1333042
	A
	G
	ncRNA_intronic
	CDKN2B-AS1
	0.496
	408,458
	2.29E-72
	known
	14

	
	9q21.12
	9:73553245
	rs150282530
	C
	T
	Intronic
	TRPM3
	0.001
	408,458
	3.45E-08
	potential novel
	

	
	10p11.23
	10:30317073
	rs9337951
	G
	A
	Exonic
	JCAD
	0.345
	408,458
	7.32E-09
	known
	14

	
	10q11.21
	10:44687780
	rs11238907
	T
	G
	Intergenic
	LINC00841;
C10orf142
	0.115
	408,458
	1.88E-08
	known
	14

	
	11p15.4
	11:9766932
	rs378825
	A
	G
	Intronic
	SWAP70
	0.427
	408,458
	3.43E-08
	known
	14

	
	11q22.1
	11:100593538
	rs633185
	G
	C
	Intronic
	ARHGAP42
	0.285
	408,458
	8.81E-09
	potential novel
	

	
	11q22.3
	11:103673294
	rs2839812
	T
	A
	Intergenic
	DYNC2H1;
MIR4693
	0.279
	408,458
	1.10E-11
	known
	14

	
	11q23.3
	11:120233626
	rs7924772
	A
	G
	intronic
	ARHGEF12
	0.387
	408,458
	2.42E-09
	potential novel
	

	
	12q13.13
	12:54513915
	rs11170820
	C
	G
	ncRNA_exonic
	FLJ12825
	0.058
	408,458
	1.33E-09
	known
	16

	
	12q24.12
	12:111904371
	rs4766578
	T
	A
	intronic
	ATXN2
	0.495
	408,458
	7.97E-14
	known
	14

	
	12q24.13
	12:112486818
	rs17696736
	A
	G
	intronic
	NAA25
	0.428
	408,458
	7.93E-11
	known
	14

	
	12q24.31
	12:121416650
	rs1169288
	A
	C
	exonic
	HNF1A
	0.313
	408,458
	1.37E-09
	known
	17

	
	13q34
	13:110837553
	rs638634
	C
	T
	intronic
	COL4A1
	0.302
	408,458
	1.41E-08
	known
	14

	
	15q25.1
	15:79132330
	rs11072811
	A
	C
	intergenic
	ADAMTS7;
MORF4L1
	0.492
	408,458
	1.28E-10
	known
	14

	
	15q26.1
	15:91429287
	rs4932373
	A
	C
	intronic
	FES
	0.326
	408,458
	1.84E-17
	known
	14

	
	16q23.3
	16:83045790
	rs7500448
	A
	G
	Intronic
	CDH13
	0.254
	408,458
	8.32E-10
	known
	16

	
	17q21.32
	17:47340297
	rs2011767
	C
	T
	Intergenic
	FLJ40194;
MIR6129
	0.459
	408,458
	1.33E-13
	known
	14

	
	17q21.33
	17:47450057
	rs7209400
	C
	T
	ncRNA_intronic
	LOC102724596
	0.453
	408,458
	2.25E-12
	known
	14

	
	18q21.2
	18:52723198
	rs550780826
	A
	G
	Intergenic
	CCDC68;
LINC01929
	0.004
	408,458
	1.91E-08
	potential novel
	

	
	19p13.2
	19:11188164
	rs56125973
	T
	C
	Intergenic
	SMARCA4;
LDLR
	0.118
	408,458
	3.99E-13
	known
	14

	
	19q13.32
	19:45412079
	rs7412
	C
	T
	Exonic
	APOE
	0.081
	408,458
	6.98E-17
	known
	14

	
	21q22.11
	21:35593827
	rs28451064
	G
	A
	Intergenic
	LINC00310;
KCNE2
	0.132
	408,458
	1.24E-14
	known
	14

	Colorectal cancer
PheCode 153
case:control =
1:84
	8q24.21
	8:128413305
	rs6983267
	G
	T
	ncRNA_exonic
	CCAT2
	0.481
	387,318
	7.03E-12
	known
	18

	
	15q13.3
	15:33001734
	rs58658771
	T
	A
	Intergenic
	SCG5;
GREM1
	0.179
	387,318
	1.41E-10
	known
	19

	
	18q21.1
	18:46448805
	rs6507874
	T
	C
	Intronic
	SMAD7
	0.473
	387,318
	1.93E-14
	known
	20

	Thyroid cancer
PheCode 193
case:control =1:1138
	9q22.33
	9:100546600
	rs925489
	C
	T
	ncRNA_intronic
	PTCSC2
	0.332
	407,757
	5.43E-11
	known
	21



Supplementary Table 4. Estimated inflation factors of the genomic controls at different p-value quantiles and different MAF cutoffs for SAIGE, SAIGE-NoSPA, and BOLT-LMM test applied on three different phenotypes for 28 million successfully imputed genetic markers (imputation info ≥ 0.3 and MAC ≥ 20) from the UK Biobank data
	
	
	
	Genomic Control at qth p-value quantile

	Phenotype
	Test
	MAF cutoffs
	Including previously reported loci
	Excluding previously reported loci

	
	
	
	q=0.01
	q=0.001
	q=0.01
	q=0.001

	Cardiovascular diseases
PheCode 411
case:control  1:12
	All variants
	SAIGE
	1.13
	1.237
	1.11
	1.163

	
	
	SAIGE-noSPA
	1.152
	1.324
	1.131
	1.242

	
	
	BOLT-LMM
	1.129
	1.306
	1.108
	1.225

	
	> 0.01
	SAIGE
	1.357
	1.718
	1.281
	1.448

	
	
	SAIGE-noSPA
	1.357
	1.719
	1.281
	1.449

	
	
	BOLT-LMM
	1.356
	1.709
	1.277
	1.433

	
	< 0.01
	SAIGE
	1.044
	1.039
	1.043
	1.038

	
	
	SAIGE-noSPA
	1.067
	1.159
	1.066
	1.158

	
	
	BOLT-LMM
	1.031
	1.13
	1.028
	1.13

	Colorectal cancer PheCode 153 case:control  1:84
	All variants
	SAIGE
	1.014
	1.026
	1.01
	1.014

	
	
	SAIGE-noSPA
	1.186
	1.555
	1.181
	1.545

	
	
	BOLT-LMM
	1.188
	1.577
	1.182
	1.567

	
	> 0.01
	SAIGE
	1.051
	1.116
	1.039
	1.073

	
	
	SAIGE-noSPA
	1.052
	1.121
	1.04
	1.077

	
	
	BOLT-LMM
	1.057
	1.126
	1.044
	1.085

	
	< 0.01
	SAIGE
	0.999
	0.993
	0.998
	0.992

	
	
	SAIGE-noSPA
	1.253
	1.683
	1.251
	1.681

	
	
	BOLT-LMM
	1.255
	1.709
	1.255
	1.709

	Thyroid cancer PheCode 193 case:control=1:1138
	All variants
	SAIGE
	1.012
	0.992
	1.011
	0.989

	
	
	SAIGE-noSPA
	1.964
	4.195
	1.963
	4.194

	
	
	BOLT-LMM
	2
	4.497
	1.989
	4.497

	
	> 0.01
	SAIGE
	1.01
	1.036
	1.007
	1.026

	
	
	SAIGE-noSPA
	1.015
	1.069
	1.012
	1.058

	
	
	BOLT-LMM
	1.02
	1.074
	1.017
	1.064

	
	< 0.01
	SAIGE
	1.013
	0.977
	1.013
	0.977

	
	
	SAIGE-noSPA
	2.432
	4.737
	2.434
	4.737

	
	
	BOLT-LMM
	2.479
	5.096
	2.479
	5.096



Supplementary Table 5.  Empirical type 1 error rates for SAIGE, SAIGE-NoSPA, GMMAT, and BOLT-LMM estimated based on 109 simulated data sets. BOLT-LMM: compute non-infinitesimal association statistics; BOLT-LMM_lmmInfOnly: compute mixed model association statistics under the infinitesimal model

	Case:Control
	Test
	Empirical Type 1 Error Rates

	
	
	
	

	1:1
	SAIGE
	4.96 x 10-4
	4.65 x 10-8

	
	SAIGE-NoSPA
	4.54 x 10-4
	3.37 x 10-8

	
	GMMAT
	4.68 x 10-4
	3.52 x 10-8

	
	BOLT-LMM_ lmmInfOnly
	3.33 x 10-4
	2.18 x 10-8

	
	BOLT-LMM
	3.4 x 10-4
	3.04 x 10-8

	1:9
	SAIGE
	4.49 x 10-4
	4.22 x 10-8

	
	SAIGE-NoSPA
	7.40 x 10-4
	1.44 x 10-6

	
	GMMAT
	8.0 x 10-4
	1.72 x 10-6

	
	BOLT-LMM_ lmmInfOnly
	7.66 x 10-4
	1.75 x 10-6

	
	BOLT-LMM
	7.73 x 10-4
	1.73 x 10-6

	1:99
	SAIGE
	3.90 x 10-4
	1.29 x 10-8

	
	SAIGE-NoSPA
	3.25 x 10-3
	1.20 x 10-4

	
	GMMAT
	3.8 x 10-3
	1.73 x 10-4

	
	BOLT-LMM_ lmmInfOnly
	3.98 x 10-3
	1.95 x 10-4

	
	BOLT-LMM
	3.99 x 10-3
	1.94 x 10-4






[bookmark: _GoBack]Supplementary Table 6. Test-specific  levels SAIGE and GMMAT where empirical type I errors were equal to 5x10-8 . BOLT-LMM: compute non-infinitesimal association statistics; BOLT-LMM_lmmInfOnly: compute mixed model association statistics under the infinitesimal model


	Case:Control
	Test
	Test-specific  levels

	1:1
	SAIGE
	5.26 x10-8

	
	SAIGE-NoSPA
	6.76 x10-8

	
	BOLT-LMM_ lmmInfOnly
	1.4x10-7

	
	BOLT-LMM
	7.4x10-8

	
	GMMAT
	6.52x10-8

	1:9
	SAIGE
	5.64x10-8

	
	SAIGE-NoSPA
	8.0x10-11

	
	BOLT-LMM_ lmmInfOnly
	6.5x10-11

	
	BOLT-LMM
	1.6x10-10

	
	GMMAT
	5.0x10-11

	1:99
	SAIGE
	1.22x10-7

	
	SAIGE-NoSPA
	3.32x10-22

	
	BOLT-LMM_ lmmInfOnly
	1.8x10-25

	
	BOLT-LMM
	5.3x10-25

	
	GMMAT
	5.85x10-25
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