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Supplementary Methods 

Data pre-processing, covariate correction, and differential expression  
Several technical and sample covariates can bias gene expression values inferred from our microarray 

data, such as array batch effects and individual ethnicity, gender. These covariates can greatly confound 

downstream analyses, resulting in false positive and negative associations and reducing the power of 

statistical analyses. We corrected for these biases in three ways: by normalizing to “reference” probes 

(control probes with a fixed fluorescence value that control for the geometry and preparation of the 

array), by applying batch normalization using ComBat 1, and by correcting for observed covariates 

(gender, age, and collection site) using robust linear regression. The residuals after these corrections 

were then used as the gene expression values for downstream analyses. Differential expression analysis 

was performed using the Significance Analysis of Microarrays (SAM) 2. Genes shown in Figure S1B had 

the highest gene expression difference and were deemed significantly up or down regulated with a false 

discovery rate of 5%. 

Graph convolution for eQTL discovery 
Integrating gene-gene relationships has been shown to increase the power of cis-eQTL discovery 3. Here, 

we leveraged our co-expression networks for the heart failure and control groups for eQTL discovery by 

performing graph convolution with an identity kernel to the gene expression matrix for each group prior 

to eQTL regressions. Specifically, we applied the following transformation for each group separately: 

 

CE = (I - D-½ AD-½)E 

 

Where E is the expression matrix of the cohort, A is the adjacency matrix of the network, D is the degree 

matrix of A, and I is the identity matrix. The resulting CE is then used downstream for eQTL discovery. 

 

Global and local topological parameters for gene ranking  
After inferring the gene co-expression networks and gene communities for both cohorts, we calculated 

topological properties for each gene in each network in order to get a sense of a gene’s role in the 

networks and in the context of known pathways and gene sets.  To this end, we defined a gene’s g 

global connectivity (GC) as the number of gene groups (e.g. pathways) in a set that were differentially 

connected in g’s neighborhood. We achieved this by the following procedure (see Figure S6): 

 

1. We first ranked the neighbors of g by their absolute connection weight (e.g. correlation) to g in 

both the HF and control networks. This resulted into two ranked list. 

https://paperpile.com/c/6NjyPA/G6GE
https://paperpile.com/c/6NjyPA/L2CX
https://paperpile.com/c/6NjyPA/ypFN


2. For each pathway/gene set, we calculated the enrichment in the difference of rankings using the 

Kolmogorov-Smirnov (KS) statistic (analogous to gene set enrichment analysis 4) 
3. We assessed significance of each statistic using the standard KS test with a Benjamini-Hochberg 

correction with a false discovery rate of 5%. 

 

To capture local perturbations without any pathway/gene set context, we defined the local connectivity 

metric LC for a gene g used for this purpose was calculated as follows:  
  

LC(g) = deg_norm(g, HF_net) - deg_norm(g, Control_net) 
  

Where deg_norm(g, net) is the max-normalized degree of gene g in network net (divided by the 

maximum degree across all genes).  

Isolation, culture, perturbation, and visualization of NRVMs  
NRVMs were isolated using standard collagenase protocols as described previously and cultured in 

serum-free DMEM media. In order to attenuate the effects of fibroblast contamination and accentuate 

metabolic changes, no glucose was added to the media and a final concentration of 20 μM of the 

fibroblast inhibitor Ara-C (Sigma-Aldritch) was incorporated. Furthermore, for robust expression 

measurements at least 1 million cells were plated in a 12-well plate, corresponding to at least 70% 

confluency. For phenylephrine-treated cells, 50-μM of phenylephrine was added 48 hours after 

isolation. For the knockdown experiments, cells were transfected either with a siRNA targeted to 

PPP1R3A (Stealth siRNA, Invitrogen) or a scrambled siRNA using the RNAiMAX system (Invitrogen) 

according to manufacturer instructions; transfections were performed 24 hours after isolation. RNA 

extraction was performed using the Qiagen RNeasy kit according to manufacturer instructions and were 

DNAse-treated using the DNA-free RNA kit from Zymo research. CDNA was synthesized with the 

High-capacity cDNA reverse transcription kit from ABI and qRT-PCR assays were performed using KAPA 

SYBR FAST on a ViiA 7 ABI system.  

 

For visualization, cells were fixed directly in the culture plate wells using 4% PFA in  room temperature 

for 10 minutes, permeabilized with 0.2% Triton-X in room temperature for 10 minutes, and blocked with 

DAKO protein block in room temperature for 30 minutes. Afterwards, fixed cells were incubated in 

mouse anti-sarcomeric α-actinin antibody (Sigma) in DAKO antibody buffer overnight at 4 C. Alexa 

secondary antibodies were added the next day after PBS washes and the cells were incubated for one 

hour at room temperature. Cells were then washed with PBS and the nuclei were stained with DAPI 

(AntiFade DAPI, Invitrogen). Fluorescent cells were then imaged at 40X or 20X magnification using an 

Olympus BX-51 inverted fluorescent microscope. Cell area was quantified with ImageJ.  
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Supplementary Figures 

 

Figure S1: (A) Expression of various genes involved in heart failure in the failing and non-failing 
control cohorts. (B) Top differentially expressed genes between failing and non-failing controls. 
(B) Mean expression of various gene sets, including metabolic pathways and oxidative 
stress/hypoxia genes of the GTEx post-mortem samples (blue) and the control cohort in this 
study (green) obtain from heart transplant donor hearts. 



Figure S2: Co-expression (purple), physical interaction (red), and shared domain (green) 
relationships between top connected transcription factors in the heart failure and non-failing 
control networks. Both sets of genes are densly connected, suggesting coordination between 
the top regulators of both networks. 

 

 

Figure S3: Number of eQTLs for each network for which there were RegulomeDB annotations. 
RegulomeDB categories are defined as follows: category 1 are known eQTLs with ENCODE 
DNase sensitivity peaks (1f) and TF binding data (1d); category 2 only have evidence of TF 
binding (2b) and DNase sensitivity peaks as well as a matching TF binding motif (2a); category 
3a have predicted TF binding and a TF motif as well as DNase peak; category 4 have predicted 
TF binding and a DNase peak; and category 5 have either predicted TF binding or a DNase 



peak. 

 

 

Figure S4: Connected components of the QTL-gene-interaction network for the non-failing 
control cohort. eQTL variants are drawn in green, genes associated with the variant are drawn 
in blue, and other genes connected to the associated genes via the co-expression network are 
drawn in gray. 



 

Figure S5: Connected components of the QTL-gene-interaction network for the heart failure 
control cohort. eQTL variants are drawn in green, genes associated with the variant are drawn 
in blue, and other genes connected to the associated genes via the co-expression network are 
drawn in gray. 



 
 
Figure S6: Calculation of the differential global connectivity (GC) of a gene with known gene 
sets. We take the gene’s neighborhood in the heart failure and control network and rank the 
neighbors by their connectivity strength. We then calculate enrichment of a gene set (e.g. HCM 
pathway genes) in each ranked list and calculate the difference via a Kolmogorov-Smirnov test. 
 

 
 
 
Figure S7: Differences in expression levels of key metabolic genes between PPP1R3A 
knockdowns (white) and scrambled controls (black) as confirmed via qPCR. 
 



 

 
 
 
Figure S8: Heart weight differences between wild type and PPP1R3A knockout mice after TAC 
surgery/treatment and a sham control. 


