
 

Supplements 

Quality assessment of pharmacology data 
The Quality Assessment (QA) flag is an output from Combenefit, which was used for the 
synergy score and monotherapy curve fitting (see Online Methods). Scores are defined as 
the following: 

Flag Meaning 

0 No data was found in a combination folder or NaN was found in a combination 
file. 

-1 At least one of the measured drug effects was above 125% of starting cell 
count. This is unlikely to be genuine and a major experimental issue is 
suspected. 

-2 No flag '-1' but measured effects below -10% were found. By definition, effects 
should always be positive because cell viability is being measured. Very small 
negative values are sometime encountered due to quantification problems at 
high concentrations. These were tolerated up to -10% below which major 
issues were suspected. 

-3 No flags '-1' or '-2' but combination dose-response showed very strong 
fluctuations. The combination dose-response was smoothed and compared to 
the original non-smoothed version. If differences above 25% were found the 
experiment was flagged as measurements likely to be unreliable. 

1 None of the previous problems were encountered. Data is supposed to be ok. 

All experiments were observed to have some level of synergy or antagonism and had non-
zero synergy scores. Most of these were due to random variation in the experiments and 
had synergy within +/-1, and only 404 experiments with low variability non-zero experiments 
due to quality issues in the assay and were flagged accordingly (Fig. S1B). Only high quality 
data (QA=1) were included in the testset, while experiments also with low quality were made 
available for training.  

Drug combination synergy is variable across cells, but reproducible across replicates 
367 had a replicate experiment where the same drug combination, cell line and 
concentration ranges tested (Fig. S2A). The Spearman correlation between synergy scores 
across the replicates was 0.56, which is comparable to the correlation of 0.63 from the 315 
replicate combinations screening experiments (Fig. S2B) completed by O’Neil et al1. We 
observed that in all instances where the synergy and antagonism were not measured by 
both replicates, the quality of one or both replicates had been flagged as low (see above QA 
flags). Notably, the variance in synergy scores in DREAM (Fig. S2C) was larger than the 
variance the dataset from O’Neil et al (Fig. S2D). 
 



 

Best ranked teams’ Methods:  
Best ranked teams’ methods are below, who performed consistently well across all 3 sub-
challenges, or outstanding well for at least one sub-challenge. 

Yuanfang Guan 
This method begins by limiting the feature space to those features (expression, CNV, 
methylation, mutations) mapping to genes that are putative targets of any drug in a given 
sub-challenge. If a drug is less specific and has multiple targets, all of them are included. 
 
For each drug combination a separate classifier is built for predicting synergy. Each drug 
combination classifier is made of several random forests, and each using as distinct data 
type. For example, in sc1A three classifiers are created per drug combination, and with their 
predictions are averaged (table 1). This use of one classifier for each data type was 
motivated to improve the stability of the predictions, in the case that one of the feature sets 
contains outliers.  
 

Sc1A Classifier Data type 
1 Mono-therapy data of Drug A and B 
2 Drug A, B count data 
3 All DC’s data with either Drug A or B 
Sc1B Classifier Data type 

1 CNV, mutation (and mean values for both), count on 
drug A,  

2 CNV, mutation, count (and mean) on drug B 

3. Normalized CNV, mutation (and mean), count on 
drug A and B 

Sc2 Classifier Data type 
1 Drug A, B, count,  
2 Normalized All DC’s data with either Drug A and B 

3 Drug space as a simple parsing of original table 
provided in the Challenge 

4 Mono-therapy data of Drug A and B 
Table 1 

 
The choice of classifier construct, randomForest, compared to using an SVM, regression, or 
boosting, was chosen for expedience, not any perceived advantage in accuracy, though the 
randomForest does facilitate prediction in a nonlinear context 2. Instead, greater prediction 
accuracy is achieved by creating new features that consist of scaling the features provided 
by AZ-Dream with a posterior probability from a predefined functional network1.  
 
Network Based Feature Scaling: 
Feature scaling is motivated by the observation that when we use the original features as 
input, we found the prediction values are similar for the same cell line, regardless of drug 
perturbations. This is due to the fact the genomic and expression data are static for a given 
cell line across all drug combinations effectively leaving just three parameters for modeling 
drug synergy (drug A, drug B and cell line). Scaling cell line features by the functional 
network of a drug target creates a dynamic parameter space for each cell line that allows for 
better modeling synergy.  
 
For gene expression, methylation, and copy number variation data, features are adjusted 
based on their probability of a functional relationship with drug target genes. Feature xi, 
associated with gene i, is scaled to x’i by: 



 

 
{𝑖𝑓	𝑔& ∈ (𝐷𝑇+, 𝐷𝑇-), 𝑥′& = 0	𝑒𝑙𝑠𝑒, 𝑥′& = 𝑥&×(1 − 𝑚𝑎𝑥	(𝑒&;)	, ∀	𝑔; ∈ (𝐷𝑇+, 𝐷𝑇-)	} 
 
where DTA and DTB are the genes targeted by drug A and B respectively, and eij is edge 
between genes i and j in the predefined functional relationship network1. 
 
For gene mutations, features are modified using the edge directly. Mutation feature xi, 
associated with gene i, is changed to x’i: 
 
{𝑖𝑓	𝑔& ∈ (𝐷𝑇+, 𝐷𝑇-), 𝑥′& = 𝑥&	𝑒𝑙𝑠𝑒, 𝑥′& = 𝑥&×𝑚𝑎𝑥	(𝑒&;)	, ∀	𝑔; ∈ (𝐷𝑇+, 𝐷𝑇-)	} 
 
The purpose of generating this new series of features is to simulate the effective values of 
expression, methylation, CNV and mutations post treatment.  After scaling, predictive 
features are different for each cell line across different drug-combinations.  We reduce the 
effective values of drug target in expression, methylation and CNV to zero, and reduce the 
values of other genes according to their connections to the drug target.  For mutations, we 
assumed that the effects of drugs are equivalent to adding in new mutations to the system, 
with the effect values of drug targets being 1 (similar to mutated genes), while the other 
genes are increased in values according to their connections to the drug target.  
 
A biological interpretation of this approach is that scaling cell line features with the functional 
network’s edges, allows the RandomForest to model a drug’s propagation through a 
targeted pathway cascade. 
 
The weighting of different set of features was primarily done by cross-validation. However, 
we found that a single set of genomic features is often sufficient to achieve a similar 
performance as the entire set.  
 

Mikhail Zaslavskiy 
The model is an ensemble of three individual models trained exclusively on categorical 
features describing drug and cell line identities and one model trained on categorical identity 
features plus corresponding drug MonoTherapy results. There are two main ideas at the 
core of the proposed model. First, it is very easy to overfit when dealing with biological data, 
so the key factor is a proper design of the cross-validation scheme which covers not only 
meta parameter estimation but also model selection steps. In addition to avoiding overfitting 
pitfalls, the cross-validation design is important to address precisely the sub-challenge 
questions defined by corresponding training/test splits. Second, a rich sampling of the 
experimental space provides an excellent support for a competitive model even without 
additional features describing biological entities under consideration. When we have enough 
data on drug/drug and drug/cell line combinations (like in sc1A and sc1B) we can derive the 
information on drug and cell line similarities without using additional features. Of course, it is 
impossible to know in advance if the experimental results alone are enough to reach the 
maximum performance, so the model building process is to start with the set of baseline 
features (drug and cell line ids) and then add step-by-step more complex features 
(MonoTherapy results, drug features, cell line mutations, copy number variations et c.) 
verifying at each step if the addition of new features lead to an improvement of the cross-
validation score. 
 
The three individual models used to predict drug synergy from durg/cell line identities are a 
gradient boosting tree model (xgboost package) and an svm model (e1071 package) trained 
on original identity features represented by a binary matrix, and an elastic net model 
(R/glmnet package) model trained on average scores of drug-cell line combinations with the 



 

same drug combination and a different cell line, average scores of drug-cell line 
combinations with the same cell line and one drug in common, average scores of drug-cell 
line combinations with the same  cell line and no common drug. The fourth model is another 
gradient boosting tree model trained on drug MonoTherapy results and counts of categorical 
identity features. All four models were trained using 5-fold cross-validation, the final score 
was computed as a simple average of the individual models. 

North Atlantic DREAM (NAD) 
North Atlantic Dream team's solutions used different tree based models (Random Forest 
Regression and Extreme Gradient Boosting Trees, XGBoost 3) to incorporate the presumed 
important interactions between cellular (mutations, copy number alterations etc.) and drug 
specific (drug targets, affected pathways etc.) features. For better representation of the 
similarities between cell lines and drug combinations, new sets of features were engineered 
using prior knowledge and also the monotherapy data. 
 
The monotherapy data (IC50, Einf, Hill slope) for a drug combination was dependent on the 
ordering of the drugs in the combination, which seemed to be hard to represent in the 
machine learning model. To overcome this problem, North Atlantic Dream's model used 
monotherapy features that are independent of the ordering (such as min/max/absolute 
difference etc. type features from the original data). Also the expected volume under the 
dose-response surface (in case of additivity) was calculated using the original Loewe model 
4. 
 
As the number of training examples for a given drug combination was relatively low (about a 
dozen for most combinations), it was crucial to find similarities between combinations 
beyond the trivial ones (same drug / same target). North Atlantic Dream created different 
feature sets based on Gene Ontology 5 / KEGG Pathways 6and a directed signaling network 
7. For Gene Ontology based features a set of “cancer related” GO terms were selected 
(based on 8), and for each drug a GO vector was created based on the association of GO 
terms with the target of the drug. For KEGG Pathway based features, KEGG Pathways 
containing the target genes were selected, and for each drug a KEGG vector was created, 
giving 1 values for pathways containing the target of drug, 0 otherwise. The GO/KEGG 
features for drug combinations were the sum of the two drug vectors of the combination. 
Based on the directed signaling network, for each drug combination the “similar” drug 
combinations were selected. Two drug combinations were defined similar, if the two targets 
of combination A are direct upward from the two targets of combination B. Based on this rule 
a similarity vector was created for each combination. To create these GO/KEGG/signaling 
networks based features, in case of “DNA targeting drugs” (i.e. chemotherapy drugs), the 
respective DNA damage response molecule was used as indirect target (based on Woods & 
Turchi, 2013 9). 
 
For cellular features mutations, copy number variations and gene expression were used. 
The main problem with cellular features was their large number. To overcome this problem, 
North Atlantic Dream team used a pre-assembled gene list (including target genes, known 
oncogenes and tumor suppressors, genes related to drug monotherapy resistance etc. 10 11 
12). Genes with mutations / copy number alterations were selected from this gene list. The 
low number of training examples for a given drug combination made it hard to use traditional 
feature selection/reduction methods. However, based on the drug similarities defined above, 



 

it was possible to select molecular features associated with the observed synergy scores for 
a given, similar set of drug combinations. During the original Challenge gene expression 
features were selected (from the expression of target genes and their direct neighbors in 
signaling network) using this method by Randomized Lasso Feature selection. In the later, 
collaborative phase of the Challenge, a similar method was used for mutation and copy 
number variation features. 
 
For the final prediction different XGBoost models were created using subsets of the above 
defined features and/or different model parameters. The final submitted predictions were the 
ensembles of these models, either as simple averages or using hillclimbing 13on out-of-fold 
predictions. For the various tasks through the Challenge R, Python, SAS, and JMP were 
used. 
  
NAD feature layer importance: 
NAD’s Random Forest Regression model was trained using different pairs of cell line and 
drug combination specific features. The tested cell line features included cell line label, 
mutations (pre-filtered for 469 cancer related gene) and CNV (pre-filtered for 292 gene). 
Combination related features tested here were drug label, drug target, Gene Ontology and 
KEGG pathway based features (feature size: 407 and 140, respectively) and signalling 
network based features (601). Baseline model used cell line and drug label as features, 
while in the other models the respective feature was either swapped with the corresponding 
baseline feature (e.g.: in CNV model CNV and drug label, in target model cell line label and 
drug target was used as features) or added to the the features of baseline model (e,g. in 
+target model cell line label, drug label and drug target was used). Ensemble model in this 
case is the simple average of the prediction of these models. With all the used models 10 
random cross-validation was performed, and the mean weighted Pearson correlation was 
calculated for each cross-validation run. For the cross-validations all the training and 
leaderboard data of the Challenge was used, and the size of the cross-validation set for 
each combination resembled the size of the test set of the Challenge. 
 
NAD biomarker selection: 
NAD ranked their biomarkers for each drug combination based on the number of times the 
feature was used for predicting the given combination in the Random Forest Regressor 
models. For each combination a separate Random Forest model was built (using mutation, 
CNV, drug target and KEGG features) where all the Challenge training and leaderboard data 
was used without the data of the actual combination. With this model the left out combination 
was predicted for all of the cell lines. The number of times a given cellular feature (mutation 
or CNV) was used (based on the internal structure of the Random Forest trees) was 
recorded for each combination - feature pair. For each drug combination - feature pair Mann-
Whitney U test was performed to calculate the probability that the given feature is used more 
often for the given combination than other features, and that the given feature is used more 
often for the given combination than for other combinations. The final score of the feature for 
the combination was the product of these two probabilities. For each combination the used 
cellular features (mutation and CNV) was sorted decreasing order, and the top 5 features 
was used for further analysis. 



 

DMIS 
Support Vector Regression (SVR) were used as prediction model. The main difficulty was 
the high dimensionality problem of our feature space. To address this, novel literature-based 
approach was used. 200 genes were identified that most frequently occur in the context of 
cancer in the literature, and used only the mutations in those 200 genes as the features. To 
perform this gene selection task, the Biomedical Entity Search Tool (BEST) 
(http://best.korea.ac.kr)14 was applied. BEST finds an entity relevant to a query based on the 
number of co-occurrences between the query terms and the entity in the PubMed corpus, 
the authority of journals, the recency of articles, and the term frequency inverse document 
frequency (TF-IDF) weighting. BEST was queried by using the query term “cancer” and the 
top 200 cancer-related genes were collected. For CNV features, cBioPortal was used to 
collect 13 gene sets of cancer-related pathways. During the creation of various types of 
features, it was of essence to identify the best combinations of feature groups was a 
necessary part. However, testing all possible combinations of feature groups would require a 
considerable amount of computing resources. To address this problem, a high performance 
computing pipeline using HTCondor was constructed. HTCondor is an open-source 
computing framework for coarse-grained distributed parallelization of computationally 
intensive tasks. We ran our pipeline using 1,764 cores from Amazon Web Service, and 
selected the best combination of the feature groups. Through this process, the following 
features for sub-challenge 1B were selected: 118 drug IDs, 99 drug targets, 94 CNVs, 241 
mutations, and maximum concentrations of the dosages for each sample. 
 
The SVR model showed a good performance on AZ dataset. However, because the original 
model represents target and mutation features as sparse binary vectors, it is not appropriate 
to apply to O'Neil et al dataset with unseen cell lines and drugs. For translatability, a dense 
vector was created to capture and generalize characteristics of cell lines and drugs, and 
constructed a deep learning model which could utilize these vectors as input. 
 
For the post-hoc analysis, an additional deep learning model was generated, which was 
composed of 6 layers including a preprocessing layer as the first layer. The second layer 
had 4 modules and the first module gets mutation features, and the second module gets 
target feature. These two modules embed sparse feature vectors as dense vectors, and 
generate a single vector using a convolutional neural network. Pre-trained mutation vectors 
were used to leverage mutation information from TCGA and Mikolov’s Word2Vec algorithm15 
for mutation embedding. In addition, Asgari’s public protein dense vector16 for target 
embedding was used. The third module gets drug or monotherapy-related features, and the 
last module gets cell line-related features. Each module generates a single vector and the 
vectors are concatenated and are inputted into the next layer. The rest of layers are fully-
connected layer. The output layer generates a single value, which is the predicted synergy 
score. 
 
DMIS feature layer importance: 
In the main Challenge, the Support Vector Regression (SVR) was used as machine learning model. 
For extracting feature layer importance, the accuracy of the model was estimated after randomly 
permuting the values of the feature. How much the permutation decreases the primary score of the 
SVR model is an estimate of feature layer importance.   
 
DMIS biomarker selection: 



 

In order to get biomarker indications, important features were extracted for each drug 
combination individually. Therefore, samples were grouped by drug combination and for 
each combination and a random forest model was build. The method called “mean decrease 
impurity” was applied to obtain feature rankings. Random forest consists of multiple decision 
trees. Each node in a tree correspond to a feature and the same feature can appear in 
multiple trees. Each node in a tree splits the samples so that similar synergy scores group 
together. At each node, we can compute how much the split reduces the variance in the 
sample by taking the difference between the variance-before-split and the variance-after-split 
(this can be measured by weighted average of the two split groups). Finally, features were 
ranked based on their mean variance reduction, i.e., mean decrease impurity. The number of 
trees was limited to 200 and each tree randomly selected up to 204 features (a third of total 
612 features available).  

 
  



 

Supplemental figures 

 
Supp. Figure 1: Distribution of synergy scores across all combinations. (A) ty of compounds 
in each combination is plotted against their synergy scores. (B) Chemical similar synergy 
scores of combinations are ordered from lowest to highest. 3D synergy heatmaps show 
additional cells killed (Syn) or not killed (Ant) beyond the additive effect of the two drugs at 
each dose. Two examples of combinations with total synergy scores of +/-20 show the limit 
at which synergy and antagonism can be visually confirmed. Experiments where non-zero 
total synergy was due to random variation were set to zero. 



 

 
Supp. Figure 2: Reproducible of synergy scores. Shows correlation of drug combinations 
replicates from (A) DREAM Challenge and (B) external combination screen (O’Neil et al. 
2016). In green are high quality data points, while in blue are points not passing the QC from 
CombeneFit (QC score=1). (C, D) Distribution of synergy scores across combinations 
screened for the DREAM Challenge and independent set of combinations screened by 
Merck. 
 

 



 

 
Supp. Figure 3: Participation in the Combinations Prediction DREAM Challenge. (A) Nearly 
800 participants were located across five continents. (B) Comparison of participants across 
different DREAM Challenges. (C) Performances of sub-challenge 1A plotted against 1B 
based on the primary metric, average weighted Pearson correlation. (D) Performances of 
sub-challenge 1A plotted against 1B based on the tie-break metric, average weighted 
Pearson correlation of combinations with cases of synergy > 20. Dotted grey line shows 1:1 
relationship between 1A and 1B performance. (E) Performance of participants in sub-
challenge 1A grouped by whether they participated in one or more sub-challenges.  
 



 

 
Supp. Figure 4: (A) Performance across different types of methods used by participants in 
each sub-challenge. Each bar represents occurrence of the method in subch 1A, 1B, and 2. 
(B) Performance of individual teams coloured by the primary type of machine learning 
method used in each sub-challenge. Indicators below each bar show cases where kernel 
and boosting techniques were used with the primary method. 
 
 
 
 
 
 



 

 
Supp. Figure 5: Training and test set differences between well and poorly predicted 
combinations based on (A) number of experiments for each combination, (B) proportion of 
experiments with high quality (QA=1), and (C) average synergy score for each combination.  
 
 

 
Supp. Figure 6: Alteration frequency in drug targets and nearest neighbours. (A) Copy 
number and somatic mutation frequency in the gene targets of drug combinations. (B) Copy 
number and somatic mutation frequency in the genes that are nearest interacting neighbors 
of the targets, as determined by OmniPath.  

 



 

 
 
 

 
 

 
Supp. Figure 7: Post-hoc analysis of synergy biomarkers. (A) and (B) shows the target 
centric exploration of 2 levels up- and downstream of the putative drug targets from each 
combination. (C) The the top 5 ranked features from well predicted models were chosen for 
exploring their target enrichment. (D) Additionally, the top 5 features were further 
investigated if they had GO term similarity to the putative target larger than 0.5, or two 
independent teams relied on the same features. (E) This putative gene-to-combination 
association set was tested with an ANOVA model. Her exemplified with (F) AKT combined 
with EGFR in ERBB2 mutants showed synergy and independently validated with O’Neil et al. 



 

2016. (G) General validation of synergy biomarkers in only overlapping cell lines between 
AZ-DREAM and O’Neil et al. 2016. 

 

 
Supp. Figure 8: Monotherapy markers of EGFR and EBB2 inhibitors. Exploration of EGFR, 
ERBB mutations and copy number changes alone and in combinations.  

 



 

 
Supp. Figure 9: Value of monotherapy on prediction performance. (A) Prediction 
performance of teams (dots) in sub-challenge 1A when given correct and incorrect 
monotherapy data. (B) Comparison of performance between sub-challenge 1A and 1B for 
teams that had correct monotherapy data but could use it in 1A and could not in 1B. (C) 
Prediction performance of teams in sub-challenge 2 when given correct and incorrect 
monotherapy data. Horizontal dashed line indicates the level of the top performing team.  

 

 
 
 
  



 

Supplemental tables 
 
Supplementary Table 4: Prediction performance on independent combinations screen 

  Performance: Average weighted Pearson Correlation 

Team Method All experiments Same Cells Similar Drug Similar 
Combination 

Mikhail 1A model 0.04 0.06 0.05 0.1 

Mikhail 1B model -0.05 -0.07 -0.02 0 

NorthAtlanticDream 1A model 0.05 0.05 0.05 0.03 

NorthAtlanticDream 1B model 0.03 0.07 0.05 0.07 

DMIS new 1A model 
(Deep Learning) 

0.11 0.13 0.11 0.1 

DMIS 1A model 0.08 0.12 0.08 0.03 

DMIS 1B model -0.03 0.01 0 -0.05 

Ensemble Average 1A model 0.13 0.17 0.13 0.11 

 

Supplemental source code 
1. Winning method (code freeze) 
2. Scoring code is available online at https://www.synapse.org/#!Synapse:syn4991619 
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