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1 Comparing results from the two-dimensional and

one-dimensional stochastic models

In this section we present results from solving the Langevin equations (Equa-

tion (2), Main paper) for the scratch assay geometry in two dimensions, and

compare them with the corresponding solutions to the Langevin equations in

one dimension. Employing the vector notation introduced in the Main paper

we can write the Langevin equations for the two-dimensional model as follows,

du(i)

dt
=
∑
j 6=i

Fij + ξi, i = 1, . . . , N, (1)

where u(i) is the position of the ith agent, Fij is the interaction force between

agent i and agent j, ξi is the stochastic force acting on the ith agent, and N

is the number of agents in the simulation.

The initial positions of agents in both the two-dimensional and one-dimensional

simulations are chosen from the following distribution

α(x) =


12.5× 10−3, 0 µm ≤ x < 600 µm,

0, 600 µm ≤ x ≤ 1400 µm,

12.5× 10−3, 1400 µm < x ≤ 2000 µm.

(2)

In the case of the two-dimensional simulation, the vertical positions of agents

are placed at random to form a homogeneous density distribution. It ensures

that there is no density gradient in the vertical direction.

We fix all model parameters to be the same in both the two-dimensional

and one-dimensional simulations to avoid any other possible source of vari-

ability. The size of agents is fixed to a typical size of skin cell size of 25µm

(Simpson et al. 2013). We choose the number of agents in each one-dimensional

simulation to be 15. The number of agents in each two-dimensional simulation
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is 534. The number of agents in both simulations is chosen so that the initial

nondimensional density outside of the scratched region is p1/C = 0.625, where

C is the carrying capacity density of agents with diameter 25µm. The size of

the domain in the two-dimensional simulations is 2000µm×1400µm, which is

typical for scratch assay experiments (Figure 1, Main paper). Periodic bound-

ary conditions are imposed in both the two-dimensional and one-dimensional

simulations.

Results are summarised in Figure 1. To compare the one-dimensional and

two-dimensional simulations we average results from the two-dimensional model

in the vertical direction to obtain a one-dimensional agent density distribution.

We show that averaged two-dimensional results demonstrate very similar pop-

ulation level behaviour compared to simple one-dimensional model provided

all model parameters and initial densities are fixed.
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2 Derivation of the p1(x, t) and p2(x, y, t) governing equations for

the one-dimensional model

In this section we derive the equations for the evolution of the density p1(x, t)

and the pair-correlation density p2(x, y, t) presented in Section 2.2 (Main pa-

per). These equations represent the first two levels of the full hierarchy of

equations that incorporates all spatial moments (Middleton et al. 2014; Mat-

siaka et al. 2017). To begin, we introduce an agent density function, ρ(x, t).

The evolution of the agent density is given by continuity equation (van Kam-

pen, 1975):

∂ρ(x, t)

∂t
= −

N∑
i=1

∂Ji
∂x(i)

, (3)

where Ji is the component of the total flux of agents associated with the agent

i, and N is the total number of agents. If Ji = ρdx(i)/dt, we have

∂ρ(x, t)

∂t
= −

N∑
i=1

∂

∂x(i)

(∑
j 6=i

Fij + ξi

)
ρ(x, t), (4)

where
∑
j 6=i Fij + ξi is the right hand side of Equation (2) (Main paper) and

ξi is treated as a fixed parameter (van Kampen, 1975).

Suppose we treat ξi as a random variable. We can obtain a solution to

Equation (4) with the initial conditions

ρ(x, 0) =

N∏
i=1

δ(x− x(i)(0)) = δ(N)(x− x(i)(0)), (5)

where δ is the Dirac delta function, and x(i)(0) is the initial position of the

ith agent. For any initial density distribution, ρ(x, 0), we assume that we can

obtain the average over many different realisations of the stochastic force ξi,

〈ρ(x, t)〉ξ.
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Let P i1(x, t) be the probability density function (PDF) for an individual

agent. Then the one-agent PDF is given by (van Kampen, 1976)

P i1(x, t) = 〈〈ρ(x, t)〉ξ〉IC, (6)

where the average is taken over different realisations of the initial distribution

and the random variable ξi. Since the averaged local density can be expressed

as

〈〈ρ(x, t)〉ξ〉IC = 〈〈δ(N)(x− x(i)(t))〉ξ〉IC, (7)

we can define the one-agent PDF in the following way,

P i1(x, t) = 〈〈δ(N)(x− x(i)(t))〉ξ〉IC, (8)

where x(i)(t) is the position of the ith agent at time t, as given by Equation

(2) (Main paper).

Similarly, we define the two-agent PDF as

P ij2 (x, y, t) = 〈〈δ(N)(x− x(i)(t)) δ(N)(y − y(j)(t))〉ξ〉IC. (9)

The evolution of P i1(x, t) and P ij2 (x, y, t) are given by (Garćıa-Ojalvo and

Sancho, 1999)

∂P i1(x, t)

∂t
= D∆P i1(x, t)− ∂

∂x

(
fi P

i
1(x, t)

)
, (10)

∂P ij2 (x, y, t)

∂t
= D∆P ij2 (x, y, t)− ∂

∂x

(
fi P

ij
2 (x, y, t)

)
− ∂

∂y

(
fj P

ij
2 (x, y, t)

)
,

(11)

where the total force fi acting on agent i can be expressed as

fi =
∑
j 6=i

Fij . (12)
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Combining Equations (8), (10) and (12), and taking the convolution of the

interaction force and a δ function centred at y(j), we obtain

∂P i1(x, t)

∂t
= D∆P i1(x, t)

−∇
〈 ∑
j∈L,j 6=i

∫
Ω

F (x(i) − y, t) δ(x− x(i)(t)) δ(y − y(j)(t)) dy
〉
,

(13)

where Ω denotes the domain and L is the set of agents. The second term on the

right hand side of Equation (13) is an advection term. Combining Equations

(9) and (13), and interchanging summation and integration, we obtain

∂P i1(x, t)

∂t
= D∆P i1(x, t)−∇

∫
Ω

F (x− y, t)
∑

j∈L,j 6=i

P ij2 (x, y, t) dy, (14)

where, from this point forward, we drop the subscript i on x(i).

To make the transition from individual level behaviour in a discrete simu-

lation to population level dynamics, we define the following quantities,

p1(x, t) =
1

N

∑
i∈L

P i1(x, t), (15)

p2(x, y, t) =
1

N(N − 1)

∑
i∈L

∑
j∈L,j 6=i

P ij2 (x, y, t), (16)

where p1(x, t) is the normalised one-agent density distribution, and p2(x, y, t)

is the density-density correlation function that captures correlations in agent

positions.

To proceed, we sum over the index i in Equation (14) and apply the defi-

nitions given in Equations (15)-(16) to obtain

∂p1(x, t)

∂t
= D∆p1(x, t)− (N − 1)∇

(∫
Ω

F (x− y, t) p2(x, y, t) dy
)
. (17)
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To derive an evolution equation for p2(x, y, t) we begin with the two-agent

Fokker-Planck equation,

∂P ij2 (x, y, t)

∂t
= D∆P ij2 (x, y, t)− ∂

∂x

(
fi P

ij
2 (x, y, t)

)
− ∂

∂y

(
fj P

ij
2 (x, y, t)

)
,

(18)

where indices i and j denote arbitrary agents in population.

Adopting the interaction force law, Equation (5) (Main paper), using the

definition of the two-agent PDF, as given by Equation (9), and evaluating the

required convolutions, allows us to rewrite Equation (18) as

∂P ij2 (x, y, t)

∂t
= D∆P ij2 (x, y, t)

− ∂

∂x

〈
F (x− y, t) δ(x− x(i)(t)) δ(y − y(j)(t))

〉
− ∂

∂y

〈
F (y − x, t) δ(x− x(i)(t)) δ(y − y(j)(t))

〉
− ∂

∂x

〈 ∑
g∈L,g 6=i,j

∫
Ω

F (x− z, t) δ(x− x(i)(t)) δ(y − y(j)(t)) δ(z − z(g)(t)) dz
〉

− ∂

∂y

〈 ∑
g∈L,g 6=i,j

∫
Ω

F (y − z, t) δ(x− x(i)(t)) δ(y − y(j)(t)) δ(z − z(g)(t)) dz
〉
,

(19)

where the second and third terms on the right hand side of Equation (19)

represent interactions between agents i and j, the fourth and fifth terms on

the right hand side of Equation (19) represent interactions between agents i

and j and other agents within the population.

The three-agent normalised density functions can be defined as

p3(x, y, z, t) =
1

N(N − 1)(N − 2)

∑
i

∑
j 6=i

∑
g 6=i,j

P ijg3 (x, y, z, t). (20)
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We therefore require a definition for the three-agent PDF, P ijg3 (x, y, z, t).

Similar to Equation (9),

P ijg3 (x, y, z, t) = 〈δ(x− x(i)(t)) δ(y − y(j)(t)) δ(z − z(g)(t))〉. (21)

To proceed we divide Equation (19) by N(N − 1), and combine Equations

(19)-(21), summing over the indices i and j, to obtain an expression for the

evolution of p2(x, y, t)

∂p2(x, y, t)

∂t
= D∆p2(x, y, t)

− ∂

∂x

(
F (x− y) p2(x, y, t)

)
− ∂

∂y

(
F (y − x) p2(x, y, t)

)
− (N − 2)

∂

∂x

∫
Ω

F (x− z, t) p3(x, y, z, t) dz

− (N − 2)
∂

∂y

∫
Ω

F (y − z, t) p3(x, y, z, t) dz. (22)

This procedure can be repeated to yield the hierarchy of N − 1 coupled

integro partial differential equations and one Fokker-Planck equation. At any

arbitrary level d ∈ [1, N−1] of this hierarchy, the d-density, pd, depends on the

higher order density, pd+1. This means that full hierarchy of equations is in-

tractable for analysis. Consequently, we invoke two approximations to simplify

the hierarchy of density equations: (i)the standard mean-field approximation

(MFA); and (ii) the Kirkwood superposition approximation (KSA).

The MFA approximates the pair correlation function p2(x, y, t) in terms of

p1(x, t) and p1(y, t):

p2(x, y, t) = p1(x, t)p1(y, t). (23)

This expression implies that the probability of finding an agent at x is sta-

tistically independent of the probability of finding an agent at y. The KSA
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approximates the three-agent normalised density function as the product of

two-agent density functions, and can be written as (Singer 2004; Middleton et

al. 2014)

p3(x, y, z, t) =
p2(x, y, t) p2(x, z, t) p2(y, z, t)

p1(x, t) p1(y, t) p1(z, t)
. (24)

3 Discretisation scheme for the one-dimensional MFA model

In this section we present the discretisation scheme used to solve Equation

(10) (Main paper) governing the evolution of the agent density p1(x, t) in one

dimension. The MFA-based continuum equation is qiven by

∂p1(x, t)

∂t
= D∆p1(x, t)− (N − 1)∇(p1(x, t)V (x, t)), (25)

where

V (x, t) =

∫
Ω

F (x− y, t) p1(y, t) dy, (26)

and Ω is the integration domain.

We introduce the following quantities

β(x, y, t) = F (x− y, t) p1(y, t) = f0 Z(r, t) sgn(x− y) p1(y, t), (27)

Il = p1(xl, t)

∫
Ω

β(xl, y, t) dy

= p1(xl, t)
h

2

∑
s

[
β(xl, ys+1, t) + β(xl, ys, t)

]
+O(h2), (28)

where the trapezoidal rule with a stepsize h is used for numerical integration,

and the indices l and s denote equally-spaced spatial mesh nodes. Here, the

stepsize is chosen to be h = 4µm, while the binsize used in discrete results

presented in the Main paper is 10µm.

Using the definitions presented in Equations (27)-(28), we now apply the

method of lines to Equation (25) and obtain the system of ordinary differential
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equations

dp1i
dt

=
D

h2

[
pi+1 − 2pi + pi−1

]
− (N − 1)

1

2h

[
Ii+1 − Ii−1

]
, (29)

where the index i denotes a spatial mesh node. This system of ordinary dif-

ferential equations is solved using the first order explicit Euler method with a

constant time step ∆t. This expression is valid for an arbitrary interior node

and, since we apply periodic boundary conditions, it can be easily adapted on

the boundaries of the domain.

4 Discretisation scheme for the one-dimensional KSA model

We now write down the discretisation scheme used to solve Equation (14)

(Main paper) governing the evolution of p2(x, y, t) in the KSA-based frame-

work. Note that we only solve the equation for p2(x, y, t) and obtain p1(x, t)

by numerical integration, using

p1(x, t) =

∫
Ω

p2(x, y, t)dy. (30)

The governing equation that we consider is as follows,

∂p2(x, y, t)

∂t
= D∆p2(x, y, t)

− f0
( ∂
∂x
− ∂

∂y

)(
Z(|x− y|, t) sgn(x− y) p2(x, y, t)

)
− f0(N − 2)

∂

∂x

∫
Ω

Z(|x− z|, t) sgn(x− z) p2(x, y, t) p2(x, z, t) p2(y, z, t)

p1(x, t) p1(y, t) p1(z, t)
dz

− f0(N − 2)
∂

∂y

∫
Ω

Z(|y − z|, t) sgn(y − z) p2(x, y, t) p2(x, z, t) p2(y, z, t)

p1(x, t) p1(y, t) p1(z, t)
dz.

(31)
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In order to present the numerical method as briefly as possible, we define

the following quantities

γ(x, y, t) = f0 Z(|x− y|, t) sgn(x− y) p2(x, y, t), (32)

φ(x, y, z, t) = f0 Z(|x− z|, t) sgn(x− z) p2(x, z, t) p2(y, z, t)

p1(z, t)
, (33)

ψ(x, y, z, t) = f0 Z(|y − z|, t) sgn(y − z) p2(x, z, t) p2(y, z, t)

p1(z, t)
. (34)

Upon substituting Equations (32)-(34) into Equation (31), the evolution equa-

tion for p2(x, y, t) becomes

∂p2(x, y, t)

∂t
= D∆p2(x, y, t)− ∂

∂x
γ(x, y, t) +

∂

∂y
γ(x, y, t)

− (N − 2)
∂

∂x

[
p2(x, y, t)

p1(x, t) p1(y, t)

∫
Ω

φ(x, y, z, t) dz

]

− (N − 2)
∂

∂y

[
p2(x, y, t)

p1(x, t) p1(y, t)

∫
Ω

ψ(x, y, z, t) dz

]
. (35)

We now introduce the discretised quantities

Ql,k =
p2(xl, yk, t)

p1(xl, t) p1(yk, t)

∫
Ω

φ(xl, yk, z, t) dz

=
p2(xl, yk, t)

p1(xl, t) p1(yk, t)

h

2

∑
s

[
φ(xl, yk, zs+1, t) + φ(xl, yk, zs, t)

]
+O(h2),

(36)

Yl,k =
p2(xl, xk, t)

p1(xl, t) p1(yk, t)

∫
Ω

ψ(xl, yk, z, t) dz

=
p2(xl, yk, t)

p1(xl, t) p1(yk, t)

h

2

∑
s

[
ψ(xl, yk, zs+1, t) + ψ(xl, yk, zs, t)

]
+O(h2),

(37)

where the trapezoidal rule with stepsize h on an equally spaced mesh is used

to approximate the integrals. We now apply the method of lines to Equation
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(35) and obtain the following system of equations

dp2ij
dt

=
D

h2

[
pi+1,j − 2pij + pi−1,j + pi,j+1 − 2pij + pi,j−1

]
− 1

2h

[
γi+1,j − γi−1,j

]
+

1

2h

[
γi,j+1 − γi,j−1

]
− (N − 2)

1

2h

[
Qi+1,j −Qi−1,j

]
− (N − 2)

1

2h

[
Yi,j+1 − Yi,j−1

]
, (38)

where indices i, j denote spatial mesh nodes, and γl,m = γ(xl, ym, t). This

expression is valid for an arbitrary interior node and, since we apply periodic

boundary conditions, it can be easily adapted on the boundaries of the domain.

This systems is then solved using the first order explicit Euler method with a

constant time step of duration ∆t.
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