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Materials and Methods 
Data are available at NCBI’s GEO database under accessions GSE104903 and 
GSE104878. 

Theoretical TFBS abundance 
We estimated the abundance of TFBSs in random DNA by analyzing the 
information contents (ICs) of known motifs associated with yeast TFs (1). The IC 
of a motif (ICmotif ) is proportional to the frequency (fmotif) with which that motif is 
expected to be found on either strand of random DNA with the following 
relationship, where ICmotif is expressed in bits:  

 
The number of instances present in a library of a given TFBS motif, assuming 
that binding sites are independent, is the number of positions in the library that 
could potentially contain a complete binding site multiplied by the expected 
frequency of the TFBS motif. For a library with a complexity of 107, comprised of 
80 bp sequences, the number of possible TFBSs is (80 – motif_length + 1) * 107.  
For Figure 1B, we used the average motif length as the motif_length for all 
motifs so that the x axis could include frequency and the expected number of 
binding sites. For this analysis, motifs for zinc cluster monomers were excluded, 
since these are abundant in the database (1) and are likely to represent only a 
half TFBS. Several TFBS motifs that are very long but generally have low IC 
content, were also excluded since they are unlikely to represent true TF 
specificities (Table S1). 

Promoter library construction  
A single-stranded oligonucleotide pool was ordered from IDT containing the 
random 80 bp oligonucleotide flanked by arms complementary to the promoter 
scaffold for use with Gibson assembly. These oligonucleotides were double 
stranded with a complementary primer sequence and Phusion polymerase 
master mix (NEB), gel purified and cloned into the dual reporter vector, ensuring 
a complexity of at least 108 for each library.  
The promoter scaffold sequences were:  
For pTpA: 
(poly-T; distal) 
GCTAGCAGGAATGATGCAAAAGGTTCCCGATTCGAACTGCATTTTTTTCACA
TC  
(poly-A; proximal) 
GGTTACGGCTGTTTCTTAATTAAAAAAAGATAGAAAACATTAGGAGTGTAAC
ACAAGACTTTCGGATCCTGAGCAGGCAAGATAAACGA (up to the theoretical 
TSS).   
For Abf1TATA:  
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(Abf1 site; distal) 
GCTAGCTGATTATGGTAACTCTATCGGACTTGAGGGATCACATTTCACGCAG
TATAGTTC  
(TATA-box; proximal) 
GGTTTATTGTTTATAAAAATTAGTTTAAACTGTTGTATATTTTTTCATCTAACG
GAACAATAGTAGGTTACGCTAGTTTGGATCCTGAGCAGGCAAGATAAACGA. 
In both cases, 80 Ns were inserted in between distal and proximal regions. 

Reporter assay 
Libraries were transformed into yeast (strain Y8205 (2)) using the lithium acetate 
method (3), starting with 1L of yeast harvested at an OD of 0.3-0.4, ensuring a 
complexity of at least 108 was achieved (with the exception of the high-quality 
pTpA library, where a dilution series was performed to achieve the desired lower 
complexity). The yeast were then grown in SD-Ura for two days, diluting the 
media by 1:4 three times during this period. Media was then either changed to 
YPD, growing for at least 5 generations prior to cell sorting, or to YPGly and 
YPGal, with culture grown for at least 8 generations (due to the different carbon 
source). In the final 10 hours of growth prior to cell sorting, all cultures were 
allowed to grow continuously in log phase, never achieving an OD above 0.6, by 
diluting in fresh media.  All cultures were grown in a shaker incubator, at 30°C 
and approximately 250 RPM.  
Prior to sorting, yeast were spun down, washed once in ice-cold PBS, and then 
suspended in ice-cold PBS and kept on ice until cell sorting. Cells were sorted by 
log2(RFP/YFP) signal (using mCherry and GFP absorption/emission) on a 
Beckman-Coulter MoFlo Astrios, using 18 uniform bins, done in three batches of 
six bins each. The FACS configuration varied between experiments (e.g., 
different laser intensities), resulting in different baseline expression values. Post 
sort, cells were spun down and resuspended in SC-Ura (supplemented with 1% 
Gal for Gal sort), grown for 2-3 days, shaking at 30°C. The plasmids were then 
isolated, the promoter region amplified, Nextera adaptors and multiplexing 
indices added, and the resulting libraries sequenced with 76 bp, paired-end 
reads, using 150 cycle kits on an Illumina NextSeq sequencer, achieving 
complete coverage of the promoter, including overlap in the center.  

Promoter sequence consolidation 
The paired end reads representing both sides of the promoter sequence were 
aligned using the overlapping sequence in the middle, constrained to have 40 
(+/-15) bp of overlap, and discarding any reads that failed to align well within 
these constraints. Note that only ~0.3µg of N80 DNA were received from IDT, 
and only ~108 of these were successfully cloned; these are only a vanishingly 
small portion of the possible 480 sequences in N80 (which would weigh ~1026 kg 
even with just one copy of each possible molecule). Thus, any very similar 
sequences we observe represent the same source promoter with very high 
probability, with minor differences likely corresponding to PCR or sequencing 
errors. Consequently, promoters were aligned to themselves using Bowtie2 (4) to 
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identify clusters of related sequences, merging these clusters and taking the 
sequence with the most reads as the “true” promoter sequence for each cluster. 

Billboard model of transcription 
The billboard model includes parameters representing TF concentration ([TFx]), 
TF activity (Actx), TF potentiation (Potx), and TF activity limits (ALx).  
TF motifs (Table S1) were taken from the YeTFaSCo database (1) and 
supplemented with the poly-A motif (AAAAA), which we initialized to 100% A at 
all 5 positions. Motifs were trimmed to fill 25 bp 1-d convolutional filters, centering 
the motif if it was less than 25 bp, and, where motifs were longer than 25 bp, 
trimming off the least informative bases until it was 25 bp.  
To identify dissociation constants, Kd, for each TFBS motif and each potential 
binding site instance, motif filters were applied to DNA sequences and their 
reverse complements by scanning them with the TFBS motif position weight 
matrix. Binding to each site in the DNA was determined by the GOMER method 
using [TFx] (5). The concentration parameter is unlikely to be comparable to 
measured cellular TF concentration, since its magnitude also depends on TF 
affinity and PWM scale, and possibly other factors that affect TF binding. 
The expected binding (sum of all binding to all binding sites) was used as an 
initial estimate of TF occupancy (RBx,p), which assumes Michaelis-Menten 
equilibrium binding occupancies for all possible binding sites (location l, strand s), 
where Kds for each binding site are calculated from the position weight matrix 
and [TFx] is learned: 

  
We calculate Openp, which corresponds to a probability the promoter p will be 
accessible to binding, as a logistic function on the sum of each TF’s x predicted 
Raw Binding, weighted by Potx, their learned ability to potentiate the binding of 
other factors:  

 
Because our promoters are small, we can reasonably assume that a TF that 
opens chromatin would open it for the entire 80-bp variable region: if the 
promoter is open, all TFs can bind unimpeded; if the promoter is closed, no TFs 
can bind. Thus, we re-weight the Raw Binding scores with Openp to get 
Bindingx,p, the amount of binding of each TF x to each promoter p, as: 

 
Finally, the predicted expression level (ELx) is the sum of binding values for each 
TF x, weighted by their learned effect on expression (Actx):  
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When activity limits for TFs (ALx) were included as a learned parameter, the 
expression level was instead calculated as follows, putting an upper limit on TF 
activity: 

  

Model learning 
Parameters were learned iteratively, first learning TF activity and potentiation, 
then TF concentration, then allowing the motifs themselves to be changed, and 
finally, including a parameter that limited the maximum binding of each TF, each 
time, learning the new parameters and updating those previously included with a 
single pass through the data.  
Transcriptional models were implemented in Tensorflow (6), minimizing the mean 
squared error between predicted and measured expression level using the 
AdamOptimizer and learning in batches of 1,024 promoters. In all cases, 
potentiation and activity parameters were regularized with an L1 penalty 
(0.00001) and motifs were regularized with an L2 penalty (0.000001). Learning 
rate was set to 0.04 for the epoch learning activity and potentiation parameters, 
0.01 when also learning concentration, and 0.001 when also learning motifs and 
when learning activity limits. All analyses used the models that did not include 
activity limits, with the exception of the position and orientation analysis and the 
comparisons to Sharon et al. (7) and Miller et al. (8) data.  
Open source code for our transcriptional models is available on GitHub 
(https://github.com/Carldeboer/CisRegModels). 
Comparing model predictions to native sequences 
Since the models above were designed to operate on relatively short sequences 
(~110 bp), scanning the yeast genome (R64) was done in tiling windows of 110 
bp each, spaced at 1 bp intervals, yielding expression and accessibility 
predictions for nearly all bases in the genome.  
To compare to chromatin organization in core promoters, the accessibility 
predictions were averaged across all yeast promoter sequences to yield a 
metagene plot, as was done for DNase (9) and nucleosome occupancy (10) 
data.  
To compare the models’ predictions to RNA synthesis rates, the model’s 
predicted expression levels for sequences from -450 to -75 relative to the TSS 
were averaged; to avoid overfitting, this range was optimized on unrelated RNA-
seq data (11). We then compared this predicted average expression to the 
inferred RNA synthesis rate for each gene (8). 

Comparing refined and original motifs 
The original and model-refined motifs were evaluated for their ability to predict 
independent ChIP binding and TF mutant gene expression data. The GOMER 
method (5) was used to get a predicted binding occupancy of each sequence for 
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the original and model-refined motifs. For ChIP data (12), ChIP-chip probes were 
scanned with the motifs, and their ability to predict ChIP binding for the 
corresponding TF was evaluated. For TF perturbation experiments (1, 13) 
promoter sequences were scanned with motifs, and their ability to predict 
expression changes when the cognate TF is perturbed (mutated, over-
expressed, or deleted) was evaluated. In both cases, there were often multiple 
experiments for the same TF. We repeatedly sampled the data from each 
experiment (50% of the data sampled randomly 100 times, without replacement), 
and with each sample calculated the Pearson correlation coefficient between 
motif-predicted binding and biological measurement (gene expression, ChIP 
intensity) for both model-refined and original motifs. If the model-refined motif 
had a Pearson r2 greater than the original in at least 95% of samples, we 
considered the experiment to be predicted better by the refined motif. 
Conversely, if the original motif was better in at least 95% of samples, the 
experiment was considered to be predicted worse by the refined motif. A model-
refined motif was considered to be better than the original if at least one 
experiment was predicted better and no experiment was predicted worse, while it 
was considered worse if at least one experiment was predicted worse and no 
experiment was predicted better. In all other cases, the motifs were considered 
equal. Motifs that were regularized out of the model (i.e. became neutral PWMs) 
were not considered in this analysis.  

Classifying TFs into activators and repressors by GO annotation 
GO terms for yeast genes were downloaded from SGD (14) on Jan. 14, 2017. 
TFs annotated with a term containing any of "positive regulation of transcription", 
"transcriptional activator", "activating transcription factor binding", or "positive 
regulation of RNA polymerase II" were labeled as activators. TFs annotated with 
"negative regulation of transcription", "transcriptional repressor", "repressing 
transcription factor binding", or "negative regulation of RNA polymerase II" were 
labeled as repressors. Any annotated as both or neither were ignored for the 
purposes of testing for enrichment. 

Identifying TFs that act non-linearly 
To identify cases where TF activity was not captured accurately by the model, we 
first examined the relationship between expression level and TF binding directly, 
but found this to be misleading in many cases, because many TFs have related 
motifs, leading to seeming non-linearities merely due to multiple TFs acting on 
related TFBSs. As an alternative, we identified lingering relationships between 
predicted TF binding and residual expression level (actual minus predicted 
expression; Figure 4A), since the residual expression level is calculated after 
accounting for the activity of other TFs. Here, the model-learned PWMs and 
concentration parameters were used to identify promoters containing each TFBS 
(predicted occupancy 5% or above, relaxing this to 1% if there were fewer than 
106 such promoters, and subsampling to approximately 106 promoters if there 
were more than 107). For each TF, lines of best fit were learned between 
predicted occupancy of the TFBS and the promoter’s residual expression level 
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after the model’s fit, and the slopes of these lines calculated at 300 points along 
the curve, each spanning 1/300th of the data points. The maximum absolute 
value of the slope of each curve was used to rank TFs by their lingering non-
linear relationships (Figure 4B). 

MNase-Seq experiment and analysis 
Aliquots of the pTpA library, expected to correspond to ~100,000 (sample A) or 
~200,000 (sample B) cells were each cultured in duplicate (Rep 1 and 2) in YPD 
for ~16 hours to an OD of ~0.4-1.0. For each sample, 0.5 mL of culture was 
pelleted and frozen to prepare input genomic DNA, and 3 mL of culture was 
crosslinked with 1% formaldehyde, washed twice with 1mL H2O supplemented 
with a protease inhibitor cocktail, and the pellet frozen for MNase treatment. 
These pellets were next spheroplasted using zymolyase, and spheroplasts were 
lysed in NP buffer (10 mM Tris pH 7.4, 50 mM NaCl, 5 mM MgCl2, 1 mM CaCl2, 
and 0.075% NP-40, freshly supplemented with 1 mM β-mercaptoethanol, 500 µM 
spermidine, and EDTA-free protease inhibitor cocktail) at a concentration of 
2*106 cells/ µl of NP buffer. 0.125 units of Worthington MNase were added per 
10µl of lysed spheroplasts and MNase digestion was preformed at 37°C for 20 
minutes. MNase digestion was stopped by addition of equal volume of 2X MNase 
Stop Buffer (220 mM NaCl, 0.2% SDS, 0.2% sodium deoxycholate, 10 mM 
EDTA, 2% Triton X-100, EDTA-free protease inhibitor cocktail). MNased 
chromatin samples were treated with RNase A and proteinase K, reverse cross 
linked, separated on a 4% agarose gel and mononucleosome bands were 
isolated. Genomic DNA was prepared using the Masterpure Yeast Genomic DNA 
Preparation Kit (Epicenter). For both MNase and genomic DNA, the variable 
region of the promoter library was amplified, and adaptors added for sequencing 
using an Illumina NextSeq with 76 bp single-end reads.  
Sequencing reads were mapped to all known promoters in any pTpA library 
using Bowtie2 (4). Only promoters with at least 20 reads in the input DNA and 1 
read in the MNase data were kept for subsequent analysis. Input and MNase 
counts were scaled within each sample to yield counts per million (CPM) per 
promoter and the log ratio of MNase to input was compared between replicates 
and to the model’s predicted occupancy, corresponding to log(1-predicted 
accessibility). To combine MNase replicates, the log ratio of MNase to input was 
averaged for promoters present in both samples – those in only one sample were 
ignored. Similarly, pairwise correlations between samples in Figure 3C reflect 
only the promoters common to both samples, and all promoters within the 
sample when comparing to the model’s predictions. 

Zinc cluster monomer analysis 
The zinc cluster monomeric model was created as above, training on the 
pTpA+glucose data, but only TFBS motifs representing the canonical zinc cluster 
monomeric motif (CGG) and one base pair variants (CGG-variants) were 
provided as motif features and the only parameters learned were motif activities 
and potentiations, whereas the motifs themselves were held static. In the model, 
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expected binding is proportional to the number of exact motif matches, and so is 
equivalent to counting the number of the corresponding CGG-variant in the 
sequence.   
Potentiation and activity parameters for each CGG-variant were then compared 
to those learned for predicting protein binding microarray (PBM) data (15). To 
this end, we learned a linear model relating the number (Nm,p) of each CGG-
variant (m) within each PBM probe (p) to PBM binding signal for the probe (Sp) 
for each zinc cluster TFs in the UniPROBE database (15), learning a binding 
coefficient for each CGG-variant (Bm).  

 
The degree of binding that could be captured by CGG-variants was then 
estimated by calculating Pearson’s correlation coefficient r between measured 
PBM binding and predicted binding by these linear models. The Pearson 
correlation coefficients between PBM-learned binding weights for each TF and 
the billboard model’s CGG-variant coefficients were calculated to see which TF’s 
binding profile was most similar to the learned potentiation/activity weights. 
Other models comprised only of simple (1- to 3-mers) motifs were created 
similarly to the CGG-variant model in order to determine the predictive power of 
lower-order features (e.g., 1- and 2-mers, reflecting GC content and dinucleotide 
frequencies, respectively) and how much performance could be gained by 
including additional simple features in the CGG-variant model (e.g., 1- and 2-
mers, and other 3-mers). We also aimed to estimate the degree to which the 
lower-order models were simply capturing the activity of CGG-variants (e.g., 
since %G+C and occurrence of CGG are correlated, %G+C is predictive of CGG 
content and therefore expression). Thus, linear models that take as features the 
abundance of mono- and di-nucleotide features within each promoter and predict 
the CGG-variant model's expression level predictions were created, training on 
the first 8,000 high-quality pTpA+Glu promoters. These were then applied to the 
last ~2,000 high-quality pTpA+Glu promoters, and a Pearson r2 (red bars) was 
calculated for the correlation between this model's predictions and measured 
expression level. All data in Figure S5A are using these same ~2,000 test 
promoters. We conclude that CGG and related motifs are likely to be the true 
active motifs because models using only 1- and 2- mers can predict expression 
about as well as they are able to capture the features of the CGG-variant model, 
adding 1-, 2-, or 3-mers to the CGG-variant model adds little predictive value, 
and a model including only the two most impactful CGG variants (CGG and 
CGC) can explain nearly 53% of expression (Figure S5B). 

Position and orientation-specific TF activities 
To identify position-specific activities of TFs, all potential binding site instances 
(TFBS motif matches) predicted to be occupied at least 5% of the time (given the 
motif models and concentration parameters learned by the model) were 
identified. For any TFs for which fewer than 106 motif matches were found, this 
was relaxed to binding at least 1% of the time. Those with more than 107 binding 
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instances were subsampled to approximately 106 instances. Promoters were 
then grouped into sets containing a particular set of features, (e.g, “promoters 
with an Abf1 binding site 100 bp upstream of the TSS in the “+” orientation”), and 
the median residual was taken as the summary statistic of the effect of the 
features used to define the promoter subset (Figure 6A).  
In order to identify the approximate fraction of TFs displaying a 10.5 bp helical 
activity bias, the median residuals across the variable promoter region were 
compared to a 10.5 bp sine wave. First, we regressed out the overall positional 
activity bias using loess regression (span=0.5; Figure S6A). These long-range 
trends were subtracted from the data, leaving only the short-range trends (Figure 
S6B), which were then compared to a 10.5 bp sine wave for 100 possible 
alignments of the sine wave, taking the largest magnitude correlation for each TF 
and strand, and calculating Spearman’s correlation coefficient,  ρ. As 
background, the same procedure was performed after first shuffling the median 
residuals for 100 permutations of the data per TFBS. A p-value and AUROC 
were calculated describing the difference between the randomized and actual 
data. 
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Figure S1. Random DNA yields diverse expression levels in all promoter 
scaffolds tested. For each promoter scaffold (right), shown are the distributions 
of expression levels (log2(YFP/RFP), x axis) measured by flow cytometry for the 
entire library (gray filled curves) and for a few selected clones, each from a 
different single promoter from the library (colored line curves).  
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Figure S2: Predictions of billboard model on other test data sets. (A) 
Saturation analysis of GPRA data. Shown are the numbers of distinct promoters 
detected when subsampling the pTpA+glucose sequencing data (black points), 
after combining reads from all expression bins. Red curve: promoters projected 
to be detected with additional sequencing (16). (B) Predictions of the 
Abf1TATA+glucose trained model on the high-quality pTpA+glucose test data. 
Shown are the measured expression levels in the high-quality pTpA+glucose test 
data (y axis) vs. the corresponding predictions for these sequences by the 
billboard model trained on the Abf1TATA+glucose data (x axis). Red: GAM fit; 
Grey shaded area: 95% confidence interval. (C) The GPRA trained billboard 
model correctly predicts expression on subsets of previously measured reporter 
assays from Sharon et al. (7). Cumulative distribution function (CDF) of the 
Pearson correlation coefficient r (x axis) between the measurements of 
expression levels within each promoter subset in Sharon et al. (7) and the 
corresponding predictions for those promoter sequences by the billboard model 
trained on the pTpA+galactose data. Select subsets are indicated. Red: 
background promoter context; green: variable being studied in the set.  
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Figure S3. The billboard models identify biochemical activities of TFs. (A,B) 
TF classification into activators and repressors. Shown are the number of TFs 
classified as activators, repressors, neither, or both in the yeast Gene Ontology 
(GO, Methods) (bars) and whether they are predicted as (A) closing (blue) or 
opening (red) chromatin; or (B) repressor (blue) or activator (red), by each model 
(label on top). Hypergeometric P-values for overlaps between predicted 
activator/repressor (or chromatin opener/closer), compared with 
activator/repressor GO annotations are as shown (“neither” and “both” categories 
are ignored). (C,D) Model-refined motifs perform better in predicting TF binding 
and knockout effects in independent experiment. Shown are the absolute values 
of the Pearson correlation coefficient (|r|) when using either the original motifs (x 
axis) or the pTpA+Gal model-refined motifs (y axis) to predict whether (C) the 
gene’s expression will change in the corresponding TF mutant (compared to wild 
type; (1, 13)) based on predicted binding to the promoter, or (D) a ChIP probe will 
be bound by the TF in a ChIP assay (12) based on predicted binding to ChIP 
probe. (Here, data were not subsampled). Overall, model-refined motifs perform 
better (points above diagonal), but some perform worse. Reduced performance 
can be due to condition specific regulators that are minimally active in our tested 
growth conditions (e.g., Gcn4), redundancy between motifs (e.g., Hsf1 has 
mono-, di-, and trimeric motifs), and overfitting of the original motif to the test 
data (e.g., ChIP-derived motifs tested on ChIP data). (E,F) Prediction of 
nucleosome occupancy. (E) Model predicted (x axis) vs. measured (MNase-Seq, 
y axis) nucleosome occupancy. Four MNase biological replicates are shown 
(Methods). (F) As in E, with replicates averaged, and only promoters present in 
both replicates shown. 
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Figure S4: The GRFs and Gal4 have saturating activity. (A) Lingering 
relationship for Abf1. Relationship between predicted Abf1 binding (x axis) and 
residual expression level (y axis). Blue line: GAM line of best fit. Vertical red line: 
estimated saturation point. (B-E) Relationship between measured expression 
level (y axis) and predicted binding strength (x axis) for Abf1 (B, in 
pTpA+glucose), Gal4 (C, in pTpA+galactose), Rsc3 (D, in pTpA+glucose), and 
Hap4 (E, in pTpA+glycerol). 
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Figure S5. Zinc cluster monomeric TFBSs have large potentiation effect 
sizes. (A) Shown are the cumulative distribution functions of the average 
potentiation effect sizes (x axis) for zinc cluster monomeric TFBS variants (blue), 
and all other TFBS motifs (pink), in each of the four learned models.  (B) CGG-
variants best explain CGG-variant model performance. Ability of models 
containing only simple sequence features (up to 3-mers) (bars, x axis) to predict 
high-quality pTpA+glucose test data (Pearson r2, y axis). Models were trained to 
predict either pTpA+glucose GPRA expression data directly (black bars), or the 
CGG-variant model’s expression output (red bars). The latter asks how well the 
included features are able to (indirectly) capture CGG-variants, and so how much 
of their performance can be attributed to CGG-variant activity. Gray dashed line: 
CGG-variant model performance. Marginal gain in performance of CGG-variant 
model supplemented with 2- and 3-mers could result from other important motifs 
being partly captured (e.g., poly-A). 
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Figure S6. Identification of helical bias in residual expression profiles. (A) 
Long-range trends in residual expression. Heatmap of the loess fit (color) of the 
median residuals (from Figure 6B) for each TFBS (rows) at each position 
(columns) for minus (left) and plus (right) strand orientation. (B) Short-range 
trends identify helical face preference. Heatmap of the loess residuals (color), 
determined by subtracting the loess fit (as in A) from the median residuals 
themselves (as in Figure 6B) for each TFBS (rows) at each position (columns) 
for minus (left) and plus (right) strand orientation. Alternating blue and red vertical 
bands indicate a helical face bias (arrow). This data is compared to a 10.5 bp 
sine wave in Figure 6D. 
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Table S1: Motifs used in this study. Motif IDs are from the YeTFaSCo 
database (1). Motifs excluded from the motif frequency analysis (Figure 1B) are 
indicated. 
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