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Supplementary information 1 
 2 
Materials and methods: 454-pyrosequencing and noise removal 3 
Tag-pyrosequencing was done with Roche 454 Titanium platform following 4 
manufacturer protocols (454 Life Science). Amplification of the hypervariable regions 5 
V1-V3 was done using Primers 28F (5’-GAGTTTGATCNTGGCTCAG) and 519R (5’-6 
GTNTTACNGCGGCKGCTG). Approximately 400 bp long tags were obtained. PCR 7 
and subsequent sequencing are described in Dowd et al. (2008).  8 

The raw tag-sequences were processed using QIIME (Caporaso et al., 2010). Briefly, 9 
to reduce sequencing errors and their effects, the multiplexed reads were first trimmed, 10 
quality-filtered and assigned to the samples, surface or bottom. The filtering criteria 11 
included a perfect match to the sequence barcode and primer, at least 400 bp in length, an 12 
average quality score (phred) of 28 within sliding windows of 50bp. Additionally, 13 
denoiser was used to reduce the amount of erroneous sequences (Reeder & Knight, 14 
2010).  The sequences were then clustered into Operational Taxonomic Units (OTUs) 15 
based on the relatedness of the sequences (97% similarity) with UCLUST, version 16 
1.1.579 (Edgar, 2010). A representative sequence from each OTU was selected as the 17 
first cluster seed chosen by UCLUST.  ChimeraSlayer implemented in Mothur (Schloss 18 
et al., 2011) use to check for chimeras. Then, taxonomy assignment was made with 19 
QIIME by searching the representative sequences of each OTU against the SILVA 20 
16S/18S rDNA non-redundant reference dataset (SSU Ref 108 NR) (Quast et al., 2013) 21 
using the Basic Local Alignment Search Tool (BLAST) and an e-value of 0.03. Chimera, 22 
chloroplast, eukarya and archaea sequences were removed from the output fasta file that 23 
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was used for building a table with the OTU abundance of each sample and the taxonomic 24 
assignments for each OTU.  25 
 26 
Materials and methods: Isolation of bacterial cultures 27 
Isolates were obtained on board by plating 100 µl of undiluted and 10x diluted sea-water 28 
from the surface sample, in triplicates, onto modified Zobell agar plates (i.e. 5 g peptone, 29 
1 g yeast extract and 15 g agar in 1 l of 0.2 µm filtered 75% sea water). Agar plates were 30 
incubated at in situ temperature (~20 °C), in the dark, for 14 days. 326 bacterial colonies 31 
were selected and the cultures were subsequently purified by re-isolation three times in a 32 
month. Next, isolates were grown at 20 ºC on the same liquid medium and stored at -33 
80 ºC with 25% (v/v) glycerol.  34 
 35 
Materials and methods: Bacterial isolates PCRs 36 
 PCR, using Taq polymerase (Boehringer-Mannheim), of the Internal Transcribed Spacer 37 
(ITS) was done using primers ITS-F (5’-GTCGTAACAAGGTAGCCGTA) and ITS-R 38 
(5’-GCCAAGGCATCCACC) and the following thermal conditions: 94ºC for 2 min, then 39 
32 cycles of 94 ºC for 15 sec, 55 ºC for 30 sec, 72 ºC for 3 min, followed by one cycle of 40 
72 ºC for 4 min and 4 ºC on hold.  41 

PCR of the 16S rRNA gene of the 148 chosen by their different ITS pattern were then 42 
amplified using bacterial 16S rRNA gene primers 27F 43 
(5'-AGAGTTTGATCMTGGCTCAG) and 1492R (5'-GTTTACCTTGTTACGACTT). 44 
The thermal conditions were as follows: 94 ºC for 5 min, then 30 cycles of 94 ºC for 1 45 
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min, 55 ºC for 1 min, 72 ºC for 2 min, followed by one cycle of 72 ºC for 10 min and 4 ºC 46 
on hold.  47 
 48 
Materials and methods: Simulating the Required Sequencing Effort (RSE) 49 
For each of 80 ensemble members, we simulated a random sequence of 10N individual 50 
species labels, where N is the present sequencing effort, by: 1) sampling a set of 51 
parameter values from the posterior distribution, 2) sampling relative abundances 52 
(proportions in the water sample) from the taxon abundance distribution given the 53 
parameter values, 3) sampling species counts (from hypothetical sequencing) using the 54 
multinomial distribution given the proportions and the total number of individuals 10N, 55 
and 4) converting the species counts into a randomly-ordered sequence of individual 56 
labels. The simulated RSE was then identified as the individual (tag) index for which the 57 
number of species observed earlier in the sequence first exceeded 90% of the simulated 58 
total richness (S). 59 
 60 
Discussion: Simulation tests on the number of isolates retrieved in sequences 61 
To simulate the number of isolates retrieved in sequences, we simulated 3000 sets of 62 
species counts using the method described above for RSE calculations, but with the total 63 
number of tags fixed at the present sequencing effort N.  For each set of simulated 64 
sequencing counts, 38 species were selected at random without replacement from the list 65 
of all S counts (including zeros), and the number of these with non-zero counts was 66 
recorded to give the simulated number retrieved by sequencing rs.  The simulation p-67 
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value for the actual number of species retrieved by sequencing r was then taken as (1 + 68 
#(rs ≤ r))/3001 following Davison & Hinkley (1997). 69 
 70 
Discussion: Simulation/bootstrap tests on the counts of isolates retrieved in sequences 71 
To simulate the counts of isolates retrieved in sequences, we again simulated 3000 sets of 72 
species counts as described above, and this time randomly selected without replacement 73 
either 9 or 14 species from the list of non-zero counts for each simulation.  The mean, 74 
median, and maximum counts from this subset were recorded for each simulation, and p-75 
values were calculated as described above assuming lower-than-random count statistics 76 
as an alternative hypothesis.  For the bottom count statistics (14 species), we also 77 
performed the test assuming higher-than-random count statistics t on the alternative, 78 
hence calculating p-values as (1 + #(ts ≥ t))/3001. 79 

These tests were also repeated using a bootstrap method, thus avoiding the need to 80 
assume a parametric distribution.   To do this, a vector of 9 or 14 species counts was 81 
randomly resampled with replacement from the observed species count vector.  This was 82 
repeated over 9999 bootstraps and bootstrap p-values were calculated as (1 + #(ts ≤ 83 
t))/10000 or (1 + #(ts ≥  t))/10000, again following Davison & Hinkley (1997). 84 
 85 
 86 
 87 
 88 
 89 
 90 
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Figure legends 116 
Figure S1.  Goodness-of-fit of the best-approximating Sichel distribution to surface (A) 117 
and bottom (B) data sets.  Observed and predicted count frequencies (numbers of OTUs 118 
with a given sample abundance) are plotted against tag counts (sample abundances) on a 119 
log-log scale.  Goodness-of-fit is illustrated by the closeness of the predicted frequencies 120 
(posterior means, solid lines) to the observed frequencies (dots) as well as by the 121 
narrowness of the 95% prediction intervals (dashed lines) while still containing most of 122 
the data.  The comparison is restricted to rare counts in the range 1‒100 because these are 123 
likely the most important for estimating total richness and required sequencing effort, and 124 
because the computation of stable frequency prediction intervals for higher counts would 125 
require too many simulations (the intervals shown used 3 000).  The distributions were 126 
however fitted to the full range of observed count frequencies (f1‒178569 and f1‒45414 for 127 
surface and bottom samples respectively). 128 
 129 
 130 
Table captions 131 
Table S1.  Four different compound Poisson distributions were fitted to the surface and 132 
bottom data: the Poisson log-normal, the Poisson inverse Gaussian, the Poisson log-133 
student, and the Poisson generalized inverse Gaussian (Sichel) distribution.  As a 134 
robustness check we reran the Sichel fit for the surface sample excluding the counts of 135 
the most abundant species which, for this sample, was more than 3 times as abundant as 136 
the second most abundant species (see Surface*).  The relative goodness-of-fit is assessed 137 
using Akaike's Information Criterion (AICc = -2×max(log likelihood) + 2p + 2p(p+1)/(n-138 
p-1), where p is the number of fitted parameters and n is the number of data; Hurvich and 139 
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Tsai, 1989; Burnham and Anderson, 2002) and the deviance information criterion (DIC = 140 
-2×posterior mean(log likelihood) +  p; Spiegelhalter et al., 2002; Quince et al., 2008).  141 
For the robustness check the selection criteria are placed in square parentheses since these 142 
cannot be compared to other rows.  We also show the total species richness estimates 143 
from maximum likelihood (ŜML) as well as the posterior median (Ŝ50%) and the 95% 144 
credible bounds (Ŝ2.5% and Ŝ97.5%) from the Bayesian MCMC method (Quince et al. 145 
2008).  146 
Reference: Hurvich CM and Tsai C-L (1989). Regression and time series model selection in 147 
small samples. Biometrika 76: 297-307. 148 
 149 
Table S2. (A) Semiparametric functional fits to surface sample collector's curve data and 150 
corresponding estimates of total species richness.  A set of 12 convex, saturating 151 
functions were fitted to the rarefied species accumulation curve, sampled at intervals of 1 152 
000 tags (hence 502 data points), using the nonlinear least squares function "nls" in R to 153 
estimate the parameters a, b etc.  The absolute quality of the fits was measured using the 154 
generalized R2 values (defined for nonlinear fit as 1 - RSS/SSM, where RSS is the 155 
residual sum of squares and SSM is the sum of squares of the sample mean).  The best-156 
approximating model was selected as that which minimized Akaike's Information 157 
Criterion (AICc, in this case the Power Michaelis Menten (2) function was selected).  The 158 
selected model was then used to estimate the total sample richness S as the asymptotic 159 
value of the function at x = Inf (final column shows the estimates for all candidate 160 
functions).  Required sequencing effort (not shown) was predicted by inverting the 161 
selected function for x such that the value of the function was 0.9 times the estimated 162 
sample richness.  Note that for certain 3 and 4 -parameter functions the R2 values are 163 
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extremely high and differ only in the fourth or fifth decimal places (R2>0.999) yet the 164 
estimated richnesses can differ substantially (cf. Power Michaelis Menten (2) vs. Weibull 165 
Cumulative).  For such functions, the AICc values also tend to differ by relatively large 166 
amounts, such that a model averaging strategy based on AIC weights would differ little 167 
from simply choosing the lowest-AICc model (Burnham and Anderson, 2002), and any 168 
assessment of model selection uncertainty based on AIC-weights is unlikely to predict the 169 
level of selection uncertainty observed in simulations (see Table S3).  This latter is likely 170 
the result of the neglected error correlation in the functional fits.  171 
Table S2. (B) Semiparametric functional fits to bottom sample collector's curve data and 172 
corresponding estimates of total species richness.  A set of 12 convex, saturating 173 
functions were fitted to the rarefied species accumulation curve, sampled at intervals of 1 174 
000 tags (hence 576 data points), using the nonlinear least squares function "nls" in R to 175 
estimate the parameters a, b etc.  The absolute quality of the fits was measured using the 176 
generalized R2 values (defined for nonlinear fit as 1 - RSS/SSM, where RSS is the 177 
residual sum of squares and SSM is the sum of squares of the sample mean).  The best-178 
approximating model was selected as that which minimized Akaike's Information 179 
Criterion (AICc, in this case the Power Michaelis Menten (2) + offset function was 180 
selected).  The selected model was then used to estimate the total sample richness S as the 181 
asymptotic value of the function at x = Inf (final column shows the estimates for all 182 
candidate functions).  Required sequencing effort (not shown) was predicted by inverting 183 
the selected function for x such that the value of the function was 0.9 times the estimated 184 
sample richness.  Note that for certain 3 and 4 -parameter functions the R2 values are 185 
extremely high and differ only in the fourth or fifth decimal places (R2>0.999) yet the 186 
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estimated richnesses can differ substantially (cf. Power Michaelis Menten (2) vs. Weibull 187 
Cumulative).  For such functions, the AICc values also tend to differ by relatively large 188 
amounts, such that a model averaging strategy based on AIC weights would differ little 189 
from simply choosing the lowest-AICc model (Burnham and Anderson, 2002), and any 190 
assessment of model selection uncertainty based on AIC-weights is unlikely to predict the 191 
level of selection uncertainty observed in simulations (see Table S3).  This latter is likely 192 
the result of the neglected error correlation in the functional fits.  193 
 194 
Table S3.  Simulation-based tests of estimator performance, considering estimates of both 195 
the total species richness (S) and the required sequencing effort (RSE) i.e. number of tags 196 
required to observe a given fraction of the total richness in a new sample (e.g. 0.7S means 197 
70% of the total richness).  For each of four parametric distributions (Poisson log-normal, 198 
Poisson log-student, Poisson inverse-Gaussian, and Sichel) an ensemble of 80 sets of 199 
community abundances were randomly sampled from the parametric distribution; species 200 
data were then simulated by sampling from multinomial distributions with probabilities 201 
defined by the community abundances for each ensemble member.  Distribution 202 
parameter values, including the total species richness, were also varied between ensemble 203 
members by sampling from the posterior distributions fitted to the observed data.  204 
Estimator performance is summarized by the %BIAS (ensemble average of estimate 205 
minus true value) and %RMSE (root-mean-square error), normalizing by the ensemble 206 
mean of the true value in both cases.  Non-parametric species richness estimators 207 
included the Chao1 lower bound estimate (Chao, 1984), the coverage-based estimator for 208 
highly heterogeneous communities (ACE-1; Chao & Lee, 1992; Chao et al., 2000) and 209 
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the bias-corrected Chao estimate iChao (Chiu et al., 2014).  The ACE-1 estimator was 210 
tested using two values of the cut-off count k to define "rare" species: the default value k 211 
= 10 and a larger value k = 100 as recommended by Chao & Shen (2012) for microbial 212 
communities (note, the estimated CV of the "rare" species was < 0.8 for k = 10 but > 0.8 213 
for k = 100, where 0.8 is a threshold above which Chao & Shen (2012) recommend ACE-214 
1 in preference to ACE).  RSE was estimated for each nonparametric estimator by 215 
inverted the expression in Table 1 of Chao et al. (2014) and substituting the 216 
corresponding estimates of the zero-count frequency f0 = (S - Sobs) (using ACE-1 this is 217 
identical to the method proposed in Chao & Shen (2012) based on Shen et al. (2003) 218 
except for a negligible bias correction).  Similar results (not shown) were obtained by 219 
substituting into equation (12) in Chao et al. (2009) (see also Colwell et al., 2012, 220 
equation 11).  A semi-parametric AICc-selected estimator SP (AICc) was constructed by 221 
fitting 12 different functions to the collector's curves (rarefied species richness vs. 222 
sampling effort) and choosing the function with the lowest Akaike's Information 223 
Criterion (AICc).  Total richness was then estimated as the asymptotic value of the 224 
selected function (see Table S2), and RSE was estimated by inverting the selected 225 
function for sampling effort given the required fraction of asymptotic richness.  226 
Nonparametric estimates were calculated using the R package SPECIES (Wang, 2011) 227 
and semiparametric functions were fitted using the nonlinear least squares function "nls" 228 
in R (R Core Team, 2013). 229 
 230 
 231 
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Table S1. 

Distribution
No. fitted 

parameters p Sample min(-log lik) AICc DIC Ŝmax. lik.

Log-normal 3 Surface 869.4 1744.8 1744.8 2449

Log-student 4 Surface 840.6 1689.1 1689.3 1869

Inverse 
Gaussian

3 Surface 836.9 1679.8 1679.9 1644

Sichel 4 Surface 834.7 1677.4 1677.3 1618

Sichel 4 Surface* [821.3] [1650.7] [1651] 1619

Log-normal 3 Bottom 1276.9 2559.8 2559.8 6843

Log-student 4 Bottom 1198.0 2404.1 2404.1 5850

Inverse 
Gaussian

3 Bottom 1230.0 2466.0 2466.0 5352

Sichel 4 Bottom 1176.9 2361.8 2362.1 5118



Ŝposterior mean Ŝ50% Ŝ2.5% Ŝ97.5%

2501 2488 2238 2819

1897 1891 1797 2027

1644 1643 1594 1702

1615 1614 1568 1669

1616 1615 1568 1671

6856 6850 6544 7199

5867 5863 5701 6055

5353 5352 5250 5463

5109 5108 5027 5196



Table S2.

A

Function
Formula          

(x = #tags-1)

Number 
of 

Parameter
s

R2 AICc

Michaelis Menten (ax)/(b+x)+1 2 0.98414 4976
Negative Exponential a(1-exp(-bx))+1 2 0.93681 5670

Power Michaelis Menten (1) axc/(b+xc)+1 3 0.99977 2856
Power Michaelis Menten (2) axc/(b+x)c+1 3 0.99995 2086
Power Negative Exponential a(1-exp(-bx))c+1 3 0.99947 3274

Weibull Cumulative a(1-exp(-bx)c) 3 0.99992 2323
Michaelis Menten + offset (ax)/(b+x)+1+c 3 0.99680 4174

Negative Exponential + offset a(1-exp(-bx))+1+c 3 0.98639 4901
Power Michaelis Menten (1) + offset axc/(b+xc)+1+d 4 0.99988 2545
Power Michaelis Menten (2) + offset axc/(b+x)c+1+d 4 0.99995 2088

Power Negative Exponential
a(1-exp(-

bx))c+1+d
4 0.99957 3169

Weibull Cumulative + offset a(1-exp(-bx)c)+d 4 0.99992 2316

B

Function Formula

Number 
of 

Parameter
s

R2 AICc

Michaelis Menten (ax)/(b+x)+1 2 0.98873 6899

Negative Exponential a(1-exp(-bx))+1 2 0.95179 7737

Power Michaelis Menten (1) axc/(b+xc)+1 3 0.99986 4380

Power Michaelis Menten (2) axc/(b+x)c+1 3 0.99999 2897

Power Negative Exponential a(1-exp(-bx))c+1 3 0.99959 4996

Weibull Cumulative a(1-exp(-bx)c) 3 0.99999 3062

Michaelis Menten + offset (ax)/(b+x)+1+c 3 0.99758 6014

Negative Exponential + offset a(1-exp(-bx))+1+c 3
0.98893 6891

Power Michaelis Menten (1) + offset axc/(b+xc)+1+d 4
0.99992 4081

Power Michaelis Menten (2) + offset axc/(b+x)c+1+d 4
0.99999 2566

Power Negative Exponential
a(1-exp(-

bx))c+1+d
4

0.99974 4729

Weibull Cumulative + offset a(1-exp(-bx)c)+d 4 0.99999 2924



Ŝ

1520
1317
1927
1679
1459
1568
1590
1373
1864
1679
1467
1565

Ŝ

4947
4224

6122

5425

4666

4981
5157

4397

5971

5435

4702

4996



Table S3.

Estimator Sample S(lognormal) RSE(0.7S, lognormal)

%BIAS %RMSE %BIAS %RMSE

Chao Surface -25.8 26.8 -86.2 116.1

ACE-1(k=10) Surface -24.5 25.4 -85.5 114.4

ACE-
1(k=100)

Surface 0.9 4.3 -21.0 54.4

iChao Surface -23.4 24.5 -84.8 114.1

SP(AICc) Surface -1.0 4.5 -6.2 33.3

Chao Bottom -14.9 15.1 -70.1 71.9

ACE-1 Bottom -14.2 14.4 -70.8 72.4

ACE-
1(k=100)

Bottom 7.5 8.1 54.1 55.2

iChao Bottom -12.7 12.9 -71.1 72.5

SP(AICc) Bottom 3.7 4.1 23.3 27.5



S(logstudent) RSE(0.8S, logstudent) S(inverse Gaussian) RSE(0.9S, inve

%BIAS %RMSE %BIAS %RMSE %BIAS %RMSE %BIAS

-22.1 22.9 -76.2 90.1 -5.7 6.6 -36.6

-18.9 19.4 -71.3 84.0 -3.5 4.2 -26.9

50.2 60.0 95.2 113.4 40.6 45.9 283.0

-19.1 19.9 -72.1 85.9 -3.3 4.3 -25.9

-2.4 11.6 -2.8 70.3 1.4 6.8 81.6

-24.3 24.8 -73.9 81.3 -5.9 6.0 -33.5

-18.8 19.0 -66.2 72.6 -3.7 3.8 -23.8

93.8 101.5 167.0 178.3 43.5 44.3 306.2

-20.6 21.0 -69.0 76.4 -3.2 3.5 -21.6

3.6 10.0 31.3 60.8 1.3 7.1 51.6



erse Gaussian) S(Sichel) RSE(0.9S, Sichel)

%RMSE %BIAS %RMSE %BIAS %RMSE

49.6 -6.3 7.8 -38.3 53.9

36.6 -3.7 4.9 -27.5 40.3

313.4 53.2 60.5 323.0 361.5

39.2 -3.6 5.5 -27.5 43.8

448.9 4.1 12.2 237.9 921.5

34.9 -7.4 7.9 -38.5 44.1

25.0 -3.6 3.9 -24.7 28.5

309.8 76.0 81.2 396.9 416.9

23.3 -4.2 4.8 -27.2 33.0

206.8 3.1 12.5 138.5 391.6


