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SUPPLEMENTARY APPENDIX

1 Biochemical kinetic models, initial conditions and priors5

Our model consists of two reactions for each repair mechanism, giving a maximum total of six reac-
tions for each data set:
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where x d
i , for i ∈ {1, 2, 3, 4} is the state of a double strand break (DSB) for dataset d . K d

i and E d
i

for i ∈ {1, 2, 3} are the parameter and recruitment protein for dataset d and repair mechanism i . Each
model d has three conservation equations15
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where C d
i is the total amount of recruitment protein for dataset d and repair mechanism i . If for

any mechanism, the first protein to bind is repressed, then we remove all reactions corresponding to
that mechanism. If a protein downstream of the first protein to bind is repressed, then we remove the20

reaction corresponding to end ligation for that mechanism. When the reactions are taken to be deter-
ministic, the wild type system can be described by the following set of nonlinear ordinary differential
equations.
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This system of equations can be solved numerically, however we are interested in making pre-
dictions for single cell data and so we solve the stochastic model. To determine the most probable
set of parameters to give rise to the experimental data - termed the posterior distribution - we apply
approximate Bayesian computation sequential Monte Carlo.30

2 Approximate Bayesian computation

In the Bayesian framework, we are interested in the posterior distribution πε(θ ,x |y ), where θ is a
vector of parameters and x |y is the simulated data conditioned on the experimental data. To obtain
samples from the posterior distribution we must condition on the data y and this is done via an
indicator function IAy ,ε (x ). We then have

πε(θ ,x |y ) =
π(θ ) f (x |θ )IAy ,ε (x )

∫

Ay ,ε×Θ
π(θ ) f (x |θ )d x dθ

,

whereAy ,ε = {x ∈D :ρ(x , y )≤ ε},ρ :D×D→R+ is a distance function comparing the simulated data
to the observed data and πε is an approximation to the true posterior distribution. This approxima-
tion is obtained via an algorithm that repetitively samples from the parameter space until ε is small
such that the resulting approximate posterior, πε, is close to the true posterior. There are different35

algorithms that can be applied to obtain this approximation. We use the method of sequential im-
portance sampling or more specifically ABC SMC, which is implemented in the software ABC-SysBio.
For further details on the algorithms available in ABC-SysBio see [1–4].
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3 The hierarchical model

We have modified the software ABC-SysBio to include an option to perform ABC SMC on a hier-40

archical model structure. In our hierarchical framework, we wish to obtain K d
i for three processes

i ∈ {1, 2, 3} and eight datasets d ∈ {1, ..., 8}. These parameters are in some sense nuisance variables,
with “true parameters" (or parameters of interest) µ1−5. The µ1−4 represent the means of four lognor-
mal distributions and µ5 the variance. The K d

i are drawn from these population level distributions.
In this case, the joint density can be written45

p (y , K ,µ) = p (y |K ,µ)p (K |µ)p (µ) (14)

where Bayes rule becomes

p (µ|y ) =
p (µ)

∫

p (y |K ,µ)p (K |µ)
p (y )

. (15)

This is the posterior of the hyper parameters given the data, y . The integral indicates that we sum over
(marginalise) the K values. We can include this into ABC by simulating data x ∗ using the following
scheme:

µ∼U (α,β )

K ∼ LN (µ,σ)

x ∗ ∼ f (x |K )

In our study, f (x |K ) is the data generating model, and is the solution to the reaction systems pre-50

sented in section 1. We perturb only the µ but the distance is calculated on the simulation using the
sampled K values.

The model prior distributions for the hyper parameters were fixed across all datasets and had the
following limits:55

Hierarchical priors: µ1 ∼U (1, 4), µ2 ∼U (−4,−1), µ3 ∼U (−2, 4), µ4 ∼U (−4,−1), µ5 ∼U (0.05, 0.9).

The total amount of protein and initial conditions were set according to the data.
60

constant: C1 = 700, C2 = 700, C3 = 700, C4 = 2800, C5 = 2800, C6 = 1906, C7 = 1814 and C8 = 1128.7.

Recruitment protein initial conditions: E 1
1 (0) = 700, E 1

2 (0) = 700, E 1
3 (0) = 700, E 2

1 (0) = 700, E 2
2 (0) = 700,

E 2
3 (0) = 700, E 3

1 (0) = 700, E 3
2 (0) = 700, E 3

3 (0) = 700, E 4
1 (0) = 2800, E 4

2 (0) = 2800, E 4
3 (0) = 2800, E 5

2 (0) =
2800, E 5

3 (0) = 2800, E 6
2 (0) = 1906, E 6

3 (0) = 1906, E 7
2 (0) = 1814, E 8

1 (0) = 1128.7, E 8
2 (0) = 1128.7.65

State vector initial conditions: x 1
1 (0) = 700, x 1

2 (0) = 0, x 1
3 (0) = 0, x 1

4 (0) = 0, x 2
1 (0) = 700, x 2

2 (0) = 0, x 2
3 (0) =

0, x 2
4 (0) = 0, x 3

1 (0) = 700, x 3
2 (0) = 0, x 3

3 (0) = 0, x 3
4 (0) = 0, x 4

1 (0) = 2800, x 4
2 (0) = 0, x 4

3 (0) = 0, x 4
4 (0) = 0,

x 5
1 (0) = 2800, x 5

2 (0) = 0, x 5
3 (0) = 0, x 5

4 (0) = 0, x 6
1 (0) = 1906, x 6

2 (0) = 0, x 6
3 (0) = 0, x 6

4 (0) = 0, x 7
1 (0) = 1814,

x 7
2 (0) = 0, x 7

3 (0) = 0, x 7
4 (0) = 0, x 8

1 (0) = 1128.7, x 8
2 (0) = 0, x 8

3 (0) = 0, x 8
4 (0) = 0.70
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4 The cumulative number of DSBs

Proportions of DSBs repaired by each mechanism are estimated by calculating the cumulative num-
ber of DSBs that enter each individual pathway with the density weighted integral,
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d
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Equation 16 is the product of the change in total DSBs and densityσj (t ), j ∈ {1, 2, 3} of DSBs in repair
mechanism j integrated over time. This contribution to the overall repair can be used to predict the75

proportion of DSBs Pj∀j ∈R repaired by each mechanism:

Pj =G j (T )/X (T ). (18)

Where G j (T ) is the total amount of DSBs repaired by mechanism j at time T .
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Figure S1: The interquartile range for all the parameters in each dataset. Red (fast repair), blue (slow
repair) and green (intermediate repair).
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Figure S2: Posterior of the latent parameters K d
i .
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