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Content: 

Supplementary Note 1 

This section provides information about Optical Flow and the methods compared in the article. We 

introduce the methods’ basics, highlight their key features and limitations as far as they are 

known/available. Tables in this section summarize the most important variables and give an overview 

over the methods. 

Table 1: The most important variables and their meaning used throughout this document. 

Table 2: Method overview. 

This note also provides details about simulated parameters concerning microscopic and dynamic 

properties. 

Supplementary Note 2 

This note provides additional information about correlation on circular variables, the correlation 

model and the smoothness parameter. 

Supplementary Figures 

Figure S1: Simulated data and example response of motion estimated by the investigated methods. 

Figure S2: Angle definition on a linear scale. 

Figure S3: Interpretation of the smoothness parameter by the Whittle-Màtern model. 

Figure S4: Representative flow fields and magnifications.   
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Supplementary Note 1 

Optical Flow algorithms estimate the flow field between two images such that the displacement 

meets 𝐼(𝑥 + 𝑢, 𝑦 + 𝑣, 𝑡 + Δ𝑡) = 𝐼(𝑥, 𝑦, 𝑡) where 𝐼(𝑥, 𝑦, 𝑡) is the brightness pattern at time 𝑡  and 

�⃗� (𝑥, 𝑦) = [𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)]𝑇 is the flow field between a frame at time 𝑡 and a frame at time 𝑡 + Δ𝑡. 

The original formulation of Optical Flow by Horn and Schunck (HS) (1) and Lucas and Kanade (LK) (2) 

was continuously further developed to seek greater accuracy (e.g. 3, 4). However, many modern 

methods are still based on the original formulation for which two main assumptions have to be 

made. First, it is assumed that brightness stays constant across a pair of images and only the 

brightness distribution changes due to the underlying motion. Second, one assumes piecewise 

smoothness of the underlying flow field. The brightness constancy assumption is a strict constraint 

and can often not be met in real applications (e.g. due to illumination changes, spot appearance and 

disappearance or noise). This issue is circumvented by solving the optimization problem in an 

iterative pyramidal (coarse-to-fine) scheme. Input images are down-sampled and the flow field is 

estimated on a coarse level. At the next finer level, the computed flow field is used to warp the 

second image towards the first one; the flow increment between the first image and the warped 

second image is calculated to refine the flow field. Due to down-sampling, images are blurred and 

small violations to the brightness constancy constraint become less important.  

Table 1 lists the most important variables used throughout this document. 

Variable Meaning 

𝐼1/2 Intensity distribution of image 1 and 2, respectively 

�⃗� = (𝑢, 𝑣)𝑇 Flow field with horizontal component 𝑢 and vertical component 𝑣 

𝜆 Regularization parameter 

𝑥 = (𝑥, 𝑦)𝑇 Spatial coordinate 

𝜌(⋅) Penalty function 

∇= (
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
)
𝑇

 
(Two-dimensional) Nabla operator 

(⋅,⋅)𝑇 Transposed vector/matrix 

Table 3: The most important variables and their meaning used throughout this document. 

 

 



 

Method ID Key features Reference 

1 HS-based, coarse-to-fine scheme, intermediate median filtering, motion 

discontinuity preserving, generalized Charbonnier penalty 

(3) 

2 LK-based, no coarse-to-fine scheme (5) 

3a PIV (region-based matching), window size 16x16 (6) 

3b PIV (region-based matching), window size 8x8 (6) 

3c PIV (region-based matching), window size 4x4 (6) 

4 Phase-based, neural network solver for component constraints (7) 

5 SIFT-based, motion discontinuity preserving, coarse-to-fine scheme (8) 

Table 4: Method overview. The five methods under considerations are listed with their 

corresponding method ID, references to publications and key features. 

 

Method 1  

Introduction 

Sun et al. (3) give an extensive review of current Optical Flow methods and explore main principles 

behind them. Using a baseline-method, current practices are systematically varied to probe their 

influence on the method’s accuracy. The key point of their proposed approach is that median 

filtering of interim flow fields is needed during the optimization process. The penalty function in the 

objective function is chosen to be a slightly non-convex generalized Charbonnier function.  

Fundamental Functionality  

The authors apply the Rudin-Osher-Fatemi (9) structure texture decomposition against illumination 

changes to the input images. Optical Flow is estimated in a coarse-to-fine manner. The objective 

function to be minimized is written as 

 𝐸(�⃗� ) =∑𝜌(𝐼1(𝑥 + �⃗� ) − 𝐼2(𝑥 )) + 𝜆 𝜌(∇�⃗� )

𝑥 

 (1) 

Where 𝜌(𝑥) = (𝑥2 + 𝜖2)0.45, with 𝜖 = 0.001, is the slightly non-convex generalized Charbonnier 

penalty function for both the data and the smoothness term. Based on the authors’ comparative 

analysis, this penalty function provides the highest accuracy in their training set. The slight non-

convexity of the penalty function guarantees robustness to outliers. Spatial derivatives are calculated 



using a spline-based implementation of bicubic interpolation with a 5-point filter which is shown to 

give the lowest energy solutions. A key point in Optical Flow estimation is found by the authors to 

consist in median filtering of intermediate flow fields with a 5x5 filter size in order to improve 

accuracy significantly. However, median filtering can result in over-smoothing when a neighborhood 

is centered on a small or thin structure and the surrounding area dominates. Formulating the median 

filtering practice explicitly as an objective function allows to improve the objective function by 

introducing a spatial weight to the filtering. The weight is defined according to each pixel’s spatial 

distance, their brightness values and the unknown flow field (by using the latest estimate) explicitly. 

Using a Sobel edge detector, flow boundaries are obtained and smoothing across boundaries is 

reduced. 

Conclusion/Limitations  

The authors develop their algorithm based on a combination of current practices in Optical Flow 

estimation. Their comparative analysis allows them to consider accuracy ameliorating principles – 

median filtering as a key point. The explicit formulation of the heuristic filtering as an objective 

function achieves further improvement in filtering by detecting image and flow boundaries. The 

authors state that their algorithm produces larger errors on occlusion regions and that small, fast 

moving objects cause problems. 

 

Method 2 

Introduction 

An early approach suggested by Lucas and Kanade (2) is further developed in order to overcome the 

so-called aperture problem of Optical Flow. Their algorithm is simple and very fast in computation of 

dense flow fields and finds application in the real-time analysis of lip motion and lip segmentation.  

Fundamental Functionality  

The original formulation of LK (2), is not suitable in regions of badly distributed structures, i.e. in 

regions where image gradients are linearly dependent. 

 
𝐸(�⃗� ) =∑(

𝜕𝐼

𝜕𝑡
+ �⃗� ∇𝐼)

2

𝑥 

 
(2) 

This is called the aperture problem. To overcome this issue, the authors apply an equation in which 

the normal flow at a single point is given by 



 
�⃗� 𝑛 = −

∇𝐼

|∇𝐼|2
𝜕𝐼

𝜕𝑡
 

(3) 

And thus line flow can be computed by averaging the normal flow over a region. Equations (2) and 

(3) perform well for point motion and line motion respectively. A weighted combination of both 

resulting flow vectors yields a reliable estimate of linear symmetry. The weighting between them 

consists in a factor depicting the amount of linear symmetry derived by an eigenvalue analysis of the 

two-dimensional structure tensor. However, the resulting system is ill-posed for the case of linear 

symmetry. Applying a Tikhonov regularization (adding a small positive value in order to avoid the 

“divide by zero” problem) resolves this issue, but simultaneously introduces a bias for smaller 

solutions by artificially raising the error minimized. 

Conclusion/Limitations  

The authors present a way to overcome the aperture problem in Optical Flow estimation by 

introducing the structure tensor to the LK formulation. The need for a fast implementation keeps the 

algorithm simple and a coarse-to-fine estimation is renounced, which causes problems in case of 

large displacements. The obligatory Tikhonov regularization favors smaller solutions, introducing a 

bias. 

 

Method 3 

Introduction 

Particle Image Velocimetry (PIV) uses pattern matching in corresponding sub-regions of two input 

images in order to quantitatively measure fluid velocity vectors at a large number of points 

simultaneously (10).  

Fundamental Functionality  

Two input images are divided into smaller sub-regions of given size. Each sub-region in the first image 

is compared to the corresponding sub-region in the second image by calculating the cross-correlation 

between them. The position of the correlation peak corresponds to the vector by which the pattern 

in the sub-region in image 1 is displaced in respect to image 2. The image is scanned until a 

displacement vector is found for every sub-region. Overlapping sub-regions produce a dense and 

usually smooth flow field. The accuracy of estimated flow fields is enhanced by scanning the image 

iteratively with sub-regions of decreasing size until the desired window size is reached. The 

estimation of each iteration is used in the following to refine the flow field. Possibly spurious vectors 



are filtered if the signal-to-noise ratio in the correlation peak or the correlation peak height is too 

small to be reliable, by a median filter and by a global filter, which removes significantly larger or 

smaller vectors than the majority.  

Window sizes of 16x16 (method 3a) of 8x8 (method 3b) and of 4x4 (method 3c) pixels are used. 

Conclusion/Limitations  

Images are divided into sub-regions and scanned to construct a flow field. Overlapping regions and 

iterative refinement allows to construct a dense flow field. Overlapping and filtering usually produces 

reasonably smooth fields despite an explicit smoothness constraint that is not taken into 

consideration. In case of noisy data, exact determination of the correlation peak is difficult and might 

lead to erroneous results. It is assumed that a pattern within the window is displaced from image 1 

to 2, but changes inside the interrogation window are not considered. 

 

Method 4 

Introduction 

The method is a phase-based approach to estimate flow fields using spatial filtering. Instead of 

contours of constant amplitude, contours of constant phase are tracked. Several component 

velocities are estimated using quadrature Gabor filter pairs and the component velocities are 

connected to a constraint of the full velocity. The full velocity, which is consistent with all constraints, 

is calculated by a recurrent neural network. 

Fundamental Functionality  

The convolution of an input image with a 2D Gabor filter 

 𝐺(𝑥 , 𝑓 ) = exp(−
|𝑥 |2

𝜎2
)exp(2𝜋𝑖𝑥 𝑓 ) (4) 

with peak frequency 𝑓 = (𝑓𝑥, 𝑓𝑦)
𝑇

 and the width of the Gaussian 𝜎 results in a complex-valued filter 

response. The phase 𝜙 of the filter response can be used to estimate the Optical Flow under the 

assumption that constant phase surfaces evolve according to the flow field (11). The phase gradient 

constraint is an analogue to the gradient constancy assumption in differential Optical Flow methods 

(12): 

 ∇𝜙 ⋅ �⃗� +
𝜕𝜙

𝜕𝑡
= 0 (5) 



Due to the aperture problem, only the normal flow component can be computed which are referred 

to as component velocities. The temporal linearity of the phase is used as a confidence measure. It is 

expected that an unreliable phase information is unstable over time and therefore does not 

propagate linearly leading to rejection of non-linearly evolving phase information. A component 

velocity is calculated for a set of 11 filter pairs and the full velocity can be determined by the 

remaining component velocities in one point. The full velocity is constrained by every component 

velocity to lie on a “constraint line” in the velocity space. A recurrent neural network performs the 

optimization process and finds the full velocity based on several constraints. 

Conclusion/Limitations  

At every spatial location, several component velocities are calculated using constant phase contours. 

Nonlinearity in the phase propagation serves as reliability measure and the full velocity can be 

determined by several constraints. Phase-based methods are more robust to illumination changes as 

well as deviations from pure translation than amplitude-based methods (11). However, in the 

framework of two-image optical flow estimation, the linearity measure breaks down and no filtering 

of component velocities can occur compromising accuracy of the method. 

 

Method 5 

Introduction 

The algorithm uses densely sampled SIFT descriptors (13, 14) and matches them between two 

images. The method preserves spatial discontinuities while the objective function is subject to 

decoupled smoothness terms. The images do not necessarily have to originate from the same image 

sequence, but can consist of two images of the same object category. 

Fundamental Functionality  

SIFT descriptors are extracted at every pixel of the input images. In order to match SIFT descriptors 

between images, the following objective function is minimized (the notation | ⋅ | defines the 𝐿1-

norm): 



 

𝐸(�⃗� ) =∑min(|𝑠1(𝑥 ) − 𝑠2(𝑥 + �⃗� )|, 𝑡) +

𝑥 

∑𝜂(|𝑢(𝑥 )| + |𝑣(𝑥 )|)

𝑥 

+ ∑ min(𝛼|𝑢(𝑥 ) − 𝑢(𝑥 ′)|, 𝑑) 

𝑥 ,𝑥 ′∈𝑁

+ ∑ min(𝛼|𝑣(𝑥 ) − 𝑣(𝑥 ′)|, 𝑑) 

𝑥 ,𝑥 ′∈𝑁

 

(6) 

where 𝑠𝑖(𝑥 ) is the SIFT descriptor extracted at 𝑥  in image 𝑖, 𝑁 is a 4x4 neighborhood, 𝜂 and 𝛼 are 

fixed regularization parameters and 𝑑 and 𝑡 are threshold values. The objective function consists of 

the data term, in which the SIFT descriptors are constrained to be matched with the displacement 

vector and the 𝐿1-norm accounts for outliers and motion discontinuities. The second term consists of 

a penalty on the vector’s magnitude. Note that no constraint is given for the length of vectors (they 

could span a range as large as the image itself), but the smallest possible solution is favored. The 

third and fourth term are smoothness terms. The threshold regularization above preserves motion 

discontinuities. Vector components 𝑢  and 𝑣  are restricted to be integers in the authors’ 

implementation. The objective function is directly optimized by a Belief Propagation (15) in a coarse-

to-fine matching. 

Conclusion/Limitations  

The method does not make use of typical assumptions in Optical Flow estimations as brightness 

constancy and piecewise smoothness of the flow field. Instead, dense SIFT descriptors are used to 

match two images. No constraints exist in the magnitude of displacements and therefore any pixel in 

the first image can be matched to any other pixel in the second image. For the use of biological data, 

sampled at short time lags these large displacements may be spurious. However, favoring small 

displacements partially prevents this issue. The use of threshold regularization preserves motion 

discontinuities. 

 

Simulated parameters  

Microscopic properties: We examine the accuracy of different algorithms based on the variation of 

the labeling density and the Signal-to-Noise ratio (SNR). Note that emitters are not placed near the 

border in order to avoid boundary effects. The imaging process can be modeled by the convolution 

of the emission with the point spread function (PSF) of the microscopic setup, which is assumed to be 

space-invariant. Emitters are added sequentially to the image and each of the emitter’s spatial 

contribution to the pixel intensity is described by the integrated form of a symmetric 2D Gaussian 



function representing the PSF. The intensity value at the integer pixel position (𝑥, 𝑦)𝑇 is expressed as 

(16). 

 𝜈(𝑥, 𝑦|𝑥, �̂�, 𝜎) = 𝐸𝑥𝐸𝑦, (7) 

 

𝐸𝑥(𝑥, 𝑦|𝑥, �̂�, 𝜎) =
1

2
erf (

𝑥 − 𝑥 +
1

2

√2𝜎
) −

1

2
erf (

𝑥 − 𝑥 −
1

2

√2𝜎
) , 

(8) 

 

𝐸𝑦(𝑥, 𝑦|𝑥, �̂�, 𝜎) =
1

2
erf(

𝑦 − �̂� +
1

2

√2𝜎
) −

1

2
erf (

𝑦 − �̂� −
1

2

√2𝜎
), 

(9) 

where (𝑥, �̂�)𝑇 defines the sub-pixel coordinates within a circle of radius 3𝜎 and center (𝑥, 𝑦)𝑇 and 

𝜎 = 0.8 𝑝𝑥 is the standard deviation of the 2D Gaussian function approximating the PSF.  

As we are modeling a photon counting process, the image data is subject to Poisson noise. We define 

the SNR by 𝑆𝑁𝑅 = 𝐼𝑚𝑎𝑥/𝐼0  with 𝐼𝑚𝑎𝑥  denoting the peak (particle) intensity and 𝐼0  the mean 

background intensity. The SNR is varied from ∞ (no noise) to 30. 

 

Dynamic properties: Chromatin within interphase is organized into regions of functional domains. 

Some of these domains might undergo coherent motion. The accuracy of OF methods can be 

estimated by their capability to distinguish between these domains. Domains of particles undergoing 

diffusion in the same direction and magnitude were simulated by placing random disks of 

appropriate diameter in the image plane. Particles placed randomly in the same domain are forced to 

undergo the same displacement. Therefore, we modeled different numbers of coherently moving 

domains, ranging from 1 up to 50, including the number of chromosomes in human cells. 

For a two-frame OF estimation, we vary the distance by which each emitter travels per frame. 

Motion of emitters in every domain is independently modeled as Brownian motion, i.e. drawn from a 

normal distribution with zero mean and variance 𝜎2 = 4𝐷𝜏 for the two-dimensional case (17) where 

𝐷 is the diffusion coefficient and 𝜏 = 0.2 𝑠 is the acquisition time between subsequent images. The 

diffusion coefficient is empirically varied from 0.1 to 4 px2/frame corresponding to emitters moving 

about 0.6 pixels up to 4 pixels per frame. These values correlate well with previously found dynamics 

of chromatin under various conditions (18, 19). The simulated motion is the ground-truth to which 

estimated flow fields are compared and quantitatively evaluated. 

 

 



Supplementary Note 2 

Correlation on circular variables: To study the potential extent of coherent motion, we calculate the 

spatial autocorrelation of sets of angles 𝛾(𝑥, 𝑦) of a given flow field �⃗� (𝑟 ). Angles are calculated by 

the arctangent of the y- and x-component of a given vector 

 

𝛾 =  

{
  
 

  
 

arctan(v/u) 𝑖𝑓 𝑢 ≥ 0,

arctan(v/u) + 𝜋 𝑖𝑓 𝑢 < 0, 𝑣 ≥ 0,

arctan(𝑣/𝑢) − 𝜋 𝑖𝑓 𝑢 < 0, 𝑣 < 0,
0 𝑖𝑓 𝑢 > 0, 𝑣 = 0,
π 𝑖𝑓 𝑢 < 0, 𝑣 = 0,

undefined 𝑖𝑓 𝑢 = 0, 𝑣 = 0.

, (10) 

Angles calculated by equation Erreur ! Source du renvoi introuvable. are defined on the linear 

interval (−𝜋, 𝜋), where the positive x-axis is arbitrarily chosen as a reference. Note that the 

definition of angles on a linear interval introduces errors in the spatial correlation between certain 

angles. In particular, consider two vectors �⃗� 1 and �⃗� 2 of unit length pointing approximately in negative 

x-direction, where �⃗� 1  has a small, positive y-component and �⃗� 2  has a small, but negative y-

component (Supplementary FigureS2). Following equation Erreur ! Source du renvoi introuvable., 

the angles of the two vectors �⃗� 1  and �⃗� 2  will be 𝛾1 = 𝜋 − 𝜖  and 𝛾2 = −𝜋 + 𝜖 = −𝛾1  and their 

difference is |𝛾1 − 𝛾2| = 2𝜋 − 2𝜖, where 𝜖 is small, due to the branch cut along the negative x-axis. 

The angle difference between these two vectors is large, however the vectors point approximately in 

the same direction. To overcome this issue, the true angle values are expressed in the complex plane 

using Euler’s formula eiγ = cos𝛾 + 𝑖 sin 𝛾 , where 𝑖 = √−1 . In this description, the difference 

between the angles reduces to |𝛾1 − 𝛾2| = 2𝑖𝜖2, where 𝜖1 and 𝜖2 are small. 

Correlation model: A recent study has investigated the correlated motion of chromatin and found 

empirically that the directional correlation follows a power law with exponential cut off (18): 

 
𝑟(𝜌) ∝  𝜌𝑎 exp (−

𝜌

𝜌𝑐
). (11) 

where 𝜌𝑐 is the correlation length and 𝑎 is a scaling parameter. For increasing spatial distance 

between two points, the correlation decreases and tends to zero for 𝜌 → ∞. Extrapolation to zero 

space lag fails in this model as 

 lim
𝜌→0

𝑟(𝜌) = {
0 if 𝑎 > 0
∞ if 𝑎 < 0

 . (12) 

 

We therefore apply the Whittle-Màtern (WM) model, which ranges from a simple exponential decay 

(𝜈 = 1/2) to a Gaussian (𝜈 → ∞) and can therefore be seen as a generalization of several correlation 



models. For 𝜈 ~ 𝑚 + 1/2, 𝑚 ∈ ℕ and positive, the WM model takes the form of an exponential 

decay over a polynomial of order 𝑚 (20, 21), in particular: 

 𝜈 =
1

2
, 𝑟(𝜌) ∝ exp (−

𝜌

𝜌𝑐
) (134) 

 𝜈 =
3

2
, 𝑟(𝜌) ∝ [

𝜌

𝜌𝑐
+ 1] ⋅ exp (−

𝜌

𝜌𝑐
) (145) 

 𝜈 =
5

2
, 𝑟(𝜌) ∝ [(

𝜌

𝜌𝑐
)
2

+ 3
𝜌

𝜌𝑐
+ 3] ⋅ exp (−

𝜌

𝜌𝑐
) (156) 

 
𝜈 → ∞, 𝑟(𝜌) ∝ exp(−

𝜌2

𝜌𝑐
2) 

(76) 

 

Smoothness parameter: The smoothness parameter allows for considerable flexibility in describing 

the empirical correlation because it covers a wide range of functions. A spectator regarding several 

two-dimensional scalar fields visually might argue that one field is smoother than another. 

Featureless areas are considered as smooth while abrupt changes of values, i.e. the boundary of an 

object in an image, are called rough. A rough change of values in spatial proximity is related to the 

spatial gradient. Large values in the gradient field denote large changes between adjacent variables 

and transitions between these are rough. The smoothness parameter is therefore small. An 

illustrative example of the behavior of the smoothness parameter 𝜈 in respect to smooth and rough 

fields is given in (Figure S3). An U2OS cell nucleus expressing H2B-GFP is analyzed by the Horn-

Schunck based and SIFT-based method and their scalar field depicting the local direction of the flow 

field is color-coded in (Figure S3a). The horizontal gradient is shown exemplary in (Figure S3b), color 

coded from blue to red corresponding to a change in angle from –𝜋 to 𝜋. For the HS-based method, 

distinct lines can be seen indicating boundaries between coherently moving regions of chromatin 

(Figure S3b). The values of the gradient fields are presented as histograms for the horizontal gradient 

(red) and the vertical gradient (green) in (Figure S3c). The characteristic peak around zero indicates 

that most of the fields correspond to smooth, i.e. spatially slowly varying motion. However, large 

changes in direction increase among the flow fields from top to bottom and therefore the overall 

variance 𝜎2 of the gradient fields increases accordingly. The rise in the variance of gradient fields, i.e. 

larger differences in directions of nearby pixels and therefore sharp and frequent boundaries cause a 

low smoothness parameter 𝜈 as calculated from the regression of the fields’ correlation function. 



Supplementary Figures 

 

Figure S1: Simulated data and example response of motion estimated by the investigated methods. 

Simulated data are 128x128 pixels and emitters are randomly placed in the plane except at the 

border. a-c) Low (0.02 𝑝𝑥−1), medium (0.25 𝑝𝑥−1) and high (2.5 𝑝𝑥−1) density of emitters without 

noise. d-e) Medium density and low (5) and medium (30) signal-to-noise ratio. The case of high SNR 

corresponds to a-c. f) Simulated domains placed randomly in the image plane. Different colors 

correspond to different labels of the domains, each exhibiting independent motion. The domains are 

modeled as circles with varying diameter, where the diameter is adjusted with respect to the number 

of domains. The example is shown for 10 domains with average radius of 35 pixels. g) First frame of a 

simulated pair with intermediate emitter density and no noise. The ground truth motion (GT, white 

arrows) and the estimations by the methods under considerations are overlaid. For clarity, estimated 

fields are subsampled such that every third vector is shown only. Colors correspond to different 

methods as indicated in the legend. A magnified view of the yellow rectangle is shown on the right. 

Note that the GT is sparse (only available at the positions of emitters), whereas the reconstruction 

methods give dense fields as no determination on the position of emitters is done. The methods are 

consistent in regions of coherent flow (e.g. at the lower right), whereas motion boundaries cause 

more variance among the methods (e.g. at the center of the enlarged area).  



 

Figure S2: Definition of angles on a linear scale. Let two vectors �⃗� 1 and �⃗� 2 of unit length point in 

approximately the negative x-direction. The branch cut is defined at the negative x-axis. The 

difference between the angles of the two vectors is 2𝜋 − 2𝜖, with 𝜖 small. However, due to the 

periodicity of 2𝜋, the difference can also be calculated to 2𝜖. 

  



 

Figure S3: Interpretation of the smoothness parameter in the Whittle-Màtern model. a) The flow 

field of an example U2OS cell expressing H2B-GFP is shown for the Horn-Schunck and SIFT-based 

method. Colors correspond to the direction of vectors. Inspection of the flow fields by eye leads to 

the conclusion that the smoothness of the fields decreases from top to bottom. b) The horizontal 

gradient of the direction is shown for the two methods. The gradient fields are color-coded from blue 

to red corresponding to change in direction from – 𝜋 to 𝜋 between nearby pixels. c) Representation 

of the horizontal (red) and vertical (green) gradient fields as histogram. An overall increase in the 

variance of the gradient fields corresponds to a decrease of the smoothness parameter. 
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Figure S4: Representative flow fields. a) Mean direction over 30 s of H2B tagged GFP and b) DNA 

respectively in a representative U2OS nucleus. Example regions of converging flow (vortices) are 

enlarged. c) Visual change in flow smoothness. The observed change in smoothness between serum 

stimulation (c) and starvation (d) in case of DNA probing in a representative nucleus. Time lag is 15 s 

starting from time point 𝑡 = 4 𝑠. Scale bars are 2 µm and 0.2 µm for the nuclei and zoomed in areas, 

respectively. 
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