Supplementary information for

Shared Genetic Contributions to Atrial Fibrillation and Ischemic Stroke Risk

Sara L. Pulit, Lu-Chen Weng, Patrick F McArdle, Ludovic Trinquart, Seung Hoan Choi, Braxton D. Mitchell, Jonathan Rosand, Paul I W de Bakker, Emelia J Benjamin, Patrick T Ellinor, Steven J Kittner, Steven A Lubitz*, Christopher D Anderson*, on behalf of the Atrial Fibrillation Genetics Consortium and the International Stroke Genetics Consortium.

Code and data release

For access to code, sample identifiers, SNP identifiers, and SNP weights used in the construction of the genetic risk score, please see this GitHub repository: https://github.com/UMCUGenetics/Afib-Stroke-Overlap.

Table of Contents

Supplementary Tables	Pages 3 — 12
Supplementary Figures	Pages 13 — 20
Supplementary Methods	Pages 21 — 24
Appendix I: Atrial Fibrillation Genetics (AFGen) Consortium members	Pages 25 — 28
Appendix II: Stroke Genetics Network (SiGN) Consortium members	Pages 29 — 32

Supplementary Tables

Supplementary Table 1 | Atrial fibrillation cases and controls available from the Stroke Genetics Network (SiGN) Consortium.

As classified by the CCS Causative system (note that this table is a repeat of **Table 1** from the main manuscript):

Phenotype	Total	Cardioembolic	Large artery atherosclerosis	Small artery occlusion	Undetermined	
					Incomplete/ unclassified	Cryptogenic/ CE minor
Atrial fibrillation	1,751	1,495	63	32	151	0
Paroxysmal atrial fibrillation	1,315	1,088	52	23	138	0
Left atrial thrombus	48	37	3	3	4	0
Sick sinus syndrome	79	65	5	3	4	0
Atrial Flutter	106	90	4	2	10	0
Total	3,190	2,684	123	61	298	0

As classified by the CCS Phenotypic system (note that this system allows a case to be classified into more than one subtype):

Phenotype	Total	Cardioembolic	Large artery atherosclerosis	Small artery occlusion	Undetermined
Atrial fibrillation	1,751	1,751	161	58	0
Paroxysmal atrial fibrillation	1,315	1,315	126	61	0
Left atrial thrombus	48	48	7	4	0
Sick sinus syndrome	79	79	8	4	0
Atrial Flutter	106	106	11	3	0
Total	3,190	3,190	302	126	0

Phenotype	Total	Cardioembolic	Large artery atherosclerosis	Small artery occlusion	Undetermined
Atrial fibrillation	1,751	1,254	26	23	170
Paroxysmal atrial fibrillation	1,315	880	25	19	178
Left atrial thrombus	48	35	1	1	9
Sick sinus syndrome	79	48	0	1	13
Atrial Flutter	106	75	2	3	12
Total	3,190	2,207	54	47	371

As classified by the TOAST system:

Overlap of atrial fibrillation and cardioembolic stroke in the three subtyping systems in SiGN (CCSc, CCS Causative; CCSp, CCS Phenotypic; TOAST):

Phenotype	CCSc Cardioembolic	CCSp Cardioembolic	TOAST Cardioembolic
Atrial fibrillation	1,495	1,751	1,254
Paroxysmal atrial fibrillation	1,088	1,315	880
Left atrial thrombus	37	48	35
Sick sinus syndrome	65	79	48
Atrial Flutter	90	106	75
No atrial fibrillation phenotypes	316	418	903
Total	3,000	3,608	3,333

Supplementary Table 2 | Look-up of previously-associated atrial fibrillation SNPs in SiGN. After performing a GWAS of atrial fibrillation in the SiGN data, we looked up the 26 known genetic risk loci for atrial fibrillation, as identified in the latest GWAS.¹ Twenty-four of the 25 signals present in the SiGN data were directionally consistent with the previous GWAS. The only signal not directionally consistent was discovered through eQTL analysis. One signal, a rare variant burden signal, was absent from our data (all SNPs here have allele frequency > 1%).

Supplementary Table 2 is provided as a separate, downloadable Excel spreadsheet as well as a tab-delimited text available at the project GitHub repository (download: https://github.com/saralpulit/Afib-Stroke-

<u>Overlap/blob/master/SupplementaryTable2.afib.hits.SiGN-lookup.txt</u>). The first 14 columns are taken from *Christophersen, et al. Large-scale analysis of common and rare variants identify 12 new loci associated with atrial fibrillation. Nature Genetics, 2017.*¹ Those columns are:

SNP	single-nucleotide polymorphism; rs identifier
CHR	chromosome
BP	basepair (hg19)
Genes	Closest gene(s)
Location	Where the SNP resides relative to the listed gene
Risk	Risk allele
Ref	Reference allele
RAF	Risk allele frequency
OR	Odds ratio
CI95_1	95% confidence interval for the odds ratio (lower bound)
CI95_2	95% confidence interval for the odds ratio (upper bound)
Pval	Association p-vlaue
Mean_imp	Imputation quality
Analysis	The analysis the variant or gene was discovered in (ExWAS, expression QTL analysis; Meta, meta-analysis; RVAS, rare variant association study)

The remaining columns provided are data points extracted from the atrial fibrillation GWAS in SiGN. They are:

SIGN_RAF	Risk allele frequency in SiGN
SIGN_INFO	Imputation quality (info score) in SiGN
SIGN_BOLT_BETA	Beta of the SNP taken from BOLT-LMM; note that this is a beta
	that results from a linear mixed model
SIGN_LIAB_BETA	The beta, converted to the liability scale
SiGN_OR	Odds ratio in SiGN
SiGN_SE	Standard error of SIGN_BOLT_BETA
SIGN_P_BOLT	P-value from BOLT-LMM (for the infinitesimal model only)

Supplementary Table 3 | Heritability calculations in atrial fibrillation and ischemic stroke subtypes. (a) We calculated the SNP-based heritability (h_g^2) of atrial fibrillation, all ischemic stroke, and the stroke subtypes using GCTA². All SNPs used had minor allele frequency > 1% and imputation quality > 0.8 (for imputed SNPs). Imputed SNPs were converted to best-guess genotypes. We assumed a trait prevalence of 1% for all phenotypes and tested the robustness of h_g^2 estimates to SNPs included in the GRM by using four different GRMs: (i) genotyped only; (ii) genotyped, pruned, and filtered (see **Supplemental Methods**); (iii) imputed; and (iv) imputed, pruned, and filtered. (b) We performed the exact same analysis but using BOLT-LMM to estimate h_g^2 . BOLT-LMM estimates were converted to the liability scale (see **Supplemental Methods**).

Geno, genotyped; SE, standard error; CCSc, CCS Causative; CCSp, CCS Phenotypic

Subtype	Subtyping system	Cases	Geno h_g^2 (SE)	Geno, filtered h_g^2 (SE)	Imputed h_g^2 (SE)	Imputed, filtered h_g^2 (SE)
Large artery	CCSc	2,385	0.115 (0.020)	0.124 (0.020)	0.127 (0.020)	0.160 (0.024)
athero-	CCSp	2,449	0.117 (0.020)	0.113 (0.019)	0.140 (0.020)	0.149 (0.023)
scierosis	TOAST	2,318	0.139 (0.021)	0.135 (0.021)	0.169 (0.022)	0.282 (0.025)
	CCSc	3,000	0.166 (0.017)	0.139 (0.016)	0.172 (0.017)	0.219 (0.019)
Cardio- embolic	CCSp	3,608	0.145 (0.014)	0.125 (0.014)	0.136 (0.014)	0.181 (0.016)
	TOAST	3,333	0.139 (0.015)	0.115 (0.015)	0.156 (0.016)	0.224 (0.018)
	CCSc	2,262	0.118 (0.021)	0.114 (0.020)	0.121 (0.021)	0.144 (0.024)
Small artery occlusion	CCSp	2,419	0.106 (0.020)	0.097 (0.019)	0.114 (0.019)	0.122 (0.022)
	TOAST	2,631	0.122 (0.019)	0.120 (0.018)	0.135 (0.019)	0.162 (0.021)
	CCSc	4,574	0.087 (0.012)	0.077 (0.011)	0.120 (0.012)	0.168 (0.014)
	CCSc (INCUNC)	2,280	0.123 (0.021)	0.118 (0.021)	0.205 (0.022)	0.284 (0.024)
Undeter- mined	CCSc (CRYPTCE)	2,294	0.092 (0.021)	0.086 (0.020)	0.109 (0.021)	0.179 (0.025)
	CCSp	1,096	0.132 (0.042)	0.091 (0.040)	0.159 (0.041)	0.249 (0.050)
	TOAST	3,479	0.096 (0.015)	0.089 (0.014)	0.141 (0.015)	0.214 (0.017)
	All stroke	13,390	0.069 (0.005)	0.059 (0.005)	0.082 (0.005)	0.107 (0.006)
	Atrial fibrillation	3,190	0.182 (0.016)	0.156 (0.019)	0.178 (0.016)	0.228 (0.019)

a. h_q^2 estimates in GCTA

b. h_g^2 estimates in BOLT-LMM

Subtype	Subtyping system	Geno h_g^2 (SE)	Geno, filtered h_g^2 (SE)	Imputed h_g^2 (SE)	Imputed, filtered h_g^2 (SE)	Imputed, filtered h_g^2 (SE)
Large artery	CCSc	2,385	0.116 (0.020)	0.120 (0.020)	0.120 (0.020)	0.155 (0.024)
athero-	CCSp	2,449	0.121 (0.020)	0.119 (0.019)	0.142 (0.020)	0.152 (0.023)
scierosis	TOAST	2,318	0.130 (0.021)	0.121 (0.020)	0.145 (0.021)	0.241 (0.025)
	CCSc	3,000	0.157 (0.017)	0.129 (0.016)	0.159 (0.017)	0.195 (0.019)
Cardio- embolic	CCSp	3,608	0.138 (0.014)	0.117 (0.014)	0.127 (0.014)	0.164 (0.016)
	TOAST	3,333	0.131 (0.015)	0.108 (0.015)	0.144 (0.015)	0.210 (0.018)
	CCSc	2,262	0.147 (0.021)	0.151 (0.020)	0.179 (0.022)	0.230 (0.026)
Small artery occlusion	CCSp	2,419	0.133 (0.020)	0.127 (0.019)	0.161 (0.020)	0.196 (0.024)
	TOAST	2,631	0.142 (0.019)	0.142 (0.018)	0.168 (0.019)	0.211 (0.022)
	CCSc	4,574	0.090 (0.012)	0.086 (0.011)	0.130 (0.012)	0.182 (0.014)
	CCSc (INCUNC)	2,280	0.133 (0.021)	0.118 (0.021)	0.128 (0.021)	0.282 (0.024)
Undeter- mined	CCSc (CRYPTCE)	2,294	0.112 (0.021)	0.112 (0.021)	0.143 (0.021)	0.237 (0.026)
	CCSp	1,096	0.159 (0.042)	0.136 (0.041)	0.213 (0.042)	0.341 (0.052)
	TOAST	3,479	0.101 (0.015)	0.099 (0.014)	0.153 (0.015)	0.228 (0.017)
	All stroke	13,390	0.169 (0.012)	0.059 (0.005)	0.084 (0.005)	0.114 (0.006)
	Atrial fibrillation	3,190	0.169 (0.016)	0.140 (0.015)	0.156 (0.016)	0.200 (0.018)

Supplementary Table 4 | Genetic correlations between atrial fibrillation and ischemic stroke subtypes. To estimate genetic correlation between atrial fibrillation and ischemic stroke subtypes, we calculated Pearson's r between SNP zscores in the Atrial Fibrillation Genetics (AFGen) GWAS of atrial fibrillation and in GWAS of ischemic stroke subtypes and atrial fibrillation performed here in the SiGN data. The correlation calculations are provided in this table, which is split into two parts and is available to download in text format here:

Part A: correlations calculated across all genome-wide SNPs <u>https://github.com/saralpulit/Afib-Stroke-</u> Overlap/blob/master/SuppTable4.partA.SiGN.AFGen.trait.correlations.txt

Part B: correlations calculated across all genome-wide SNPs except those ±2Mb from the PITX2 and ZFHX3 index SNPs provided in Supplementary Table 2 <u>https://github.com/saralpulit/Afib-Stroke-</u> <u>Overlap/blob/master/SuppTable4.partB.SiGN.AFGen.trait.correlations.drop-pitx2-</u> <u>zfhx3.txt</u>

The headers of the two files are exactly the same:

Column	Definition
Z.threshold	Z-score threshold used to subset AFGen SNPs
EduYrs.Z	Correlation with z-scores from educational attainment GWAS
afib.broad.Z	Correlation with z-scores from atrial fibrillation (broadly defined phenotype) GWAS
allstroke.Z	Correlation with z-scores from all stroke GWAS
CCScCEmajor.Z	Correlation with z-scores from CCSc CE GWAS
CCScCRYPTCE.Z	Correlation with z-scores from CCSc CRYPTCE GWAS
CCScINCUNC.Z	Correlation with z-scores from CCSc INCUNC GWAS
CCScLAA.Z	Correlation with z-scores from CCSc LAA GWAS
CCScSAO.Z	Correlation with z-scores from CCSc SAO GWAS
CCScUNDETER.Z	Correlation with z-scores from CCSc UNDETER GWAS
CCSpCEmajincl.Z	Correlation with z-scores from CCSp CE GWAS
CCSpCryptoincl.Z	Correlation with z-scores from CCSp Cryptogenic GWAS
CCSpLAAmajincl.Z	Correlation with z-scores from CCSp LAA GWAS
CCSpSAOmajincl.Z	Correlation with z-scores from CCSp SAO GWAS
toastCE.Z	Correlation with z-scores from TOAST CE GWAS
toastLAA.Z	Correlation with z-scores from TOAST LAA GWAS
toastSAO.Z	Correlation with z-scores from TOAST SAO GWAS
toastUNDETER.Z	Correlation with z-scores from TOAST UNDETER GWAS

CCSc, CCS Causative subtyping system; CCSp, CCS Phenotypic subtyping system; TOAST, TOAST subtyping system; CE, cardioembolic stroke; LAA, large artery atherosclerosis; SAO, small artery occlusion; UNDETER, undetermined; INCUNC, incomplete/unclassified; CRYPTCE, cryptogenic and CE minor.

Supplementary Table 5 | Association between the atrial fibrillation genetic risk score and ischemic stroke subtypes. We tested the association between a genetic risk score (GRS) constructed from atrial fibrillation-associated SNPs and all stroke subtypes. The results of those association tests are shown here. We used two groups of controls: all available controls (N = 28,026) and all controls that were free of atrial fibrillation (AF, N = 3,860). All analyses were adjusted for sex and principal components (PCs). Regression analyses were optionally adjusted for clinical covariates (age, cardiovascular disease, type 2 diabetes status, smoking status, and hypertension).

Significant results (p = 0.0062, Bonferroni-corrected for four subtype groups and two independent subtyping classifications -- CCS and TOAST -- are bolded).

SE, standard error; CCSc, CCS Causative; CCSp, CCS Phenotypic.

Case definition	Control definition	Cases	Controls Logistic regression, adjusted for PCs and sex PCs, sex, and clinical covariat			Logistic regression, adjusted for PCs and sex			ljusted for covariates
				Beta	SE	P-value	Beta	SE	P-value
CCSc LAA	Non-AF controls	2,385	3,860	0.008	0.015	0.600	0.002	0.018	0.929
CCSc LAA	All controls	2,385	28,026	-0.002	0.012	0.885	-0.004	0.013	0.786
CCSp LAA	Non-AF controls	2,449	3,860	0.016	0.016	0.315	0.010	0.018	0.570
CCSp LAA	All controls	2,449	28,026	0.004	0.011	0.694	0.002	0.013	0.850
TOAST LAA	Non-AF controls	2,318	3,860	0.010	0.016	0.528	0.000	0.018	0.980
TOAST LAA	All controls	2,318	28,026	-0.006	0.012	0.594	-0.008	0.014	0.550

Large artery atherosclerosis (LAA):

Cardioembolic stroke (CE):

Case definition	Control definition	Cases Controls Logistic regression, adjusted for PCs and sex PCs, sex, and clinic			Logistic regression, adjusted for PCs and sex			egression, ac and clinical	ljusted for covariates
				Beta	SE	P-value	Beta	SE	P-value
CCSc CE	Non-AF controls	3,000	3,860	0.187	0.014	1.59E-42	0.218	0.018	1.40E-34
CCSc CE	All controls	3,000	28,026	0.169	0.010	1.01E-65	0.173	0.012	1.45E-48
CCSp CE	Non-AF controls	3,608	3,860	0.178	0.013	6.98E-43	0.203	0.017	8.34E-34
CCSp CE	All controls	3,608	28,026	0.161	0.009	2.43E-70	0.163	0.011	1.05E-49
TOAST CE	Non-AF controls	3,333	3,860	0.171	0.013	3.17E-37	0.172	0.015	3.22E-29
TOAST CE	All controls	3,333	28,026	0.149	0.009	3.00E-56	0.146	0.011	4.43E-41

Case definition	Control definition	Cases	Cases Controls Logistic regression, adjust PCs and sex			ljusted for	Logistic re PCs, sex,	gression, ac and clinical	ljusted for covariates
				Beta	SE	P-value	Beta	SE	P-value
CCSc SAO	Non-AF controls	2,262	3,860	0.023	0.017	0.170	0.026	0.019	0.163
CCSc SAO	All controls	2,262	28,026	0.002	0.012	0.842	0.006	0.013	0.660
CCSp SAO	Non-AF controls	2,419	3,860	0.025	0.016	0.124	0.029	0.018	0.109
CCSp SAO	All controls	2,419	28,026	0.003	0.012	0.787	0.007	0.013	0.602
TOAST SAO	Non-AF controls	2,631	3,860	0.021	0.016	0.209	0.019	0.018	0.289
TOAST SAO	All controls	2,631	28,026	0.001	0.011	0.902	0.003	0.013	0.826

Small artery occlusion (SAO):

Undetermined strokes:

Case definition	Control definition	Cases	Controls	Logistic re	gression, ac PCs and sex	ljusted for	Logistic regression, adjusted for PCs, sex, and clinical covariates				
				Beta	SE	P-value	Beta	SE	P-value		
CCSc UNDETER	Non-AF controls	4,574	3,860	0.036	0.013	0.004	0.031	0.014	0.022		
CCSc UNDETER	All controls	4,574	28,026	0.021	0.009	0.013	0.021	0.010	0.030		
CCSc INCUNC	Non-AF controls	2,280	3,860	0.046	0.016	0.003	0.045	0.017	0.010		
CCSc INCUNC	All controls	2,280	28,026	0.028	0.012	0.015	0.029	0.013	0.025		
CCSc CRYPTCE	Non-AF controls	2,294	3,860	0.030	0.016	0.051	0.026	0.017	0.124		
CCSc CRYPTCE	All controls	2,294	28,026	0.015	0.012	0.212	0.017	0.013	0.192		
CCSp Crypto	Non-AF controls	1,096	3,860	0.035	0.020	0.090	0.029	0.022	0.195		
CCSp Crypto	All controls	1,096	28,026	0.019	0.016	0.258	0.021	0.018	0.245		
TOAST UNDETER	Non-AF controls	3,479	3,860	0.033	0.013	0.015	0.028	0.014	0.055		
TOAST UNDETER	All controls	3,479	28,026	0.021	0.010	0.027	0.022	0.011	0.042		

UNDETER, undetermined; INCUNC, incomplete and unclassified; CRYPTCE, cryptogenic and CE minor; Crypto, cryptogenic

Supplementary Table 6 | Sensitivity analysis for the atrial fibrillation genetic risk score. As a sensitivity analysis for the genetic risk score (GRS), we constructed 3 additional GRSs, including SNPs +/- 25kb, +/- 50kb, and +/- 100kb from the SNPs included in the original score. All scores remain highly significant when tested for association with cardioembolic stroke (using a logistic regression model). P-values after additionally adjusting for clinical covariates are also shown. Clinical covariates: age, cardiovascular disease, type 2 diabetes status, smoking status, and hypertension.

GRS SNPs	Filters	Total SNPs	GRS p-value					
			Adjusted for PCs, sex	Adjusted for PCs, sex, clinical covariates				
Original SNPs	MAF > 1% Info > 0.8	975	1.01 x 10 ⁻⁶⁵	1.44 x 10 ⁻⁴⁸				
Original SNPs +/- 25kb	MAF > 1% Info > 0.8	146,631	9.13 x 10 ⁻⁵⁰	1.32 x 10 ⁻³⁷				
Original SNPs +/- 50kb	MAF > 1% Info > 0.8	258,870	5.76 x 10 ⁻⁴⁸	1.40 x 10 ⁻³⁶				
Original SNPs +/- 100kb	MAF > 1% Info > 0.8	462,146	4.47 x 10 ⁻⁴⁴	1.77 x 10 ⁻³²				

PCs, principal components; MAF, minor allele frequency; INFO, imputation (info) score.

Supplementary Table 7 | Clinical covariates available in the SiGN data. We adjusted our analyses of a genetic risk score for a series of clinical covariates that are associated with atrial fibrillation. Summary-statistics on these covariates are shown below for those samples classified as (a) cardioembolic stroke or (b) undetermined stroke. The number of samples with missing data are provided in parentheses where relevant.

Phenotype	CCS Causative	CCS Phenotypic	TOAST		
Female	1,588	1,859	1,618		
Male	1,247	1,541	1,520		
Age: mean (sd)	74.7 (12.4)	74.5 (12.3)	71.0 (15.1)		
Hypertensive (missing)	2,195 (18)	2,665 (21)	2,272 (16)		
Diabetes mellitus (missing)	763 (26)	950 (29)	799 (8)		
CAD (missing)	989 (64)	1206 (83)	911 (119)		
Smoking Current Former Never	379 694 1,737	468 865 2,055	513 776 1,905		
Total	3,000	3,608	3,333		

Cardioembolic

Undetermined

Phenotype	CCS Causative	CCS Causative	CCS Causative	CCS Phenotypic	TOAST
Female	1,880	1,024	856	420	1,445
Male	2,151	1,014	1,137	543	1,635
Age: mean (sd)	63.9 (15.4)	67.7 (13.9)	69.0 (15.9)	58.9 (15.7)	63.7 (16.1)
Hypertensive (missing)	2,833 (23)	1,512 (14)	1,321 (9)	612 (3)	2,110 (29)
Diabetes mellitus (missing)	958 (26)	513 (14)	445 (12)	202 (4)	708 (25)
CAD (missing)	739 (169)	421 (86)	318 (83)	115 (46)	573 (100)
Smoking Current Former Never	1,090 1,050 2,202	582 516 1,081	508 534 1,121	239 235 548	813 772 1,711
Total	4,574	2,280	2,294	1,096	3,479

Supplementary Table 8: Variance explained by the atrial fibrillation genetic risk score in cardioembolic stroke. To determine the variance explained by the atrial fibrillation genetic risk score (GRS) in cardioembolic stroke, we constructed a model in BOLT-LMM that consisted of two variance components: (1) a variance component made up of SNPs for the genetic relationship matrix, and (2) a variance component made up of SNPs from the GRS. After computing the estimated variance explained for each component in BOLT-LMM, we converted the estimate to the liability score. Below is variance explained for each of the cardioembolic stroke phenotypes as determined by the three subtyping systems available in SiGN: CCS Causative, CCS Phenotypic, and TOAST. Standard errors of each estimate appear in parentheses. Explained variance is shown for a GRS including the PITX2 (chromosome 4) and ZFHX3 (chromosome 16) loci, as well as excluding ±2Mb around these loci (see https://github.com/UMCUGenetics/Afib-Stroke-Overlap for lists of SNPs that fall in these regions). Because a large number of SNPs is needed to construct a variance component to calculate variance explained, we performed the calculation using the atrial fibrillation GRS including SNPs ±100kb from the original GRS SNPs, and then pruning SNPs a linkage disequilibrium of 0.2.

Subtypin g System	h_g^2 CE stroke	h_g^2 atrial fibrillation GRS ± 100 kb	Proportion of CE h_g^2 explained by AF GRS		
GRS includ	ing the PITX2 and ZFHX3 lo	oci			
CCSc	0.195 (0.019)	0.045 (0.010)	23.1%		
CCSp	0.164 (0.016)	0.040 (0.008)	24.4%		
TOAST	0.210 (0.018)	0.051 (0.01)	24.3%		
GRS exclud	ling the PITX2 and ZFHX3 I	oci			
CCSc	0.195 (0.019)	0.037 (0.010)	19.0%		
CCSp	0.164 (0.016)	0.032 (0.008)	19.5%		
TOAST	0.210 (0.018)	0.044 (0.009)	21.0%		

CE, cardioembolic; GRS, genetic risk score; AF, atrial fibrillation

Supplementary Figures

Supplementary Figure 1 | Genome-wide association study (GWAS) of atrial fibrillation in SiGN. (A) We performed a GWAS of 3,190 cases with atrial fibrillation, or paroxysmal atrial fibrillation, as well as other diagnoses suggestive of underlying atrial fibrillation, including left atrial thrombus, sick sinus syndrome, and atrial flutter. We additionally included 28,026 referents. We used a linear mixed model and adjusted the model for principal components and sex. The majority of atrial fibrillation risk loci identified through previous GWAS efforts were identified here at nominal significance or better (see **Supplementary Table 2**). The Manhattan plot only shows QC-passing SNPs with minor allele frequency > 1% and imputation quality score > 0.8. (B) Quantile-quantile (QQ) plot indicating SNPs stratified by minor allele frequency and the corresponding genomic inflation factor (lambda, λ) for each stratum. (C) QQ plot showing SNPs stratified by imputation quality and the corresponding lambda for each stratum. Figures D-F are identical to those of A-C, but for the analysis performed in atrial fibrillation cases only (N =1,751). We performed this is an internal sensitivity analysis only, to ensure that more broadly defining the atrial fibrillation phenotype was not introducing additional phenotypic noise.

Supplementary Figure 2 | Heritability of ischemic stroke, its subtypes, and atrial fibrillation. We computed the SNP-based heritability of all stroke, all stroke subtypes, and atrial fibrillation using BOLT-LMM (top row) and GCTA (bottom row). All SNPs used for analysis had a minor allele frequency > 1% and imputation quality > 0.8 (for imputed SNPs). Imputed SNPs were converted to best-guess genotypes. We assumed a trait prevalence of 1% for all phenotypes and tested the robustness of ² estimates to SNPs included in the GRM by using four different GRMs: (a) genotyped SNPs only; (b) genotyped, pruned, and filtered (see **Supplemental Methods**); (c) imputed; and (d) imputed, pruned, and filtered. We converted the imputed SNPs to hard-call genotypes before performing heritability analyses. Estimates are shown below, including error bars. The underlying data for these figures are provided in **Supplementary Table 3**.

LAA, large artery atherosclerosis; CE, cardioembolic stroke; SAO, small artery occlusion; UNDETER, undetermined; INCUNC, incomplete/unclassified; CRYPTCE, cryptogenic and CE minor; Cryptoincl, cryptogenic; CCSc, CCS Causative subtyping system; CCSp, CCS Phenotypic subtyping system; TOAST, TOAST subtyping system.

Supplementary Figure 3 | Comparison of heritability estimates from BOLT-LMM and GCTA. We computed the heritability of all stroke, all stroke subtypes, and atrial fibrillation using BOLT-LMM and GCTA, as shown in **Supplementary Figure 2**. Below, you will find a comparison of the two methods, with BOLT-REML on the x-axis and GCTA estimates on the y-axis. Error bars are shown for the respective estimates.

AF, atrial fibrillation; CE, cardioembolic stroke; LAA, large artery atherosclerosis; SAO, small artery occlusion; UNDETER, undetermined; INCUNC, incomplete/unclassified; CRYPTCE, cryptogenic/CE minor; c, CCS Causative; p, CCS Phenotypic; t, TOAST.

BOLT-REML

Supplementary Figure 4 | Genetic correlations between atrial fibrillation and ischemic stroke subtypes. To estimate genetic correlation between atrial fibrillation and ischemic stroke subtypes, we calculated Pearson's r between SNP zscores in the AFGen GWAS of atrial fibrillation and in GWAS of ischemic stroke subtypes and atrial fibrillation performed here in the SiGN data. Here, we present data identical to that shown in Figure 2 of the main manuscript, but removing ±2Mb around the two most significant loci discovered in atrial fibrillation and cardioembolic stroke: the region around PITX2 (chromosome 4) and the region around ZFHX3 (chromosome 16). (a) Genome wide, atrial fibrillation in AFGen and in SiGN correlate with increasing strength as the z-score in AFGen increases. Educational attainment is included here as a null comparator. (b) Genetic signal in cardioembolic stroke also correlates strongly with atrial fibrillation genetic signal in AFGen, but we do not observe correlation between atrial fibrillation and the other primary stroke subtypes. (c) Removing the *PITX2* and *ZFHX3* regions leaves only somewhat modest correlation between the incomplete/unclassified undetermined subtype and atrial fibrillation. Panels (d-f) show underlying data.

Correlations restricted to those SNPs used in the genetic risk score for atrial fibrillation were: AFGen vs atrial fibrillation in SiGN, r = 0.78; AFGen vs. cardioembolic stroke in SiGN, r = 0.75.

Supplementary Figure 5 | Genetic correlation and phenotypic correlation of atrial fibrillation and stroke subtypes in SiGN. (a) Using genome-wide SNP effects extracted from GWAS of atrial fibrillation, all stroke, and stroke subtypes, we calculated the Pearson's correlation (r) between each pair of available phenotypes (blue indicates strong negative correlation; orange indicates strong positive correlation). Here, we show all correlations. Correlations are indicated by circle size in the upper half of the square, and the exact correlation values are shown in the lower half of the square.

CE, cardioembolic stroke; LAA, large artery atherosclerosis; SAO, small artery occlusion; UNDETER, undetermined; INCUNC, incomplete/unclassified; CRYPTCE, cryptogenic and CE minor; Cryptoincl, cryptogenic; CCSc, CCS Causative subtyping system; CCSp, CCS Phenotypic subtyping system; TOAST, TOAST subtyping system.

	Atrial fibrillation	All stroke	CE CCSc	CE CCSp	CE TOAST	LAA CCSc	LAA CCSp	LAA TOAST	SAO CCSc	SAO CCSp	SAO TOAST	UNDETER CCSc	INCUNC CCSc	CRYPTCE CCSc	Cryptoincl CCSp	UNDETER TOAST		
Atrial fibrillation															•		- 1 	I
All stroke	0.45																- 0.	.8
CE CCSc	0.74	0.52																
CE CCSp	0.79	0.57	0.92														- 0.	.6
CE TOAST	0.59	0.55	0.73	0.73													- 0.	.4
LAA CCSc		0.49								•								
LAA CCSp		0.5				0.87											- 0.	.2
LAA TOAST		0.46				0.69	0.64										- (n
SAO CCSc		0.53																,
SAO CCSp		0.55							0.95								0	.2
SAO TOAST		0.55							0.75	0.73						•		
UNDETER CCSc		0.68			0.29		0.21			0.19	0.28						0	.4
INCUNC CCSc	0.16	0.49	0.1	0.21	0.17	0.1	0.21	0.14	0.09	0.16	0.22	0.73			•		0	.6
CRYPTCE CCSc		0.51					0.1			0.11		0.75						
Cryptoincl CCSp	0.05	0.36	0.06	0.07	0.09	0.07	0.07	0.1	80.0	0.08	0.15	0.53	0.07	0.71			0	.8
UNDETER TOAST		0.6								0.23		0.63	0.42	0.52	0.44			1

а.

b. Same correlation calculations as in (a), but this time using the phenotypic data only (and looking in cases only, as all controls have the same phenotype). Note that the atrial fibrillation phenotypes and cardioembolic stroke phenotypes are highly correlated in the SiGN data (r = 0.83 between atrial fibrillation and cardioembolic stroke as determined by the CCS Causative subtype system).

CE, cardioembolic stroke; LAA, large artery atherosclerosis; SAO, small artery occlusion; UNDETER, undetermined; INCUNC, incomplete/unclassified; CRYPTCE, cryptogenic and CE minor; Cryptoincl, cryptogenic; CCSc, CCS Causative subtyping system; CCSp, CCS Phenotypic subtyping system; TOAST, TOAST subtyping system.

Supplementary Figure 6 | Association of atrial fibrillation genetic risk score in ischemic stroke subtypes. We constructed a genetic risk score (GRS) from atrial fibrillation-associated SNPs, and tested for association between the score and ischemic stroke subtypes using (a) all available controls (N = 28,026) and (b) controls without atrial fibrillation (N = 3,861). All subtypes from all available subtyping systems are shown here. The GRS strongly associated to cardioembolic stroke (subtypes highlighted in green font) in both sets of controls. In the atrial fibrillation-free set of controls (b) we observed nominal association of the GRS to incomplete/unclassified stroke. Undetermined subtypes are indicated in blue font.

CE, cardioembolic stroke; LAA, large artery atherosclerosis; SAO, small artery occlusion; UNDETER, undetermined; INCUNC, incomplete/unclassified; CRYPTCE, cryptogenic and CE minor; Cryptoincl, cryptogenic; CCSc, CCS Causative subtyping system; CCSp, CCS Phenotypic subtyping system; TOAST, TOAST subtyping system.

Supplementary Methods

Relevant code for the analyses performed in this paper can be found here: <u>https://github.com/saralpulit/Afib-Stroke-Overlap.</u>

This repository primarily consists of:

Call to BOLT-LMM to run GWAS

Call to GCTA and BOLT-LMM to calculate heritability

Call to PLINK^{3,4} to calculate the genetic risk score (GRS)

An R script for converting observed heritability in BOLT-LMM to the liability scale (see below)

A script in R to check association between the GRS and various phenotypes.

A call to PLINK^{3,4} to calculate a GRM to run GCTA

Sample identifiers for those individuals analyzed in this paper

SNP identifiers and weights for those markers included in the construction of the genetic risk score

A complete README accompanies the GitHub repository.

Case and referent data

The full list of cohorts that are included in the SiGN genome-wide association study can be found in the Supplementary Material of "Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study,"⁵ which can be downloaded here: <u>https://paperpile.com/shared/nvNXQf</u>.

Referent datasets

Referent datasets downloaded from the Database of Genotypes and Phenotypes (dbGaP) are:

	dbGAP accession #
Genetics Resource with the Health and Retirement Study	phs000428.v2.p2
Whole Genome Association Study of Visceral Adiposity in the HABC study	phs000169.v1.p1

Case datasets

A large number of cases and a small number of controls (from Belgium and Poland) were genotyped at the initiation of the SiGN GWAS. These data have been uploaded to dbGaP and are available here:

The National Institute of Neurological Disorders and Stroke (NINDS) Stroke Genetics Network (SiGN) (phs000615.v1.p1)

Sample and SNP identifiers used in these analyses

A file containing:

the dbGaP sample identifiers

the cohort the sample is drawn from

the continental group the sample is in (as determined in the first SiGN GWAS effort⁵)

a list of quality control-passing SNPs used in the initial GWAS

Is available on this paper's GitHub repository.

Summary-level genome-wide association study data

The summary-level data from the original SiGN GWAS has been made publicly available through the Cerebrovascular Disease Knowledge Portal, which can be accessed here: <u>http://www.cerebrovascularportal.org/</u>

These summary-level results are available for cardioembolic stroke (CE), large artery atherosclerosis (LAA), small artery occlusion (SAO), and undetermined (UNDETER) stroke, for three different subtyping systems (TOAST, CCS Causative, CCS Phenotypic).

The summary-level results for the atrial fibrillation genome-wide association studies (performed in broadly-defined or strictly-defined cases versus all controls) are available here:

Broadly-defined atrial fibrillation cases vs. all referents: <u>https://doi.org/10.5281/zenodo.1035871</u>

Strictly-defined atrial fibrillation cases vs. all referents: https://doi.org/10.5281/zenodo.1035873

SNP-based heritability calculations in GCTA and BOLT-LMM

A description of heritability calculations is available in the Materials and Methods section of the primary calculation. Here, we provide additional analytic details. Heritability estimates were performed using GCTA² and BOLT-LMM⁶ using BOLT-REML assuming a trait prevalence of 1%. The genetic relationship matrix (GRM, referred to by the --bfile and 'modelSNPs' option in BOLT-LMM) were selected four ways:

- (1) Genotyped SNPs only (minor allele frequency > 1%) 115,553 SNPs total
- (2) Genotyped SNPs, pruned at a linkage disequilibrium threshold (r2 threshold) of 0.2, and removing the MHC, *LCT* locus, and two chromosomal inversions. 60,432 SNPs total
- (3) Imputed SNPs (minor allele frequency > 1% and imputation info > 0.8) converted to best-guess genotypes. 1,128,985 SNPs total
- (4) Imputed SNPs (minor allele frequency > 1% and imputation info > 0.8); pruned at a linkage disequilibrium threshold (r2 threshold) of 0.2; removing the MHC, *LCT* locus, and two chromosomal inversions; and converted to best-guess genotypes. 250,209 SNPs total

As calculating GRMs in GCTA can be extremely computationally intensive, we calculated the GRMs using PLINK 1.9 and then used those GRMs to estimate heritability. A script that shows how to do this is included in the GitHub repository noted above.

The genomic locations (hg19) for excluded markers are as follows:

The lactase (*LCT*) locus Chromosome 2, positions 129,883,530 - 140,283,530

The major histocompatibility complex (MHC) Chromosome 6, positions 24,092,021 - 38,892,022

Inversion 1 Chromosome 8, positions 6,612,592 - 13,455,629

Inversion 2 Chromosome 17, positions 40,546,474 - 44,644,684

All non-autosomal SNPs

BOLT-LMM produces heritability estimates on the observed scale. To convert to the liability scale (i.e., the scale on which GCTA produces heritability estimates) we performed a conversion in R. Running the conversion requires knowing the trait prevalence, total cases analyzed, total controls analyzed, and the heritability on the observed scale. This code snippet is available in the accompanying GitHub repository for this paper.

Appendix I Members of the Atrial Fibrillation Genetics (AFGen) Consortium

Please note that the AFGen Consortium participants evolve over time. Further information on the AFGen Consortium can be found at <u>www.afgen.org.</u>

Ingrid E. Christophersen, MD, PhD¹⁻³ Michiel Rienstra, MD, PhD⁴ Carolina Roselli, MSc1,5,6 Xiaoyan Yin, PhD^{7,8} Bastiaan Geelhoed, PhD⁴ John Barnard, PhD⁹ Honghuang Lin, PhD^{7,8} Dan E. Arking, PhD¹⁰ Albert V. Smith, PhD^{11,12} Christine M. Albert, MD, MPH¹³ Mark Chaffin, MSc1 Nathan R. Tucker, PhD^{1,2} Molong Li, MD² Derek Klarin, MD¹ Nathan A Bihlmeyer, BS,14 Siew-Kee Low, PhD¹⁹ Peter E. Weeke, MD, PhD^{16,17} Martina Müller-Nurasyid, PhD^{5,18,19} J. Gustav Smith, MD, PhD^{1,20} Jennifer A. Brody, BA²¹ Maartje N. Niemeijer MD²² Marcus Dörr, MD^{23,24} Stella Trompet, PhD²⁵ Jennifer Huffman, PhD²⁶ Stefan Gustafsson, PhD²⁷ Claudia Schurmann, PhD^{28,29} Marcus E. Kleber, PhD³⁰ Leo-Pekka Lyytikäinen, MD³¹ Ilkka Seppälä, MD³¹ Rainer Malik, PhD³² Andrea R. V. R. Horimoto, PhD³³ Marco Perez, MD³⁴ Juha Sinisalo, MD, PhD³⁵ Stefanie Aeschbacher, MSc^{36,37} Sébastien Thériault, MD, MSc38,39 Jie Yao, MS⁴⁰ Farid Radmanesh, MD, MPH^{1,41} Stefan Weiss, PhD^{24,42} Alexander Teumer, PhD^{24,43} Seung Hoan Choi, PhD¹ Lu-Chen Weng, PhD^{1,2} Sebastian Clauss, MD^{2,18} Rajat Deo, MD, MTR⁴⁴ Daniel J. Rader, MD^{44} Svati Shah, MD, MHS,45 Albert Sun, MD45 Jemma C. Hopewell, PhD⁴⁶ Stephanie Debette, MD, PhD⁴⁷⁻⁵⁰ Ganesh Chauhan, PhD^{47,48} Qiong Yang, PhD⁵¹ Bradford B. Worrall, MD, MSc52 Guillaume Paré, MD, MSc^{38,39} Yoichiro Kamatani, MD, PhD¹⁵ Yanick P. Hagemeijer, MSc⁴ Niek Verweij, PhD4

Jovlene E. Siland, BSc,⁴ Michiaki Kubo, MD, PhD⁵³ Jonathan D. Smith, PhD⁹ David R. Van Wagoner, PhD9 Joshua C. Bis, PhD²¹ Siegfried Perz, MSc54 Bruce M. Psaty, MD, PhD^{21,55-57} Paul M. Ridker, MD, MPH¹³ Jared W. Magnani, MD, MSc7,58 Tamara B. Harris, MD, MS⁵⁹ Lenore J. Launer, PhD⁵⁹ M. Benjamin Shoemaker, MD, MSCI¹⁶ Sandosh Padmanabhan, MD⁶⁰ Jeffrey Haessler, MS⁶¹ Traci M. Bartz, MS⁶² Melanie Waldenberger, PhD^{19,54,63} Peter Lichtner, PhD⁶⁴ Marina Arendt, MSc⁶⁵ Jose E. Krieger, MD, PhD³³ Mika Kähönen, MD, PhD66 Lorenz Risch, MD, MPH⁶⁷ Alfredo J. Mansur, MD, PhD68 Annette Peters, PhD^{19,54,69} Blair H. Smith, MD⁷⁰ Lars Lind, MD, PhD⁷¹ Stuart A. Scott, PhD⁷² Yingchang Lu, MD, PhD^{28,29} Erwin B. Bottinger, MD^{28,73} Jussi Hernesniemi, MD, PhD^{31,74} Cecilia M. Lindgren, PhD⁷⁵ Jorge A Wong, MD⁷⁶ Jie Huang, MD, MPH⁷⁷ Markku Eskola, MD, PhD74 Andrew P. Morris, PhD^{75,78} Ian Ford, PhD⁷⁹ Alex P. Reiner, MD, MSc61,80 Graciela Delgado, MSc³⁰ Lin Y. Chen, MD, MS⁸¹ Yii-Der Ida Chen, PhD40 Roopinder K. Sandhu, MD, MPH⁸² Man Li, PhD^{83,84} Eric Boerwinkle, PhD⁸⁵ Lewin Eisele, MD65 Lars Lannfelt, MD, PhD⁸⁶ Natalia Rost, MD, MPH, FAAN,^{1,87} Christopher D. Anderson, MMSc^{1,41} Kent D. Taylor, PhD⁴⁰ Archie Campbell, MA.88 Patrik K. Magnusson, PhD⁸⁹ David Porteous, PhD⁸⁸ Lynne J. Hocking, PhD⁹⁰ Efthymia Vlachopoulou, PhD⁹¹ Nancy L. Pedersen, MA, PhD⁸⁹ Kjell Nikus, MD, PhD74

Mariu Orho-Melander, PhD92 Anders Hamsten, MD, PhD⁹³ Jan Heeringa, MD, PhD²² Joshua C. Denny, MD¹⁶ Jennifer Kriebel, PhD^{54,63,69} Dawood Darbar, MD⁹⁴ Christopher Newton-Cheh, MD, MPH^{1,2} Christian Shaffer, BS,¹⁶ Peter W. Macfarlane, PhD, DSc95 Stefanie Heilmann, PhD^{96,9} Peter Almgren, MSc92 Paul L. Huang, MD, PhD² Nona Sotoodehnia, MD, MPH98 Elsayed Z. Soliman, MD, MSc, MS99 Andre G. Uitterlinden, PhD¹⁰ Albert Hofman, MD, PhD²² Oscar H. Franco, MD, PhD²² Uwe Völker, PhD^{24,42} Karl-Heinz Jöckel, PhD65 Moritz F. Sinner, MD, MPH^{18,19} Henry J. Lin, MD⁴⁰ Xiuqing Guo, PhD⁴⁰ Martin Dichgans, MD^{32,101,102} Erik Ingelsson, MD, PhD^{27,103} Charles Kooperberg, PhD⁶¹ Olle Melander, MD, PhD¹⁰⁴ Ruth J. F. Loos, PhD^{28,29,105} Jari Laurikka, MD, PhD¹⁰⁶ David Conen, MD, MPH³⁶⁻³⁸ Jonathan Rosand, MD, MSc^{1,41} Pim van der Harst, MD, PhD⁴ Marja-Liisa Lokki, PhD⁹¹ Sekar Kathiresan, MD¹ Alexandre Pereira, MD, PhD¹⁰⁷ J. Wouter Jukema, MD, PhD^{25,108,109} Caroline Hayward, PhD² Jerome I. Rotter, MD¹¹⁰ Winfried März, MD¹¹¹ Terho Lehtimäki, MD, PhD³¹ Bruno H. Stricker, MD, PhD¹¹² Mina K. Chung, MD⁹ Stephan B. Felix, MD^{23,24} Vilmundur Gudnason, MD, PhD^{11,12} Alvaro Alonso, MD, PhD¹¹³ MD, Dan M. Roden, MD¹⁶ Stefan Kääb, MD, PhD^{18,19} Daniel I. Chasman, PhD^{1,114} Susan R. Heckbert, MD, PhD^{55,56} Emelia J. Benjamin, MD, ScM^{7,58,115} Toshihiro Tanaka, MD, PhD^{116,117} Kathryn L. Lunetta, PhD^{7,8} Steven A. Lubitz, MD, MPH^{1,2,118} Patrick T. Ellinor, MD, PhD^{1,2,118}

AFGen Consortium Member Affiliations

- 1. Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- 2. Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
- 3. Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, Norway.
- 4. Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- 5. Institute of Genetic Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany.
- 6. Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany.
- 7. NHLBI and Boston University's Framingham Heart Study, Framingham, MA, USA.
- 8. Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
- 9. Departments of Cardiovascular Medicine, Cellular and Molecular Medicine, Molecular Cardiology, and Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA.
- 10. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- 11. Icelandic Heart Association, Kopavogur, Iceland.
- 12. Faculty of Medicine, University of Iceland, Reykavik, Iceland.
- 13. Divisions of Preventive and Cardiovascular Medicine, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA.
- 14. Predoctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- 15. Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- 16. Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- 17. The Heart Centre, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- 18. Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.
- 19. DZHK (German Centre for Cardiovascular Research), partner site: Munich Heart Alliance, Munich, Germany.
- 20. Molecular Epidemiology and Cardiology, Clinical Sciences, Lund University, Lund, Sweden.
- 21. Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA.
- 22. Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands.
- 23. Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.
- 24. DZHK (German Centre for Cardiovascular Research), partner site: Greifswald, Germany.
- 25. Department of Cardiology, Leiden University Medical Center, The Netherlands.
- 26. MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, UK.
- 27. Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
- 28. The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine

at Mount Sinai, New York, NY, USA.

- 29. The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- 30. Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Germany.
- 31. Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere School of Medicine, Tampere, Finland.
- 32. Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University, München, Germany.
- 33. Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo, Sao Paulo, Brazil.
- 34. Stanford University, Stanford, CA, USA.
- 35. Heart and Lung Center HUS, Helsinki University Central Hospital, Helsinki, Finland.
- 36. University Hospital Basel, Switzerland.
- 37. Cardiovascular Research Institute Basel, Switzerland.
- 38. Population Health Research Institute, Hamilton, Canada.
- 39. Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada.
- 40. Institute for Translational Genomics and Population Sciences, Department of Pediatrics, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA.
- 41. Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA, USA.
- 42. Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany.
- 43. Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany.
- 44. Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- 45. Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- 46. CTSU Nuffield Department of Population Health, University of Oxford, Oxford, UK.
- 47. Inserm Center U1219 (Bordeaux Population Health Centre), Bordeaux, France.
- 48. University of Bordeaux, Bordeaux, France.
- 49. Department of Neurology, Bordeaux University Hospital, Bordeaux, France.
- 50. Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
- 51. Biostatistics Department, School of Public Health, Boston University, Boston, MA, USA.
- 52. University of Virginia Health System, Departments of Neurology and Public Health Science, Charlottesville, VA, USA.
- 53. RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- 54. Institute of Epidemiology II, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany.
- 55. Department of Epidemiology and Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA.
- 56. Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA.
- 57. Department of Health Services, University of Washington, Seattle, WA, USA.
- 58. Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
- 59. Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, MD, USA.
- 60. Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.
- 61. Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA.

- 62. Cardiovascular Health Research Unit, Departments of Medicine and Biostatistics, University of Washington, Seattle, WA, USA.
- 63. Research unit of Molecular Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany.
- 64. Institute of Human Genetics, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany.
- 65. Institute for Medical Informatics, Biometry, and Epidemiology, University Hospital, University Duisburg-Essen, Germany.
- 66. Department of Clinical Physiology, Tampere University Hospital and University of Tampere School of Medicine, Tampere, Finland.
- 67. University Institute of Clinical Chemistry, University of Bern, Switzerland and labormedizinisches zentrum Dr. Risch, Schaan, Liechtenstein.
- 68. Heart Institute, University of Sao Paulo, Sao Paulo, Brazil.
- 69. German Center for Diabetes Research, Neuherberg, Germany.
- 70. Division of Population Health Sciences, University of Dundee, Scotland, UK.
- 71. Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden.
- 72. Department of Genetics and Genomic Sciences , Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- 73. Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- 74. Department of Cardiology, Heart Hospital, Tampere University Hospital and University of Tampere School of Medicine, Tampere, Finland.
- 75. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
- 76. Division of Cardiology, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada.
- 77. Boston VA Research Institute, Inc., Boston, MA, USA.
- 78. Department of Biostatistics, University of Liverpool, Liverpool, UK.
- 79. Robertson Center for Biostatistics, University of Glasgow, Glasgow, UK.
- 80. Department of Epidemiology, University of Washington, Seattle, WA, USA.
- 81. Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA.
- 82. Division of Cardiology, University of Alberta, Edmonton, Canada.
- 83. Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA.
- 84. Division of Nephrology & Hypertension, Internal Medicine, School of Medicine, University of Utah, UT, USA.
- 85. Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- 86. Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden.
- 87. Acute Stroke Services, Massachusetts General Hospital, Boston, MA, USA.
- 88. Generation Scotland, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, UK.
- 89. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
- 90. Musculoskeletal Research Programme, Division of Applied Medicine, University of Aberdeen, Aberdeen, UK.
- 91. Transplantation Laboratory, Medicum, University of Helsinki, Helsinki, Finland.
- 92. Department of Clinical Sciences, Lund University, Malmö, Sweden.
- 93. Cardiovascular Genetics and Genomics Group, Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
- 94. University of Illinois, Chicago, IL, USA.
- 95. Institute of Health and Wellbeing, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.

96. Institute of Human Genetics, University of Bonn, Germany.

- 97. Department of Genomics, Life & Brain Research Center, University of Bonn, Germany.
- 98. Cardiovascular Health Research Unit, University of Washington Medical Center, Seattle, WA, USA.
- 99. Epidemiological Cardiology Research Center (EPICARE), Wake Forest School of Medicine, Winston Salem, NC, USA.
- 100. Department of Epidemiology and Internal Medicine, Erasmus University Medical Center Rotterdam, the Netherlands.
- 101. Munich Cluster for Systems Neurology (SyNergy), München, Germany.
- 102. German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- 103. Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- 104. Department of Internal Medicine, Clinical Sciences, Lund University, Malmö, Sweden.
- 105. The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- 106. Department of Cardio-Thoracic Surgery, Heart Hospital, Tampere University Hospital and University of Tampere School of Medicine, Tampere, Finland.
- 107. Laboratory of Genetics and Molecular Biology, Heart Institute, University of Sao Paulo, Sao Paulo, Brazil and Department of Genetics, Harvard Medical School, Boston, MA, USA.
- 108. Durrer Center for Cardiogenetic Research, Amsterdam, The Netherlands.
- 109. Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands.
- 110. Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA.
- 111. Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria and Synlab Academy, Synlab Services GmbH, Mannheim, Germany.
- 112. Department of Epidemiology and Internal Medicine, Erasmus University Medical Center Rotterdam, the Netherlands and Inspectorate of Health Care, Utrecht, the Netherlands.
- 113. Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
- 114. Divisions of Preventive Medicine and Genetics, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA.
- 115. Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
- 116. Laboratory for Cardiovascular Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- 117. Department of Human Genetics and Disease Diversity, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan.
- 118. Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA.

Appendix II

Jeremiasz Jagiella, MD²⁹

Jerzy Gasowski, MD²⁹

Members of the International Stroke Genetics Consortium (ISGC)

Please note that ISGC participants evolve over time. Further information on the ISGC can be found at http://www.strokegenetics.org/. Sylvia Smoller, PhD¹ Marcin Wnuk, MD²⁹ Anna Bersano, MD46 John Sorkin, MD² Rafael Olszanecki, MD²⁹ Tatjana Rundek, MD47 Xingwu Wang, MD³ Joanna Pera, MD²⁹ Ralph Sacco, MD47 Magdy Selim, MD, PhD⁴ Agnieszka Slowik, MD²⁹ Yu-Feng Yvonne Chan, MD48 Aleksandra Pikula, MD, PhD⁵ Karol Jozef Juchniewicz, MD²⁹ Andreas Gschwendtner, MD, PhD³⁵ Philip Wolf, MD, PhD⁵ Christopher Levi, MD³⁰ Zhen Deng, MD49 Stephanie Debette, MD⁵ Paul Nyquist, MD, PhD³¹ Taura Barr, MD⁵⁰ Sudha Seshadri, MD⁵ Iscia Cendes, MD³² Katrina Gwinn, MD⁵⁰ Paul de Bakker, PhD⁶ Norberto Cabral, MD³² Roderick Corriveau, MD⁵⁰ Andrew Singleton, MD, PhD⁵⁰ Sara L. Pulit, PhD⁶ Paulo Franca, MD³² Daniel Chasman, MD⁷ Anderson Goncalves, MD³² Salina Waddy, MD⁵⁰ Kathryn Rexrode, MD⁷ Lina Keller, MD³³ Lenore Launer, MD⁵⁰ Ida Chen, MD⁸ Milita Crisby, MD³³ Christopher Chen, MD⁵¹ Jerome Rotter, MD⁸ Konstantinos Kostulas, MD³³ Kim En Le, MD⁵¹ May Luke, MD⁹ Robin Lemmens, MD³⁴ Wei Ling Lee, MD⁵¹ Michelle Sale, MD¹⁰ Kourosh Ahmadi, MD³⁴ Eng King Tan, MD⁵¹ Tsong-Hai Lee, MD¹¹ Christian Opherk, MD³⁵ Akintomi Olugbodi, MD⁵² Ku-Chou Chang, MD¹¹ Peter Rothwell, MD, PhD⁵³ Marco Duering, MD³⁵ Mitchell Elkind, MD, MS¹² Martin Dichgans, MD³⁵ Sabrina Schilling, MD54 Larry Goldstein, MD, PhD¹³ Rainer Malik, PhD³⁵ Vincent Mok, MD⁵⁵ Michael Luke James, MD¹³ Mariya Gonik, MD³⁵ Elena Lebedeva, MD⁵⁶ Julie Staals, MD³⁶ Monique Breteler, MD¹⁴ Christina Jern, MD⁵⁷ Olle Melander, MD, PhD³⁷ Chris O'Donnell, MD¹⁵ Katarina Jood, MD⁵⁷ Didier Leys, MD¹⁶ Philippe Burri, MD³⁷ Sandra Olsson, MD⁵⁷ Cara Carty, MD¹⁷ Ariane Sadr-Nabavi, MD³⁸ Helen Kim, MD⁵⁸ Chelsea Kidwell, MD¹⁸ Javier Romero, MD, PhD³⁹ Chaeyoung Lee, MD⁵⁹ Jes Olesen, MD19 Alessandro Biffi, MD³⁹ Laura Kilarski, MD⁶⁰ Pankaj Sharma, MD, PhD²⁰ Chris Anderson, MD³⁹ Hugh Markus, MD⁶⁰ Jennifer Peycke, MD60 Stephen Rich, MD, PhD²¹ Guido Falcone, MD³⁹ Turgot Tatlisumak, MD²² Bart Brouwers, MD³⁹ Steve Bevan, PhD⁶⁰ Olli Happola, MD²² Jonathan Rosand, MD, MSc³⁹ Wayne Sheu, MD⁶¹ Philippe Bijlenga, MD²³ Natalia Rost, MD, MSc³⁹ Hung Yi Chiou, MD⁶² Carolina Soriano, MD²⁴ Rose Du, MD³⁹ Joseph Chern, MD62 Eva Giralt, MD²⁴ Elias Giraldo, MD63 Christina Kourkoulis, BA³⁹ Jaume Roquer, MD²⁴ Muhammad Taqi, MD63 Thomas Battey, BA³⁹ Jordi Jimenez-Conde, MD²⁴ Steven Lubitz, MD, PhD³⁹ Vivek Jain, MD64 Bertram Mueller-Myhsok, MD40 Ioana Cotlarcius, MD²⁵ Olivia Lam, MD⁶⁵ John Hardy, MD²⁶ George Howard, MD66 James Meschia, MD⁴⁰ Michal Korostynski, MD27 Daniel Woo, MD67 Thomas Brott, MD, PhD⁴¹ Giorgio Boncoraglio, MD²⁸ Steven Kittner, MD68 Guillaume Pare, MD⁴² Braxton Mitchell, PhD, MPH68 Elena Ballabio, MD²⁸ Alexander Pichler, MD⁴³ Eugenio Parati, MD²⁸ Christian Enzinger, MD⁴³ John Cole, MD68 Adamski Mateusz, MD²⁹ Helena Schmidt, MD⁴³ Jeff O'Connell, MD68 Dianna Milewicz, MD69 Reinhold Schmidt, MD⁴³ Andrzej Urbanik, MD²⁹ Tomasz Dziedzic, MD²⁹ Stephan Seiler, MD⁴³ Kachikwu Illoh, MD⁷⁰

Susan Blanton, MD⁴⁴

Yoshiji Yamada, MD⁴⁵

Bradford Worrall, MD²¹

Colin Stine, MD⁷⁰

Bartosz Karaszewski, MD⁷¹ David Werring, MD⁷¹ Reecha Sofat, MD⁷¹ June Smalley, MD⁷¹ Arne Lindgren, MD⁷² Bjorn Hansen, BA72 Bo Norrving, MD⁷² Gustav Smith, MD⁷² Juan Jose Martin, MD⁷³ Vincent Thijs, MD74 Karin Klijn, MD⁷⁵ Femke van't Hof, MD, PhD⁷⁵ Ale Algra, MD⁷⁵ Mary Macleod, MD⁷⁶ Rodney Perry, MD⁷⁷ Donna Arnett, MD⁷⁷ Alessandro Pezzini, MD⁷⁸ Alessandro Padovani, MD⁷⁸ Steve Cramer, MD, PhD⁷⁹ Mark Fisher, MD⁷⁹

Danish Saleheen, MD⁸⁰ Joseph Broderick, MD⁸¹ Brett Kissela, MD⁸¹ Alex Doney, MD⁸² Cathie Sudlow, MD83 Kristiina Rannikmae, MD⁸³ Scott Silliman, MD84 Caitrin McDonough, MD⁸⁴ Matthew Walters, MD⁸⁵ Annie Pedersen, MD⁸⁶ Kazuma Nakagawa, MD⁸⁷ Christy Chang, MD⁸⁸ Mark Dobbins, MD⁸⁸ Patrick McArdle, PhD⁸⁸ Yu-Ching Chang, MD⁸⁸ Robert Brown, MD⁸⁹ Devin Brown, MD⁸⁹ Elizabeth Holliday, MD⁹⁰ Raj Kalaria, MD⁹¹ Jane Maguire, MD⁹¹

John Attia, MD⁹¹ Martin Farrall, MD92 Anne-Katrin Giese, MD93 Myriam Fornage, MD⁹⁴ Jennifer Majersik, MD95 Mary Cushman, MD⁹⁶ Keith Keene, MD97 Siiri Bennett, MD98 David Tirschwell, MD, MSc98 Bruce Psaty, MD⁹⁸ Alex Reiner, MD⁹⁸ Will Longstreth, MD99 David Spence, MD¹⁰⁰ Joan Montaner, MD¹⁰¹ Israel Fernandez-Cadenas, MD¹⁰² Carl Langefeld, MD¹⁰² Cheryl Bushnell, MD¹⁰² Laura Heitsch, MD¹⁰³ Jin-Moo Lee, MD, PhD¹⁰³ Kevin Sheth, MD¹⁰⁴

ISGC Consortium Member Affiliations

- 1. Albert Einstein College of Medicine, Bronx, NY, USA
- 2. Baltimore VA Medical Center, Baltimore, MD, USA
- 3. Beijing Hypertension League Institute, Beijing, China
- 4. Beth Israel Deaconess Medical Center, Boston, MA, USA
- 5. Boston University Medical Center, Boston, MA, USA
- 6. University Medical Center Utrecht, Utrecht, The Netherlands
- 7. Brigham and Women's Hospital, Boston, MA, USA
- 8. Cedars Sinai Medical Center, Los Angeles, CA, USA
- 9. Celera, Alameda, CA, USA
- 10. University of Virginia, Charlottesville, VA, USA
- 11. Chang Gung Memorial Hospital, Linkou Medical Center, Guishan District, Taoyuan City, Taiwan
- 12. Columbia University, New York, NY, USA
- 13. Duke University, Durham, NC, USA
- 14. Erasmus University, Rotterdam, Zuid Holland, The Netherlands
- 15. Framingham Heart Study, Framingham, MA, USA
- 16. Université du Droit et de la Santé Lille, Lille, France
- 17. Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- 18. Georgetown University, Georgetown, MD, USA
- 19. Glostrup Hospital, Glostrup, Denmark
- 20. Hammersmith Hospitals & Imperial College London, London, UK
- 21. University of Virginia Health System, Charlottesville, VA, USA
- 22. Helsinki University Central Hospital, Helsinki, Finland
- 23. Hipitaux Universityersitaires de Genäve, Geneva, Switzerland
- 24. IMIM-Hospital del Mar, Barcelona, Spain
- 25. Imperial College London, London, UK
- 26. Institute of Neurology, University College London, London, UK
- 27. Institute of Pharmacology, Krakow, Poland
- 28. IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- 29. Jagiellonian University, Krakow, Poland

- 30. John Hunter Hospital, University of Newcastle, Newcastle, New-South-Wales, Australia
- 31. Johns Hopkins School of Medicine, Baltimore, MD, USA
- 32. Joinville Biobank, Joinville, Brazil
- 33. Karolinska Institutet, Karolinska, Sweden
- 34. Leuven University, Leuven, Belgium
- 35. Ludwig-Maximilians-Universitat, Munchen, Germany
- 36. Maastricht University Medical Centre, Maastricht, the Netherlands
- 37. Malmo University Hospital, Malmo, Sweden
- 38. Mashhad University of Medical Sciences, Masshad, Iran
- 39. Massachusetts General Hospital, Boston, MA, USA
- 40. Max Planck Institute of Psychiatry, Munich, Germany
- 41. Mayo Clinic, Rochester, MN, USA
- 42. McMaster University, Hamilton, Canada
- 43. Medical University Graz, Graz, Austria
- 44. Miami Institute of Human Genomics, University of Miami Miller School of Medicine, Miami, FL
- 45. Mie University, Tsu, Japan
- 46. Milan University, Milan, Italy
- 47. University of Miami, Miami, FL, USA
- 48. Mount Sinai Medical Center, Miami Beach, FL, USA
- 49. Nanfang Hospital, Southern Medical University, Guangdong, China
- 50. National Institutes of Health, Bethesda, MD, USA
- 51. National Neuroscience Institute, Singapore General Hospital, Singapore
- 52. Obafemi Awolowo University, Ile-Ife, Nigeria
- 53. Radcliffe Infirmary, Oxford University, Oxford, UK
- 54. University of Bordeaux, Bordeaux, France
- 55. Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
- 56. Ulm University, Ulm, Germany
- 57. Sahlgrenska University Hospital, Gothenburg, Sweden
- 58. Center for Cerebrovascular Research, San Francisco General Hospital, San Francisco, CA, USA
- 59. Soongsil University, Seoul, South Korea
- 60. St. George's University of London, London, UK
- 61. Taichung Veterans General Hospital, Taichung City, Taiwan
- 62. Taipei Medical University, Taipei City, Taiwan
- 63. The University of Tennessee Health Science Center at Memphis, Memphis, TN, USA
- 64. University of California Irvine Medical Center, Irvine, CA, USA
- 65. University of California San Francisco, San Francisco, CA, USA
- 66. University of Alabama School of Public Health
- 67. University of Cincinnati, Cincinnati, OH, USA
- 68. University of Maryland School of Medicine, Baltimore, MD, USA
- 69. University of Texas Medical School at Houston, Houston, TX, USA
- 70. University of Texas-Houston, Houston, TX, MA
- 71. University College London, London, UK
- 72. University Hospital Lund, Lund, Sweden
- 73. University Hospital Sanatorio Allende, Cordoba, Argentina
- 74. University Hospital Leuven, Leuven, Belgium
- 75. University Medical Center Utrecht, Utrecht, The Netherlands
- 76. University of Aberdeen, Aberdeen, Scotland
- 77. University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
- 78. University of Brescia, Brescia, Italy
- 79. University of California Irvine, Irvine, CA, USA

- 80. University of Pennsylvania, Philadelphia, PA, USA
- 81. University of Cincinnati, Cincinnati, OH, USA
- 82. University of Dundee, Dundee, Scotland
- 83. University of Edinburgh, Western General Hospital, Edinburgh, Scotland
- 84. University of Florida, Gainesville, FL, USA
- 85. University of Glasgow, Glasgow, Scotland, UK
- 86. University of Gothenburg, Gothenburg, Sweden
- 87. University of Hawaii, Honolulu, HI, USA
- 88. University of Maryland, Baltimore, MD, USA
- 89. University of Newcastle, New-South-Wales, Australia
- 90. Wellcome Trust Center for Human Genetics, University of Oxford, Oxford, UK
- 91. University of Rostock, Rostock, Germany
- 92. University of Texas-Houston, Health Sciences Center, Houston, TX, USA
- 93. University of Utah, Salt Lake City, UT, USA
- 94. University of Vermont and Fletcher Allen Health Care, Burlington, VT, USA
- 95. University of Virginia, Charlottesville, VA, USA
- 96. University of Washington, Seattle, WA, USA
- 97. University of Washington, Harborview Medical Center, Seattle, WA, USA
- 98. University of Western Ontario, Robarts Research Institute, Ontario, Canada
- 99. Vall d'Hebron Hospital, Barcelona, Spain
- 100. Wake Forest University, Winston-Salem, NC, USA
- 101. Washington University of St. Louis, St. Louis, MO, USA
- 102. Yale New Haven Hospital, Yale School of Medicine, Yale, CT, USA

References

- 1. Christophersen, I. E. *et al.* Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation. *Nat. Genet.* **57**, 289 (2017).
- 2. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: A tool for genomewide complex trait analysis. *Am. J. Hum. Genet.* **88**, 76–82 (2011).
- 3. Purcell, S. *et al.* PLINK: a tool set for whole-genome association and population-based linkage analyses. *Am. J. Hum. Genet.* **81**, 559–575 (2007).
- 4. Chang, C. C. *et al.* Second-generation PLINK: rising to the challenge of larger and richer datasets. *Gigascience* **4**, 1–16 (2015).
- 5. NINDS Stroke Genetics Network (SiGN), International Stroke Genetics Consortium. Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study. *Lancet Neurol.* **15**, 4–7 (2015).
- 6. Loh, P.-R. *et al.* Efficient Bayesian mixed-model analysis increases association power in large cohorts. *Nat. Genet.* **47**, 284–290 (2015).