

B

QDGPR161 single molecule imaging data set	Theoritical probability of witnessing one or more exit event	Number of exit events imaged
\#1: 26 movies $\times 20 \mathrm{~min}=520 \mathrm{~min}$	90.3%	1
\#2: 78 movies $\times 5 \mathrm{~min}=390 \mathrm{~min}$	81.4%	1
\#3: 17 movies $\times 20 \mathrm{~min}=340$ min $(N G$ channel captured at 1 min interval)	78.3%	1

The theoretical probability of witnessing one or more exit event is $P_{\text {exit }}=1-\left(1-\left(R_{\text {exit }}{ }^{*} N_{\text {min }}\right)\right)^{\wedge} N_{\text {movie }}$ where $R_{\text {exit }}$ is the exit rate of GPR161 $(0.256 / \mathrm{h}=0.0043 / \mathrm{min}$, measured in Fig. 1 G$)$, $N_{\text {min }}$ is the length of each movie in minutes and $N_{\text {movie }}$ is the number of movies captured.
Therefore, probability \#1 $=1-(1-(0.0043 * 20))^{\wedge} 26=0.90348$

D
Intermediate compartment visits by ${ }^{\text {QD GPR161 }}$

