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S1 BOOTSTRAPPING THE WEIGHTS ON ΘQ

For a given model defined by some set of equivalence classes, the distribution of parameters is estimated by sampling
(without replacement) biomolecular events, and from the observed data for each biomolecular event h, estimating
parameter sets ηhq for each equivalence class Eq . This allows the estimation of the likelihood of observed data given
the model (Eqn. 4) and hence of posterior likelihoods of the model given the data.

However, if the distribution of θq is dissimilar from model to model, it may be advantageous to weight a sampled
ηhq by the likelihood that the sampled biomolecular event h is representative of a given model M . In this case, Eqn. 4
becomes Eqn. 8; that is,

P(Dc |M) =
∏
q

1∑
h v

h
M

∑
h

vhM
∏

Dcj∈DcEq

P(Dcj | ηhq )

where for model M the estimated ηhq are weighted by vhM .
Since the weights vhM represent the likelihood that the model M applies to biomolecular event h, these can be

acquired through estimation of the posterior likelihoods; vhM = P(M | Dh). Using these estimated weights in Eqn. 8
allows the posterior likelihoods to be updated; consequently, the weights used to refine the estimated distribution of
parameters may be updated. This process may be repeated over a number of cycles to bootstrap to a set of refined
weight estimates; convergence of posterior likelihoods to within small variations is likely, though not guaranteed for
all biomolecular events under all distributional choices.

The estimated posterior distributions on θq given by Eqn. 5 can similarly be updated given these weights, such that

ωhq (c) =
vhMP(DcEq | ηhq )∑

ηq∈Θq
vhMP(DcEq | ηq)

Note the distinction between the weights vhM and the weights whq defined in Eqn. 5; the whq (c) allow the estimate of
posterior distributions for a specific biomolecular event c while the weights vq modify the prior distribution for all
biomolecular events.

Two basic strategies are proposed for initial estimates of vhM . In the case where each model is defined by a unique
set of equivalence classes, the posterior likelihoods can be estimated from Eqn. 3 and used as the first estimates for
vhM . Where two or more models have identical equivalence class definitions (see Section S2) a partition of the data
whereby vhM is initially either 0 or 1 may be used to establish initial estimates of vhM before bootstrapping a set of
refined estimates.

S2 QUALITATIVE DIFFERENCES BETWEEN SUBSETS OF BIOMOLECULAR EVENTS
In high-throughput sequencing experiments, it is not uncommon to find a subset of biomolecular events that are
qualitatively different from the remainder. In mRNA-Seq data, we expect a set of non-expressed genes to which only
a small number of reads are assigned, for reasons such as sequencing error, misalignment or very low background
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levels of expression. Figure S15 shows the distribution of the log of the parameter associated with mean expression
in RNA-seq data, assumed to be distributed negative binomially and equivalently across all samples. The tail of data
to the left of the modal peak may be considered to represent non-expressed genes.

To distinguish between such qualitatively different events, we can construct additional models in baySeq v2. In
the example above, we construct one model (MNDE) for expressed but non-differentially expressed genes, and one
model (MNE) for non-expressed genes. These two models are identical in terms of their equivalence classes, but will
differ in the assumed hyperdistribution.

Two principal options exist for varying the assumed hyperdistributions between models that share the same
equivalence classes. Firstly, since the purpose of the two models is to separate two qualitatively different sets of
biomolecular events, we may find some function of the values in Θq that splits the data. The data shown in Figure S15
can be split by minimising the intra-class variance (Otsu, 1979). Sampled values mapping to the left of the threshold
indicated by the vertical red line represent the distribution of data for MNE while those to the right represent the
distribution of data for MNDE .

In some cases, the distinction between two quantitatively different models for gene expression introduces a natural
variation between the hyperdistributions. For example, in paired data, a substantial proportion of the data may be
equivalently expressed within all pairs, and this may be regarded as a qualitatively different scenario to equivalent
expression across replicates but divergent expression within each pair. We have previously shown (Hardcastle and
Kelly, 2013) that these cases can be analysed by constructing a model for equivalent expression across replicates.
Assuming a beta-binomial distribution with parameters p, the proportion of counts observed in the first member
of each pair, and φ, the dispersion, a set Θq can be constructed by maximum likelihood methods, as discussed in
Section 2. We can then construct a second model describing equivalent expression within pairs in which the calculated
values for φ are used for the dispersions but in which the values for p are set to 0.5, the value which corresponds to a
hypothesis of balanced expression between pairs.

We simulate a set of data following Hardcastle and Kelly (2010) and Robinson and Smyth (2007) in which data
from ten thousand genes in ten samples are simulated from a negative binomial distribution, with means sampled
from a SAGE dataset. Dispersions for each gene are sampled from a gamma distribution with shape = 0.85 and
scale = 0.5. Library sizes for each sample are sampled from a uniform distribution between 30000 and 90000. One
thousand of the genes are simulated to have an eight-fold differential expression in either direction between the first
and second sets of five samples each. A further one thousand genes have their mean expression reduced by a factor
of twenty; these represent a set of unexpressed genes within the data.

The parameters of an assumed negative-binomial distribution are µhq , φh, where µhq represents the estimated mean
(scaled for library size) for some equivalence class q estimated by sampling some genomic event h, and φh the
similarly estimated dispersion. An initial weighting on these parameters for a model MNE of no expression is
acquired by considering the log of the µhq estimated in a model of no differential expression. Figure S16 shows the
distribution of this random variable and the threshold ψ which, if used to split this variable, minimises the intra-class
variance. For a modelMNE of no expression, the initial weights used are vhMNE

= 1 if logµhq < ψ and 0 otherwise,
while for all other models, the weights used are vhM = 1 − vhMNE

. We then iteratively use Eqn 8 to update these
weightings and improve the posterior likelihoods acquired for each model. At each iteration, vhM = 1− vhMNE

(the
current estimate of the posterior likelihood that gene h is not expressed) and vhM = 1− vhMNE

for all other models.
Figure S17 shows the performance of these methods in simultaneously identifying non-expressed and differentially
expressed genes in these simulations.
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S3 VARIABLE MODEL PRIORS
Figure S18 shows a reanalysis of the simulated data used in Soneson et al (Soneson and Delorenzi, 2013). This
figure is derived from simulated data equivalent to 12450 genes from 10 samples, of which approximately 1250 are
differentially expressed between the first five and second five samples. In one set of simulations, the differentially
expressed genes are equally likely to be up-regulated as down-regulated between the two groups in the data, while in
the other, all differential expression is up-regulation of the second group relative to the first. Allowing baySeq v2
to choose different model priors depending on which group has higher average expression gives a substantial increase
in performance in the unbalanced case, while not affecting performance for the balanced data.

S4 SIMULATION OF ZERO-INFLATED NEGATIVE BINOMIAL DATA
We base the simulation of these data on previous simulations developed to generate high-throughput sequencing data
(Hardcastle and Kelly, 2010; Robinson and Smyth, 2007) in which data from ten thousand genes in ten samples are
simulated from a negative binomial distribution, with means sampled from a SAGE dataset. Increased sequencing
depth can be explored by scaling these sampled means. Dispersions for each gene are sampled from a gamma
distribution with shape = 0.85 and scale = 0.5. Library sizes for each sample are sampled from a uniform distribution
between 30000 and 90000. One thousand of the genes are simulated to have an eight-fold differential expression in
either direction between the first and second sets of five samples. For each gene, we then sample a proportion pc of
zero-inflation from a uniform distribution between 0 and 0.5, and for each sample in that gene, replace the observed
value with a zero with probability pc.
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S5 SUPPLEMENTARY FIGURES

Fig. S1. A reanalysis of the qRT-PCR validated gene TaqMan set described in Rapaport et al. (2013), showing equal performance
between the implementation of baySeq used in Rapaport et al. (2013) and a negative-binomial implementation of baySeq v2.
This figure reproduces (save for the addition of the baySeq v2 curves) Fig. 2 of the Rapaport et al. (2013) manuscript using
source code made available by the authors.
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Fig. S2. The expected proportion of differentially expressed genes against the true proportion in simulation studies following
Hardcastle and Kelly (2010) and Robinson and Smyth (2007) with 10 libraries. The expected proportion of differentially expressed
genes was calculated by summing the posterior likelihoods of differential expression, and dividing by the total number of genes.
Model priors were calculated using the BIC method described in 2 or the iterative method described in Hardcastle (2010) (Hardcastle
and Kelly, 2010).
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Fig. S3. An example of stratified sampling for detection of differential expression in simulation studies following Hardcastle and
Kelly (2010) and Robinson and Smyth (2007) with 10 libraries and 10000 ’genes’. In (a), the summary value of average count
across samples is plotted against row index; dashed blue lines indicate the strata from which values are sampled. In (b), the density
of the average count is shown with strata indicated by dashed vertical blue lines. Red dots indicate 1% (100 genes) sampling, while
blue dots indicate a stratified sampling of 1%. In (c), average false discoveries (over twenty-five simulations) are shown against the
number of selected genes for full sampling (data on all genes are used), for a 1% sampling, and for a 1% stratified sampling. In (d),
average ROC curves (over twenty-five simulations) are shown for full, 1% and 1% stratified samplings.
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Fig. S4. Gene/spike-in variances of expression across all arrays in the Affymetrix HGU133A Latin Square data. Differentially
expressed spike-ins have much higher variance than data describing gene expression in cell-lines, as expected. Variance in the non-
differentially expressed control spike-ins can be as high as that seen in differentially expressed data, suggesting that these should be
removed from differential expression analyses.
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Fig. S5. Average predicted FDRs against true FDRs for baySeq v2 and limma analyses of samplings of non-overlapping pairs
of hybridisations in the Affymetrix HGU133A Latin Square data. baySeq v2 tends to underestimate the true FDR for these data,
whereas limma predicts no true positives in any analysis. Percentiles of predicted FDRs across samplings are shown as transparent
areas around curves.

8



Generalised empirical Bayesian methods: Supplemental T.J.Hardcastle

Fig. S6. Average ROC curves for baySeq v2 (zero-inflated negative binomial), ShrinkBayes, baySeq v2 (negative binomial),
ShrinkBayes with mixture model priors and baySeq v2 (zero-inflated negative binomial with unconstrained domain in prior
estimation) analyses of differential expression in zero-inflated negative binomially distributed data. Library scaling factors are
increased by factors of 1, 3, and 5. Percentiles of true positive rates across samplings are shown as transparent areas around curves.

Fig. S7. Average predicted FDRs against true FDRs for baySeq v2 (zero-inflated negative binomial), ShrinkBayes, baySeq v2
(negative binomial), ShrinkBayes with mixture model priors and baySeq v2 (zero-inflated negative binomial with unconstrained
domain in prior estimation) analyses of differential expression in zero-inflated negative binomially distributed data. Library scaling
factors are increased by factors of 1, 3, and 5. Percentiles of predicted FDRs across samplings are shown as transparent areas around
curves.
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Fig. S8. Proportions of false discoveries chosen with an FDR threshold of 0.05 for baySeq v2 (zero-inflated negative binomial),
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Fig. S9. Distribution of pq1 in a model of consistent expression between age groups for the observed expression from from ten
tissue types (adrenal gland, brain, heart, kidney, liver, lung, muscle, spleen, thymus, and uterus) in female rats, comparing four
juvenile (2-week old) to four aged (104-week old) individuals in the Rat BodyMap project (Yu et al., 2014). The threshold (red) is
chosen to minimise the intra-class variance of the partitioned data (Otsu, 1979).

11



Generalised empirical Bayesian methods: Supplemental T.J.Hardcastle

Cyp11b2

1
10

10
0

10
00

10
00

0

Adr:002
Adr:104

Brn:002
Brn:104

Hrt:002
Hrt:104

Kdn:002
Kdn:104

Lng:002
Lng:104

Lvr:002
Lvr:104

Msc:002
Msc:104

Spl:002
Spl:104
Thm:002

Thm:104
Utr:002

Utr:104

Clca1

1
2

5
10

20
50

10
0

20
0

Adr:002
Adr:104

Brn:002
Brn:104

Hrt:002
Hrt:104

Kdn:002
Kdn:104

Lng:002
Lng:104

Lvr:002
Lvr:104

Msc:002
Msc:104

Spl:002
Spl:104
Thm:002

Thm:104
Utr:002

Utr:104

Cubn

1
10

10
0

10
00

10
00

0

Adr:002
Adr:104

Brn:002
Brn:104

Hrt:002
Hrt:104

Kdn:002
Kdn:104

Lng:002
Lng:104

Lvr:002
Lvr:104

Msc:002
Msc:104

Spl:002
Spl:104
Thm:002

Thm:104
Utr:002

Utr:104

TPM1

1
10

0
10

00
0

Adr:002
Adr:104

Brn:002
Brn:104

Hrt:002
Hrt:104

Kdn:002
Kdn:104

Lng:002
Lng:104

Lvr:002
Lvr:104

Msc:002
Msc:104

Spl:002
Spl:104
Thm:002

Thm:104
Utr:002

Utr:104

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

Proportion

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

Proportion

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

Proportion

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

Proportion

D
en

si
ty

Adr
002

Adr
104

Brn
002

Brn
104

Hrt
002

Hrt
104

Kdn
002

Kdn
104

Lng
002

Lng
104

Lvr
002

Lvr
104

Msc
002

Msc
104

Spl
002

Spl
104

Thm
002

Thm
104

Utr
002

Utr
104

Fig. S10. Gene expression plots and posterior distributions of the parameters for the proportion of expression in the tissue of highest
(black) and second highest (red) expression. These four genes are the top ranked genes for a change in expression between tissue
but not over time.
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Fig. S12. Functional GO terms enriched by GOrilla (Eden et al., 2009) in the gene set showing a decline in expression in thymus
tissue relative to the expression across all other tissues.
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Fig. S14. The expected number of genes belonging to each model (a). Normalised expression values of the top ranked gene for
each of the eight models with highest expected number of genes, summarised by age group (b). Models are defined such that, e.g.
{1,2,3}{4} indicates that the data from age groups 1,2 and 3 are equivalently distributed, and differ from age group 4. Age groups
are identified in order, with 1 corresponding to juvenile individuals and 4 to aged individuals.
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Fig. S15. Distribution of the log of the parameter associated with the mean expression (scaled by library scaling factor and gene
length) in RNA-seq data derived from rat thymus in juvenile female individuals (Yu et al., 2014). The tail of data to the left of the
modal peak may be considered to represent non-expressed genes. The red line indicates the threshold level which minimises the
intra-class variance.
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Fig. S16. Distribution of the log of the parameter associated with the mean expression (scaled for library scaling factor) in a set of
simulated RNA-Seq data. The tail of data to the left of the modal peak may be considered to represent non-expressed genes. The
red line indicates the threshold level which minimises the intra-class variance.
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Fig. S17. Mean ROC and FDR curves for discovery of non-expressed and differentially expressed data in simulation studies, with
no bootstrapping (blue), and two (red), five (green) and ten (purple) cycles of bootstrapping. Percentiles of true discovery rates (for
ROC curves) and false discovery rates (for FDR curves) across simulations are shown as transparent areas around curves.
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Fig. S18. Average ROC curves showing performance of baySeq v2 on balanced and unbalanced differentially expressed data.
Allowing unequal model priors for different sets of the data increases performance for unbalanced data. Percentiles of true positive
rates across samplings are shown as transparent areas around curves.
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S6 SUPPLEMENTARY TABLES

GO term Description P-value FDR q-value
GO:0003723 RNA binding 3.17E-13 4.14E-10
GO:0044822 poly(A) RNA binding 1.66E-10 1.08E-7
GO:0003676 nucleic acid binding 2.69E-10 1.17E-7
GO:1901363 heterocyclic compound binding 5.69E-6 1.86E-3
GO:0097159 organic cyclic compound binding 7.25E-6 1.89E-3
GO:0008026 ATP-dependent helicase activity 2.12E-4 4.61E-2
GO:0070035 purine NTP-dependent helicase activity 2.12E-4 3.95E-2
GO:0051427 hormone receptor binding 2.86E-4 4.66E-2
GO:0035257 nuclear hormone receptor binding 3.05E-4 4.42E-2
GO:0035258 steroid hormone receptor binding 3.91E-4 5.09E-2
GO:0016874 ligase activity 7.28E-4 8.63E-2
GO:0003724 RNA helicase activity 8.34E-4 9.07E-2

Table S1. Functional GO terms enriched in the gene set showing a decline in expression in thymus tissue relative to the expression
across all other tissues.
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S7 CODE EXAMPLES
S7.1 Affymetrix Latin Square/Normally Distributed Data Code Example
This script fragment is intended to be run from the command line; it identifies differential expression in one set of spike-in replicates
with another (both defined on the command-line) in the Affymetrix Latin Square HGU133 data.

The required libraries, including the HGU133 cdf with spike-in data are loaded.

require(affy)
require(limma)
require(baySeq)
require(hgu133atagcdf)

Processing of command line arguments; the degree of parallelisation, and the two experiment numbers.

args <- as.numeric(commandArgs(TRUE))
cl <- makeCluster(args[1])
eA <- args[2]
eB <- args[3]

Pre-processing of the Affymetrix data. The data are processed through the RMA algorithm. True positives have been identified
previously.

ab <- ReadAffy(filenames = c(
dir(".", pattern = paste("Expt", eA, "_.*CEL", sep = ""),
full.names = TRUE),

dir(".", pattern = paste("Expt", eB, "_.*CEL", sep = ""),
full.names = TRUE)),

cdfname = "hgu133atagcdf")
nvals <- rma(ab)

## Background correcting
## Normalizing
## Calculating Expression

ned <- exprs(nvals)

We discard spike-in data that are not in the set of true positives (previously identified), as these are highly variable and produce
misleading results.

tp <- read.delim("latinsquare_TP.txt",
sep = "\t", header = FALSE, as.is = TRUE)[,1]

spikes <- rownames(ned)[grep("AFFX", rownames(ned))]
spikes <- spikes[!(spikes %in% tp)]
ned <- ned[!rownames(ned) %in% spikes,]

Linear model fitting on the expression data. Since this is a pairwise comparison, the design matrix is a single vector.

fit <- lmFit(ned, design = c(1,1,1,-1,-1,-1))
eb <- eBayes(fit)

The density function class is specified as follows. This function is defined within baySeq and so need not be re-defined here, but
is added to demonstrate the construction of such a class. Many of the parameters defined here are optional and offer only marginal
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performance improvements under specific conditions; the key element is the specification of the density in terms of observed data,
sets of recorded observables, and variable parameters.

normDensity <-
new("densityFunction",
description = "A density function based on the normal distribution.",

# The core density function
density = function(dat, observables, parameters) {

# return NA if any parameters are invalid
if(any(sapply(parameters, function(par) any(par < 0))))
return(NA)

# calculate relative (log) likelihood of the
# data under an assumed normal distribution
# based on the parameters supplied

dnorm(dat, parameters[[1]] * observables$libsizes,
parameters[[2]], log = TRUE)},

# Initiating values supplied to the numerical
# estimation of maximum likelihood parameter
# values for a given set of data. Avoiding the
# boundaries of the domain of the density
# function is usually advantageous for numerical
# estimation, and so zeros are prevented from
# occuring in these initial estimates.

initiatingValues = function(dat, observables)
c(mean = max(mean(dat / observables$libsizes),
min(0.1 / observables$libsizes)),

sd = max(sd(dat), 1e-4)),

# The first parameter (mean expression) is
# assumed to vary across experimental conditions
# when estimating priors. The second parameter
# (standard deviation) is assumed to be fixed
# across experimental conditions.

equalOverReplicates = c(FALSE, TRUE),
# Bounds on the domain of the function for the
# single non-fixed parameter.

lower = function(dat) 0, upper = function(dat) 1 + max(dat) * 2,
# Stratification function and number of strata
# (if subsampling)

stratifyFunction = rowMeans, stratifyBreaks = 10,
# Function on the data which will likely exhibit
# bimodality in the presence of 'null' data.

nullFunction = function(pars) pars[,1])

A “countData” object can then be constructed from the data to carry out a pairwise comparison between the two experiments as
for the limma analysis. Prior estimation and posterior likelihood estimation is then straightforward.

normCD <- new("countData", data = ned,
replicates = c("1", "1", "1", "2", "2", "2"),
groups = list(NDE = c(1,1,1,1,1,1), DE = c(1,1,1,2,2,2)))

densityFunction(normCD) <- normDensity
libsizes(normCD) <- c(1,1,1,1,1,1)
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normCD <- getPriors(normCD, cl = cl)
normCD <- getLikelihoods(normCD, cl = cl)
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S7.2 Zero-Inflated Negative Binomial Code Example
This script fragment is intended to be run from the command line; it identifies differential expression in simulated zero-inflated
count data using baySeq v2 and ShrinkBayes.

S7.2.1 Data simulation Sampled mean values from SAGE set used to simulate count data

load("zhanglambdas.RData")

Simulation function for zero-inflated data

simZI <- function(muscale, zprop, libs, b = 8, n = 10000, perDE = 0.1) {
# Sample library sizes and dispersions
libsizes <- round(runif(libs, 30000, 90000)) * muscale
dispersions <- rgamma(n, shape = 0.85, scale = 0.5)

# Create empty matrix
y <- matrix(0, nrow = n, ncol = libs)

# simulate DE genes
if(n * perDE > 1)
for(jj in 1:(n * perDE))
{
samlam <- sample(lambdas, 1)
rcoin <- rep(sample(c(-1, 1)), each = (libs / 2))
while(sum(y[jj,]) < 1)
y[jj,] <- rnbinom(libs, size = 1/dispersions[jj],

mu = (sqrt(b) ˆ rcoin) * samlam * libsizes)
}

#simulate NDE genes
for(jj in (n*perDE+1):n)
{
samlam <- sample(lambdas, 1)
while(sum(y[jj,]) < 1)
y[jj,] <- rnbinom(libs, size = 1/dispersions[jj], mu = samlam * libsizes)

}

ziDat <- y

# zero inflate data
p <- runif(nrow(ziDat), 0, zprop)
for(ii in 1:nrow(ziDat))
ziDat[ii, sample(c(TRUE, FALSE), size = ncol(ziDat), replace = TRUE,

prob = c(p[ii], 1-p[ii]))] <- 0
ziDat
}

Required libraries are loaded:

require(baySeq)
require(ShrinkBayes)

25



Generalised empirical Bayesian methods: Supplemental T.J.Hardcastle

Processing command-line arguments; the degree of parallelisation, the scaling parameter on library sizes, the proportion of zero
inflation, the number of libraries, and the proportion of differential expression.

args <- as.numeric(commandArgs(TRUE))
print(args)

## [1] 8.0 5.0 0.5 10.0 0.1

muscale <- args[2]; zprop = args[3]; libs = args[4]; perDE = args[5]
cl <- makeCluster((args[1]))

Simulation of data:

ziDat <- simZI(muscale, zprop, libs = libs, perDE = perDE)

S7.2.2 baySeq fitting Model specification for baySeq

groups <- list(NDE = rep(1, libs), DE = rep(1:2, each = libs / 2))

The density function class is specified as follows. This function is defined within baySeq and so need not be re-defined here,
but is added to demonstrate the construction of such a class. Many of the parameters defined here are optional and offer only
marginal performance improvements under specific conditions; the key element is the specification of the density in terms of
observed data, sets of recorded observables, and variable parameters. The constraint on the domain of the likelihood function such
that ζ ≥ maxr{1− 2−1|DcFr |}, i.e., ζ is greater or equal to that proportion of zero-inflation which gives a 50% chance of seeing
no zeros within the smallest replicate group is introduced in the core density function.

# The core density function.
.dZINB <- function(dat, observables, parameters) {
if(any(sapply(parameters, function(par) any(par < 0)))) return(NA)
zinf <- parameters[[3]]
# Zero-inflation cannot exceed 1
if(any(zinf >= 1)) return(NA)

# Zero-inflation should be greater than the proportion of
# zero-inflation which gives a 50\% chance of seeing no zeros.
if(any(zinf < 1-0.5ˆ(1/observables$dim[2]))) return(NA)

# probability of data without zero inflation
nzero <- dnbinom(dat, mu = parameters[[1]] * observables$libsizes *

observables$seglens, size = 1 / parameters[[2]],
log = TRUE) + log(1 - zinf)

# probability of zeros under zero inflation
zero <- c(-Inf, log(zinf))[as.integer(dat == 0) + 1]

# combined probabilities
pmz <- pmax(nzero, zero)
log(exp(zero - pmz) + exp(nzero - pmz)) + pmz
}

ZINBDensity <- new("densityFunction",
description = "A density function based on the zero-inflated
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negative-binomial distribution.",
density = .dZINB,

# Initiating values supplied to the numerical
# estimation of maximum likelihood parameter
# values for a given set of data. Avoiding the
# boundaries of the domain of the density
# function is usually advantageous for numerical
# estimation, and so zeros are prevented from
# occuring in these initial estimates.

initiatingValues = function(dat, observables)
c(mean(pmax(dat,0.1) / observables$libsizes / observables$seglens), 0.1,
min(0.9, max(1 - 0.5ˆ(1/observables$dim[2]), sum(dat == 0)/length(dat)))),

# The first parameter (mean expression) is
# assumed to vary across experimental conditions
# when estimating priors. The second and third
# parameters (dispersion and zero-inflation) are
# assumed to be fixed across experimental conditions.

equalOverReplicates = c(FALSE, TRUE, TRUE),
# Bounds on the domain of the function for the
# single non-fixed parameter.

lower = function(dat) 0, upper = function(dat) 1 + max(dat) * 2,
# Stratification function and number of strata
# (if subsampling)

stratifyFunction = rowMeans, stratifyBreaks = 10)

A “countData” object can then be constructed from the data to carry out a pairwise comparison between the two experiments as
for the limma analysis. Prior estimation and posterior likelihood estimation is then straightforward.

CDZI <- new("countData", data = ziDat, replicates = rep(1:2, each = libs / 2),
groups = groups, densityFunction = ZINBDensity)

libsizes(CDZI) <- getLibsizes(CDZI)

CDZI <- getPriors(CDZI, cl = cl)
CDZI <- getLikelihoods(CDZI, cl = cl)

S7.2.3 ShrinkBayes fitting Parameters for ShrinkBayes

group <- as.factor(rep(1:2, each = 5))
group <- BaselineDef("group", baselinegroup = "1")

Manually rescale libraries since ShrinkBayes does not apply internal library scaling.

libsize <- colSums(ziDat)
rellibsize <- libsize/exp(mean(log(libsize))) #library size relative to geometric mean
ziDat = round(sweep(ziDat, 2, rellibsize, "/"))

Fit for differential expression
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form = y ˜ 1 + group
shrinkDE <- ShrinkSeq(form=form, dat=ziDat,shrinkfixed="group",mixtdisp=TRUE,ncpus=1)
fitgDE <- FitAllShrink(form,dat=ziDat,fams="zinb",shrinksimul = shrinkDE,ncpus=1)

Fit for non-differential expression

form <- y ˜ 1
shrinkNDE <- ShrinkSeq(form=form, dat=ziDat,mixtdisp=TRUE,ncpus=1)
fitgNDE <- FitAllShrink(form,dat=ziDat,fams="zinb",shrinksimul = shrinkNDE,ncpus=1)

Non-parametric prior and posterior estimation; calculation of Bayesian false discovery rates.

cpprior <- NonParaUpdatePrior(fitall=fitgDE, fitall0 = fitgNDE, modus="fixed",
shrinkpara="group", shrinklc=NULL,ncpus=1, maxiter=3,
includeP0 = FALSE, symmetric=TRUE, logconcave=FALSE, allow2modes=FALSE)

cppostshr <- NonParaUpdatePosterior(fitgDE,cpprior, fitall0 = fitgNDE, ncpus=1)

lfdr <- SummaryWrap(cppostshr, thr = 0.1)
lBFDR <- BFDR(lfdr)

Mixture model prior and posterior estimation; calculation of Bayesian false discovery rates.

cmprior <- MixtureUpdatePrior(fitall=fitgDE, fitall0 = fitgNDE,
shrinkpara = "group", ncpus = 1)

cmpost <- MixtureUpdatePosterior(fitall=fitgDE, cmprior, fitall0 = fitgNDE, ncpus = 1)
lmfdr <- SummaryWrap(cmpost, thr = 0.1)
lmBFDR <- BFDR(lmfdr)
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S7.3 Dirchlet-Multinomial Code Example
This script fragment is intended to be run from the command line; it identifies differential expression in matched sample data using
a (restricted) Dirichlet-multinomial distribution implemented in baySeq v2

Load (eXpress) processed count data in the form of a list of matrices (object cdat), each matrix containing counts for one tissue.

load("female_rat_data.RData")

Create ’countData’ object. When the data slot is specified as a list of matrices, this is turned into a three-dimensional array.

require(baySeq)
cD <- new("countData", data = cdat[1:10],

replicates = c(1,1,1,1,2,2,2,2),
groups = list(NDE = c(1,1,1,1,1,1,1,1),

DE = c(1,1,1,1,2,2,2,2)))

The core density function for calculating likelihoods of data given the model from a restricted Dirichlet-multinomial distribution
function, in which the two highest proportion values in the multinomial fit are evaluated separately, and the remaining proportions
are assumed to be equal. This function is defined within baySeq and so need not be re-defined here, but is added to demonstrate
the construction of such a class.

.multiDirichletFunction2 <- function(dat, observables, parameters) {
# No parameter may lie outside the range [0,1]
if(any(sapply(parameters, function(par) any(par < 0) | any(par > 1))))

return(NA)

# Force ordering on proportion parameters
if(!all(parameters[[2]] >= parameters[[3]])) return(NA)

# Calculation of Dirichlet-multinomial densities for each row
# of matrix x given matrix of proportions and dispersion parameter
ddirmult <- function(x, prop, disp) {

if(nrow(x) != nrow(prop))
stop("Dimension of x does not match dimension of proportions")

ps <- rep(NA, (nrow(x)))
alphas = (1/disp - 1) * prop
ps <- lfactorial(rowSums(x)) - rowSums(lfactorial(x)) +

lgamma(rowSums(alphas)) - lgamma(rowSums(alphas) + rowSums(x)) +
rowSums(lgamma(x + alphas) - lgamma(alphas))

return(ps)
}

x <- dat[,,,drop = TRUE]
# find indices of two maximum proportions
maxp <-

order(colSums(x / observables$libsizes), decreasing = TRUE)[1:2]

#extract dispersion parameter
disp <- parameters[[1]]
disp <- array(disp, dim = dim(x))

# construct proportion matrix from indices of maximum proportions
props <- matrix(NA, nrow = nrow(x), ncol = observables$dim[3])
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props[,maxp] <- do.call("cbind", parameters[-1])
props[is.na(props)] <-

(1 - rowSums(props, na.rm = TRUE)) / (observables$dim[3] - 2)

# enforce domain of function to avoid illegal values
if(any(props >= 1) | any(props[,maxp[1]] < 1/observables$dim[3])

| any(props <= 0) | any(disp <= 2e-15)) return(NA)

# modify proportions by observed library sizes
propmod <- props * observables$libsizes
propmod <- propmod / rowSums(propmod)

# compute likelihoods of data
ddirmult(x = x, prop = propmod, disp = disp)

}

md2Density <- new("densityFunction",
description = "A density function based on an

R[2]-multinomial-Dirichlet distribution, in which the two highest
proportion values in the multinomial fit are evaluated separately,
and the remaining proportions are assumed to be equal. This
density function is designed to assess genomic events that
generate multiple counts (e.g. RNA-Seq from multiple tissue types
taken from the same organism).",
# use the core density function specified above

density = .multiDirichletFunction2,
# initiating values for maximum likelihood estimation estimated from data
# fudgeFactor prevents zeros in inital values
initiatingValues = function(dat, observables) {

dat <- dat / array(observables$libsizes,
dim = c(1, dim(observables$libsizes)))

fudgeFactor <-
0.1/observables$dim[3] /observables$dim[2] /max(observables$libsizes)

props <- rep(1/observables$dim[3], observables$dim[3])
if(sum(dat) > 0) {

sumdat <- apply(dat, 3, sum)
scaledat <- apply(dat, 2, sum)
props[sumdat == 0] <- min(fudgeFactor / scaledat)
props[sumdat > 0] <- apply(dat[,,sumdat > 0,drop = FALSE], 3,
function(x) mean(x / scaledat, na.rm = TRUE)) -

min(fudgeFactor / scaledat) *
sum(sumdat == 0) / sum(sumdat != 0)

}
c(0.01, sort(props, decreasing = TRUE)[1:2])

},
equalOverReplicates = function(datdim) c(TRUE, FALSE, FALSE),
lower = function(data) 0,
upper = function(data) 1,
stratifyFunction = function(data)

rowMeans(data[,,1] / rowSums(data), na.rm = TRUE),
stratifyBreaks = 10,
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# null function specified on the distribution of the largest proportion
nullFunction = function(pars) pars[,2],

# modify estimated priors for the 'null' data to reflect consistent expression
modifyNullPriors = function(x, datdim) {x[[1]][,2:3] <- 1/datdim[2]; x})

Assign the restricted Dirichlet-multinomial density class to the ’countData’ object.

densityFunction(cD) <- md2Density

Prior estimation and posterior likelihood estimation is carried out as before. ’Null’ data allows the differentiation of genes
showing equal expression across tissue types and ages from those with equal expression across tissue types but variable across
ages.

cD <- getPriors(cD, cl = cl)
cD <- getLikelihoods(cD, nullData = TRUE,

bsNullOnly = FALSE, bootStraps = 5, cl = cl)
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S8 COMPLEX MODELLING CODE EXAMPLE
This script fragment is intended to be run from the command line; it identifies multiple patterns of differential expression in
RNA-seq data from four different age groups of female rat thymus tissue.

Processing of command line arguments; the degree of parallelisation used.

args <- as.numeric(commandArgs(TRUE))
cl <- makeCluster(args[1])

Load (eXpress) processed count data as a matrix (object cdat) containing counts for each gene/sample, and annotation for the
genes (object annot).

load("female_thymus_all_ages.RData")

Construct countData object, specifying replicate structure and standard negative-binomial distribution

require(baySeq)
cD <- new("countData", data = cdat,

replicates = c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4), annotation = annot)
libsizes(cD) <- getLibsizes(cD)
densityFunction(cD) <- nbinomDensity

Specify groups for a reduced model fit.

groups(cD) <- list(NDE = c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),
LDE = c(1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2),
MDE = c(1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2),
EDE = c(1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2),
cat = c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4))

Reduced model fit; prior and posterior likelihood estimation

cD <- getPriors(cD, cl = cl)
cD <- getLikelihoods(cD, cl = cl)

Reduced model fit; prior and posterior likelihood estimation with consensus priors

cDc <- getPriors(cD, consensus = TRUE, cl = cl)
cDc <- getLikelihoods(cDc, cl = cl)

All models generated from replicate structure of data.

cDa <- allModels(cD)

All model fit; prior and posterior likelihood estimation.

cDa <- getPriors(cDa, cl = cl)
cDa <- getLikelihoods(cDa, cl = cl)

All model fit; prior and posterior likelihood estimation with consensus priors.
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cDac <- getPriors(cDa, cl = cl, consensus = TRUE)
cDac <- getLikelihoods(cDac, cl = cl)
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