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SUPPORTING TEXT. 1	  

Inference of gains and presence of genes on branches of the tree. 2	  

To estimate the probability that specific genes were gained or present on each branch of the tree, 3	  

we chose a simple heuristic, based on the joint probability of the states of the ancestor and 4	  

descendant nodes (Methods). We chose this approach because we are not concerned with any 5	  

gain, but rather with gains that are retained until the end of a branch. For example, any gain at all 6	  

is to be expected at some rate more or less without regard to genome content of the host, due to 7	  

phage infection or DNA in the environment. However, given that the vast majority of these gains 8	  

are followed closely by losses (Baltrus 2013), they are not as biologically interesting as genes 9	  

gained and retained adaptively, and they are also mostly unobserved. Additionally, our approach 10	  

allows us to consider the probability of steady presence across a branch. Furthermore, our 11	  

approach considers the average reconstruction at each node to compute the probability of gain or 12	  

presence of genes on branches, rather than summing across each possible reconstructed scenario 13	  

in the stochastic mapping procedure (for instance weighted by the likelihood of each possible 14	  

scenario). While using all possible mappings could, in principle, reduce the numerical error of 15	  

our probability estimates, it would entail an onerous and potentially intractable computation. 16	  

Moreover, the biological (Figure 2) and statistical (Figures 5, S8) validations we have performed 17	  

suggest that our results are robust.  18	  

Our method of inferring gains is also different from the probabilities of gains (or, 19	  

similarly, the expected number of gains) that are computed by the gainLoss software (Cohen and 20	  

Pupko 2010), using a previously-developed continuous-time Markov chain (CTMC) model to 21	  

count the number of gains on each branch (Minin and Suchard 2008).  These models solve the 22	  

problem of counting the number of one-way transitions between two states (say, presence and 23	  

absence) given transition rates, states at the start and end of the interval, and a set amount of time 24	  

in the interval. Thus, the CTMC implemented in gainLoss is capable of estimating the expected 25	  

number of gains of a given gene on a given branch, with knowledge of gain and loss rates. 26	  

However, this approach can lead to problematic cases in which a gene can be absent in ancestor 27	  

and descendant nodes, and yet, given a very long branch, is inferred to be gained on this branch. 28	  

While such scenarios may have statistical support, in practice they are very hard to interpret and 29	  

compare to other events that more obviously support a gain. Given the presence of Archaea in 30	  

our phylogeny, which are a dramatically divergent outgroup, this was a cause for concern. 31	  
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Indeed, the CTMC estimated that the median gene was gained more than twice along the long 1	  

branch connecting Archaea to Bacteria, with some genes gained more than 10 times on this 2	  

branch alone (data not shown). This result is almost certainly artefactual, but has the potential to 3	  

substantially skew the overall appraisal of gains for a given gene. This problem is probably 4	  

exacerbated by overfitting, given that gainLoss assigns each gene a potentially unique mixture of 5	  

gain and loss rates, in addition to re-estimating the branch lengths of the tree. All of these 6	  

parameters are used in computing an expected number of gains for a gene on a branch in addition 7	  

to the reconstruction. It is possible that such methods are inappropriate for large phylogenies 8	  

with highly heterogeneous branch lengths. For these reasons and those stated above, we chose to 9	  

ignore the gainLoss CTMC estimates in favor of the less sophisticated but more interpretable 10	  

gain/presence inference method described above. 11	  

 12	  

Simulation of gene gain/loss evolution. 13	  

Previous attempts to use the gainLoss software to make inferences about horizontal gene transfer 14	  

and detect coevolution used a parametric bootstrapping approach, simulating the evolution of 15	  

genes to obtain null expectations for testing hypotheses (Cohen et al. 2011, 2012). While the use 16	  

of exact parametric methods to estimate this null distribution is possible in principle (Maddison 17	  

1990), these methods rely upon a single binary reconstruction of ancestral states. Clearly, our 18	  

probabilistic reconstruction is unsuited for such an analysis. Again, one could in principle 19	  

enumerate all possible reconstructions, and estimate the null distribution exactly as a weighted 20	  

sum across each reconstructions, but developing this method for large trees lies outside the scope 21	  

of this paper.  22	  

In our simulations, we therefore followed the example of others with certain 23	  

modifications. The simulation procedure implemented in the gainLoss program was too memory-24	  

intensive to be feasible for a sufficiently large number of genes. Consequently, we took the gain 25	  

and loss rates inferred by gainLoss for the real genes and used their distribution to simulate the 26	  

evolution of genes using the function rTraitDisc() in the APE library. Briefly, we fit gamma 27	  

distributions to the rates of gain and the rates of loss across all genes, and used the resulting 28	  

parameters to define sampling distributions for gain and loss rates of simulated genes (see 29	  

Methods). We found that using these distributions inferred relatively few gains compared to the 30	  

gains of observed genes (compare Figure S1A and Fig S1C). We speculated that the rate mixture 31	  
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model employed by gainLoss has difficulties accommodating the upper tail of the distribution of 1	  

gain rates (roughly, those genes gained >50 times in this tree), given that the vast majority of 2	  

genes are gained relatively few times (Fig S1A). Consequently, we adjusted the shape 3	  

parameters of the gain and loss rate distributions heuristically to find values that gave 4	  

distributions of simulated gains that included genes that are gained sufficiently many times. We 5	  

found that multiplying the shape parameter of the gain rate by 3 and the shape parameter of the 6	  

loss rate by 1.5 gave reasonably wide distributions of gains among simulated genes (Fig S1E). It 7	  

is important to note that the shape of the distribution from which rates are drawn does not affect 8	  

the simulated evolution of a given gene with single sampled gain and loss rates. Furthermore, 9	  

because we are not using the entire distribution of simulated genes but only those most 10	  

appropriate to each gene as a null distribution, any differences in the distributions of gain counts 11	  

between simulated and real genes are unlikely to affect results. 12	  

 13	  

Power of the PGCE detection method. 14	  

One of our observations is that there are weak relationships between the prevalence of a gene, 15	  

how often it is gained, and its in- and out-degrees in the PGCE network (Fig S4). Given that 16	  

these values define the null distributions that we use to infer PGCEs, it was possible that our 17	  

analyses are less sensitive for certain values of these parameters. We considered to what extent a 18	  

lack of power was affecting our results with a simple power analysis. For genes i and j, the 19	  

maximum observable value Cij counting the gains of j in the presence of i is min(pi, gj), 20	  

representing respectively the prevalence of gene i and the number of gains of gene j. For a range 21	  

of values of these parameters (pi, gj), we compared this maximum potential observation to the 22	  

null distribution from parametric bootstrapping appropriate to these parameter values. This 23	  

represents the most extreme possible test statistic between the two genes for these parameter 24	  

values, so in each case the null hypothesis should be rejected if there is sufficient power. We 25	  

found that power varied substantially across various values of (pi, gj) (Figure S2A). Specifically, 26	  

we were incapable of detecting associations for any combination involving the most-prevalent 27	  

genes or the least-gained genes. This is unsurprising, given that noise is expected to be high for 28	  

the former, and signal to be low for the latter. Considering our observed distribution of p-values 29	  

(Figure S2B), we find the expected spike in frequency near p = 0 (indicating true positive 30	  

dependencies), but also an unexpected spike in frequency near p = 1, indicating that our 31	  
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parametric bootstrapping test is underpowered due to the sparsity of gains, as suggested by 1	  

power analysis (Fig S2A). Consequently, there are likely to be many more PGCEs than we detect 2	  

in this study. Notably, if we relax our FDR threshold from 1% to 5% in inferring PGCEs, we 3	  

increase the raw number of edges in our network more than ten-fold (from 8,415 to 86,719). We 4	  

chose to proceed with the more stringent threshold to focus on the most confident PGCEs, but 5	  

we use this example to highlight the very large potential for PGCEs structuring genome 6	  

evolution in prokaryotes.  7	  

 8	  

Processing and analysis of the PGCE network.  9	  

After inferring a PGCE network, we post-processed this network to both ease further analysis 10	  

and to remove potentially spurious edges. First, we removed edges such that the network became 11	  

a directed acyclic graph (DAG). DAGs are relatively easy to analyze and interpret topologically. 12	  

We found only one cycle-inducing edge: an obviously spurious self-edge (for gene K07218). The 13	  

absence of non-spurious cycles may be initially surprising, but can be explained by the relatively 14	  

small number of genes with in-edges (less than one-third of genes in the network) and the anti-15	  

correlation of in-degree and out-degree across genes (Fig S4E). To evaluate whether the lack of 16	  

cycles is attributable to degree distribution, we randomly rewired the DAG five times while 17	  

preserving degree distribution, and in each of these five cases the result was still a DAG. This 18	  

analysis indicates that this acyclic topology is a simple consequence of degree distribution, rather 19	  

than a biological property of specific PGCE relationships. Together, these results indicate that 20	  

few cycles are expected for a network with such properties. However, one might still expect 21	  

some number of true cycles from a biological point of view, even if the network itself is biased 22	  

against them. We believe that such cycles likely exist, but we are not detecting them because of 23	  

our relatively low power, and the stringency of our threshold for assigning edges (Fig S2, see 24	  

above section).  25	  

Next, we removed potentially spurious edges in the network that might have been 26	  

introduced by indirect transitive effects. For example, if gene A encourages the gain of gene B, 27	  

and gene B encourages the gain of gene C (AàBàC), we might also infer that there is a direct 28	  

AàC PGCE, even if such a PGCE does not actually exist. Consequently, we performed a 29	  

transitive reduction of our DAG to obtain a “minimal equivalent graph” (Hsu 1975), or a DAG 30	  

with all potentially indirect interactions (such as the AàC example above) removed. While 31	  
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potentially removing true PGCEs, we thus enrich our PGCE network for the most confident 1	  

interactions. This procedure removed 186 potentially indirect PGCEs. It is this DAG, with all 2	  

cycles and indirect edges removed, that we used for all downstream analyses. 3	  

The degree distributions for this network indicated that a slight majority of genes (nodes) 4	  

are disconnected, and we omitted these genes from further analyses. Furthermore, the 5	  

distribution of in-degrees was more unequal than that of out-degrees across nodes (Fig S4A, 6	  

S4B). The degree distributions showed weak relationships with the prevalence and gain count of 7	  

genes, but these do not appear to be primary determinants of network structure (Fig S4C, S4D).  8	  

 9	  

Dependencies among pathways. 10	  

The urtA-rbsL PGCE (Figure 3) highlighted the potential importance of inter-pathway PGCE 11	  

dependencies. To understand the structure of such pathway-pathway dependencies, we tested for 12	  

associations between genetic pathways within the PGCE network, compared to a null 13	  

distribution of rewired networks. We detected 93 pathway-pathway dependencies (each p < 14	  

0.001, compared to the rewired null distribution), which we modeled as a directed network 15	  

among 65 pathways (Figure S6). Unlike the PGCE network, the pathway-pathway dependency 16	  

network has many cycles. Related pathways showed many dependencies and clustered with each 17	  

other, most strikingly for the metabolism of aromatic compounds. Consequently, we expect that 18	  

PGCE dependencies, rather than only representing one-to-one interactions between genes, also 19	  

reflect functional relationships between whole genetic pathways. 20	  

 21	  

Algorithms. 22	  

Feedback arc set (FAS) identification algorithm (Hausmann and Korte 1978; Hassin and 23	  

Rubinstein 1994). 24	  

1) Start with an empty DAG and an empty FAS;  25	  

2) Select a random edge E from our PGCE network, add it to the DAG;  26	  

3) If adding E to the graph adds a cycle, remove E again and add it to the FAS, else accept E 27	  

in the DAG;  28	  

4) If there are more edges that are neither in the DAG nor in the FAS, go to 2 29	  

Transitive reduction of a DAG algorithm (Hsu 1975). 30	  

1) Convert the network into an adjacency matrix representation;  31	  
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2) Convert the adjacency matrix into a path matrix;  1	  

3) Remove all edges in the path matrix that can be explained by other paths, by iterating 2	  

over all groups of 3 nodes. 3	  

Topological sort with grouping algorithm (Knuth 1973). 4	  

We used the following procedure to perform a topological sort of a DAG:  5	  

(1) Initialize the rank count with “rank” = 1;  6	  

(2) Identify the set of nodes in the DAG with in-degree = 0 (these occupy the first position in 7	  

a sort);  8	  

(3) Label these nodes with the current “rank” (1 in the first step);  9	  

(4) Remove these nodes and their edges from the DAG (some new nodes will now have in-10	  

degree = 0;  11	  

(5) if there are still nodes in the DAG, increment “rank” by 1 and go to step 2.  12	  

The resulting labeled groups constitute the ordered ranks of the topological sort.  13	  

 14	  

 15	  

  16	  
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Figure S1. Distributions of total gains (A) and prevalence (B) estimated for empirical genes by 1	  
the gainLoss program. gainLoss rate estimates lead to underestimation of gains (C) and 2	  
prevalence (D) in the tree: gene gain counts across 104 genes simulated according to gain/loss 3	  
rates directly estimated by gainLoss for empirical genes. Gene gain (E) and prevalence (F) 4	  
counts across genes simulated for use in null distributions. Red (gain) and blue (prevalence) line 5	  
plots indicate, for each value of gain count or prevalence, the absolute difference of the least 6	  
similar gene in its null distribution from that value (maximum deviance). For instance, in (E), a 7	  
gene with 40 gains will be compared to a null distribution of simulated genes with as few as 39 8	  
gains and as many as 41 gains (deviance of one). Relative to (A) and (B), parameters of the 9	  
underlying distributions of gain and loss rates were heuristically adjusted to provide acceptable 10	  
coverage of the gain/prevalence values observed for empirical genes in (E) and (F).  11	  
  12	  
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 1	  
Figure S2. (A) Power analysis of the parametric bootstrapping hypothesis test for detecting 2	  
PGCEs. X and Y axes represent, respectively, total prevalence and total gains for a hypothetical 3	  
pair of genes with a strong PGCE (maximum observable test statistic). Colors represent the 4	  
(log10-scaled) minimum possible p-value that can be attained for such a gene pair using the 5	  
relevant null distribution of simulated genes. Areas that are not white/pale yellow are 6	  
underpowered for detecting PGCEs. (B) The distribution of empirical p-values observed for 7	  
testing hypotheses of no PGCE in the evolution of pairs of genes, according to parametric 8	  
bootstrapping. The spike at p = 1.0 in (B) indicates that sparsity in the data detracts from power, 9	  
as predicted in (A), even after filtering pairs of genes with Cij <= 1. 10	  
 11	  
  12	  
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 1	  
Figure S3. A global network of directional dependencies between prokaryotic genes (PGCEs). 2	  
Node size is scaled to total edge count for each node (and see also Figure S4). 3	  
 4	  
  5	  
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 1	  
Figure S4. (A) Out-degree distributions of the final PGCE network (nodes with out-degree equal 2	  
to zero are omitted). (B) In-degree distributions of the final PGCE network (nodes with in-degree 3	  
equal to zero are omitted). (C-E): Prevalence and gain counts of genes only weakly affect their 4	  
PGCEs. The degrees of each gene (node) in the PGCE network are plotted against its prevalence 5	  
(C) and counted gains (D) throughout the tree, and the degrees are plotted against each other (E). 6	  
Pearson correlations between the plotted variables are indicated above each plot. PCC = Pearson 7	  
correlation coefficient, p-value is from a correlation test. 8	  
 9	  
 10	  
  11	  
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 1	  
Figure S5. A network of evolutionary dependencies between functional pathways. Overall 2	  
structure of the evolutionary pathway-pathway dependency network. Directed edges indicate that 3	  
the source pathway and the sink pathway are connected by more PGCEs between individual 4	  
genes in those pathways than expected from a rewired null distribution (p < 0.001). Colors 5	  
indicate selected pathway clusters of similar functions (green: aromatic compound secondary 6	  
metabolism; red: pathogenesis; purple: carbohydrate metabolism; yellow: DNA metabolism).  7	  
 8	  
 9	  
  10	  



Supporting Information – Press et al. 2015 – Evolutionary assembly patterns 

	  

13 

13 

 1	  
Figure S6. Differences in gain counts do not explain differential sorting of genes in different 2	  
functional groups. (A): Variation in ranks of the sort across functional categories. (B): Total 3	  
branches in which gains have occurred (“gains in tree”) across genes in various functional 4	  
categories that are differentially ranked in a topological sort of the PGCE network. Note that the 5	  
categories with the highest average gain (Carbohydrate and Xenobiotics metabolism) are ranked 6	  
in the middle of the sort. See Table 1.  7	  
  8	  
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 1	  
Figure S7. Phylogenetic depth of gene gains in bacteria decreases with rank in the topological 2	  
sort. Phylogenetic depth of the gains of genes are weakly negatively correlated with their ranks 3	  
in the sort (Spearman’s r = -0.24, p < 2.2 x 10-16). For each rank, we plot the distribution of the 4	  
phylogenetic depths (distance of gain branch from root) of the average depth of confident gains 5	  
(Pr(gain) > 0.6)  of each gene in that rank. The mean of each distribution is plotted as a red point. 6	  
Branches leading to Archaea and archaeal genomes are omitted from the analysis. Boxplot 7	  
widths are scaled to the number of genes in each rank of the sort. The tree was converted to an 8	  
ultrametric tree for the purpose of this analysis (the root is separated from all tips by a total 9	  
branch length of 1.0).  10	  
 11	  
  12	  
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 1	  
Figure S8. (A) Overlap of edges in PGCE networks inferred from different subsets of the data. 2	  
See also Table S4. All overlaps are highly statistically significant (p < 2.2E-16, hypergeometric 3	  
test). (B) Distribution of prediction scores for gene acquisition on each branch in the test set 4	  
clades. Branches with a gain (Pr(gain) > 0.5)) have a higher score than branches without a gain 5	  
(Pr(gain) < 0.5) for predictable genes (p < 2.2E-16 for each, U-test). Predictable genes are the 6	  
affected genes in at least one PGCE, i.e. they have at least one in-edge in the trained PGCE 7	  
model. Violin plots show density of each distribution, with an inset boxplot (white box is median 8	  
of distribution). Each violin plot shows the distribution of prediction scores for branches in one 9	  
test set for one category (gene gained/gene not gained).  10	  
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Table S1. Genes which influence the gain of rbsS, gene encoding the RuBisCO small chain. 1	  
KEGG Orthology (KO) Description 

K02584 Nif-specific regulatory protein 
K06139 pyrroloquinoline quinone biosynthesis protein E 
K06138 pyrroloquinoline quinone biosynthesis protein D 
K06137 pyrroloquinoline-quinone synthase [EC:1.3.3.11] 
K06136 pyrroloquinoline quinone biosynthesis protein B 
K09165 hypothetical protein 
K03809 Trp repressor binding protein 
K13483 xanthine dehydrogenase YagT iron-sulfur-binding subunit 
K13481 xanthine dehydrogenase small subunit [EC:1.17.1.4] 
K02448 nitric oxide reductase NorD protein 
K02597 nitrogen fixation protein NifZ 
K02596 nitrogen fixation protein NifX 
K02595 nitrogenase-stabilizing/protective protein 
K02593 nitrogen fixation protein NifT 
K02592 nitrogenase molybdenum-iron protein NifN 
K02022 HlyD family secretion protein 
K11811 arsenical resistance protein ArsH 
K08973 putative membrane protein 
K12511 tight adherence protein C 
K08995 putative membrane protein 
K07506 AraC family transcriptional regulator 

K10778 
AraC family transcriptional regulator, regulatory protein of adaptative response / 
methylated-DNA-[protein]-cysteine methyltransferase [EC:2.1.1.63] 

K07165 transmembrane sensor 
K07161 NA 

K00830 
alanine-glyoxylate transaminase / serine-glyoxylate transaminase / serine-pyruvate 
transaminase [EC:2.6.1.44 2.6.1.45 2.6.1.51] 

K01266 D-aminopeptidase [EC:3.4.11.19] 
K05559 multicomponent K+:H+ antiporter subunit A 
K02278 prepilin peptidase CpaA [EC:3.4.23.43] 
K02279 pilus assembly protein CpaB 
K02276 cytochrome c oxidase subunit III [EC:1.9.3.1] 
K02274 cytochrome c oxidase subunit I [EC:1.9.3.1] 
K02275 cytochrome c oxidase subunit II [EC:1.9.3.1] 
K02305 nitric oxide reductase subunit C 

K13924 
two-component system, chemotaxis family, CheB/CheR fusion protein [EC:2.1.1.80 
3.1.1.61] 

K13926 ribosome-dependent ATPase 
K09924 hypothetical protein 
K10764 O-succinylhomoserine sulfhydrylase [EC:2.5.1.-] 
K07157 NA 
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K03188 urease accessory protein 
K01067 acetyl-CoA hydrolase [EC:3.1.2.1] 
K01797 NA 
K00824 D-alanine transaminase [EC:2.6.1.21] 
K00685 arginine-tRNA-protein transferase [EC:2.3.2.8] 
K09796 hypothetical protein 
K11177 xanthine dehydrogenase YagR molybdenum-binding subunit [EC:1.17.1.4] 
K11178 xanthine dehydrogenase YagS FAD-binding subunit [EC:1.17.1.4] 
K00329 NADH dehydrogenase [EC:1.6.5.3] 
K09008 hypothetical protein 
K09005 hypothetical protein 
K05563 multicomponent K+:H+ antiporter subunit F 
K01800 maleylacetoacetate isomerase [EC:5.2.1.2] 
K00253 isovaleryl-CoA dehydrogenase [EC:1.3.8.4] 
K02258 cytochrome c oxidase assembly protein subunit 11 
K11962 urea transport system ATP-binding protein 
K11963 urea transport system ATP-binding protein 
K11960 urea transport system permease protein 
K11961 urea transport system permease protein 
K05973 poly(3-hydroxybutyrate) depolymerase [EC:3.1.1.75] 
K07102 NA 
K00023 acetoacetyl-CoA reductase [EC:1.1.1.36] 
K15866 2-(1,2-epoxy-1,2-dihydrophenyl)acetyl-CoA isomerase [EC:5.3.3.18] 
K04561 nitric oxide reductase subunit B [EC:1.7.2.5] 
K05564 multicomponent K+:H+ antiporter subunit G 
K05562 multicomponent K+:H+ antiporter subunit E 
K05561 multicomponent K+:H+ antiporter subunit D 
K05560 multicomponent K+:H+ antiporter subunit C 
K02533 tRNA/rRNA methyltransferase [EC:2.1.1.-] 
K15011 two-component system, sensor histidine kinase RegB [EC:2.7.13.3] 
K03200 type IV secretion system protein VirB5 
K07303 isoquinoline 1-oxidoreductase, beta subunit [EC:1.3.99.16] 
K07302 isoquinoline 1-oxidoreductase, alpha subunit [EC:1.3.99.16] 
K07234 uncharacterized protein involved in response to NO 
K00303 sarcosine oxidase, subunit beta [EC:1.5.3.1] 
K02651 pilus assembly protein Flp/PilA 
K01055 3-oxoadipate enol-lactonase [EC:3.1.1.24] 
K02502 ATP phosphoribosyltransferase regulatory subunit 
K03325 arsenite transporter, ACR3 family 
K02225 cobalamin biosynthetic protein CobC 
K01991 polysaccharide export outer membrane protein 
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K04748 nitric oxide reductase NorQ protein 
K00304 sarcosine oxidase, subunit delta [EC:1.5.3.1] 
K00305 sarcosine oxidase, subunit gamma [EC:1.5.3.1] 
K01429 urease subunit beta [EC:3.5.1.5] 
K05343 maltose alpha-D-glucosyltransferase/ alpha-amylase [EC:5.4.99.16 3.2.1.1] 
K06044 (1->4)-alpha-D-glucan 1-alpha-D-glucosylmutase [EC:5.4.99.15] 
K13766 methylglutaconyl-CoA hydratase [EC:4.2.1.18] 
K01430 urease subunit gamma [EC:3.5.1.5] 
K11959 urea transport system substrate-binding protein 
K15012 two-component system, response regulator RegA 
K00457 4-hydroxyphenylpyruvate dioxygenase [EC:1.13.11.27] 
K00104 glycolate oxidase [EC:1.1.3.15] 
K04756 alkyl hydroperoxide reductase subunit D 
K03519 carbon-monoxide dehydrogenase medium subunit [EC:1.2.99.2] 
K09983 hypothetical protein 
K06995 NA 
K00119 NA 
K00449 protocatechuate 3,4-dioxygenase, beta subunit [EC:1.13.11.3] 
K00114 alcohol dehydrogenase (cytochrome c) [EC:1.1.2.8] 
K05524 ferredoxin 
K02282 pilus assembly protein CpaE 
K02280 pilus assembly protein CpaC 
K03153 glycine oxidase [EC:1.4.3.19] 
K09959 hypothetical protein 
K00050 hydroxypyruvate reductase [EC:1.1.1.81] 
K08738 cytochrome c 
K07018 NA 
K00126 formate dehydrogenase, delta subunit [EC:1.2.1.2] 
K14161 protein ImuB 
K11902 type VI secretion system protein ImpA 

K07246 
tartrate dehydrogenase/decarboxylase / D-malate dehydrogenase [EC:1.1.1.93 4.1.1.73 
1.1.1.83] 

K03198 type IV secretion system protein VirB3 
K11472 glycolate oxidase FAD binding subunit 
K11473 glycolate oxidase iron-sulfur subunit 
K11475 GntR family transcriptional regulator, vanillate catabolism transcriptional regulator 
K07649 two-component system, OmpR family, sensor histidine kinase TctE [EC:2.7.13.3] 
K07395 putative proteasome-type protease 
K07028 NA 
K02391 flagellar basal-body rod protein FlgF 
K01601 ribulose-bisphosphate carboxylase large chain [EC:4.1.1.39] 
K03821 polyhydroxyalkanoate synthase [EC:2.3.1.-] 
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K07168 CBS domain-containing membrane protein 
K06923 NA 
K00411 ubiquinol-cytochrome c reductase iron-sulfur subunit [EC:1.10.2.2] 
K01941 urea carboxylase [EC:6.3.4.6] 
K17226 sulfur-oxidizing protein SoxY 
K11897 type VI secretion system protein ImpF 

K10125 
two-component system, NtrC family, C4-dicarboxylate transport sensor histidine 
kinase DctB [EC:2.7.13.3] 

K10126 
two-component system, NtrC family, C4-dicarboxylate transport response regulator 
DctD 

K04090 indolepyruvate ferredoxin oxidoreductase [EC:1.2.7.8] 
 1	  
  2	  
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Table S2. Enrichment analysis of genes influencing the gain of rbsS.  1	  
Annotation label p-value1 test set2 background 

set3 
Enrichment4 

Nitric oxide reductase (Nor) complex 6.73E-05 4 5 12.83018868 
Urea transport system (Urt) 8.62E-07 5 5 16.03773585 
Purine degradation, xanthine=>urea 0.00042 4 7 9.164420485 
Photorespiration 8.49E-05 5 9 8.909853249 
Type IV secretion system 0.0031 4 11 5.831903945 
1: from a hypergeometric test. 2	  
2: the number of genes with this annotation appearing in Table S1 (out of 129 genes). 3	  
3: the number of genes with this annotation appearing in the set of all genes in the PGCE network (out of 2472 4	  
genes). 5	  
4: The ratio of the observed proportion of genes with this label to the expected proportion. 6	  
5: The annotation of these genes to the same pathway is not present in KEGG, so this enrichment is derived from 7	  
our manual annotation. 8	  
 9	  
  10	  



Supporting Information – Press et al. 2015 – Evolutionary assembly patterns 

	  

21 

21 

Table S3. Summary of nodes (genes) ranked by their order in a topological sort. 1	  
Rank Number of genes Total out-degree Total in-degree 
1 1593 7792 0 
2 498 357 2512 
3 118 73 2348 
4 46 6 2992 
5 5 0 376 
 2	  
  3	  
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Table S4. Characteristics of PGCE network models inferred from data subsets. 1	  
Dataset1 # PGCEs ROC AUC2 Predictable / Total3 

All (predicting Firmicutes)c 8,228 0.80 667 / 3281 
Lacking Firmicutes 3,703 0.73 394 / 3281 
Lacking A/B-proteobacteria 1,726 0.68 204 / 3505 
1: The dataset used to train the PGCE model in question. Predictions are made concerning the test set (dataset 2	  
lacking Firmicutes predicts Firmicutes). 3	  
2: Area under the curve of the receiver operating characteristic curve; a random prediction is 0.5, a perfect 4	  
prediction is 1.0. 5	  
3: The number of genes that are predictable using each dataset to train PGCE models, compared to the total number 6	  
of genes that are actually gained at least once (defined as Pr(gain) > 0.5) in the test set clade.  7	  
  8	  
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