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Supplementary Note

1 UK Biobank data

We analyzed genetic data from the UK Biobank full release consisting of 487,409 samples typed at
∼800,000 markers and imputed to ∼93 million variants [5]. We restricted the sample set to 459,327
individuals of European ancestry (based on self-reported white ethnicity), and for linear regres-
sion analyses, we further restricted the sample set to 337,539 British-ancestry individuals passing
principal component analysis filters and containing no third-degree or closer relationships [5].
(The ancestry filter eliminated ∼50,000 samples and the relatedness filter eliminated an additional
∼70,000 samples.) We restricted the genotyped marker set to autosomal markers with missingness
<10% and minor allele frequency (MAF) >0.1%, leaving 672,292 markers. We analyzed ∼20
million imputed variants with MAF >0.1% (applying this filter within BOLT-LMM).

In our running time benchmarks, we also analyzed genetic data from the UK Biobank interim
release of 152,249 samples imputed to ∼72 million variants. Applying analogous exclusions pro-
duced a sample set of 145,613 European-ancestry individuals typed at 651,011 autosomal markers
with missingness <10% and MAF>0.1%. We used QCTOOL v2 to convert imputed data between
the BGEN v1.1 and v1.2 formats (to benchmark previous versions of BOLT-LMM, which only
support the BGEN v1.1 format).

We analyzed 23 phenotypes selected based on phenotyping rate >80% (Supplementary Ta-
ble 1), SNP-heritability hg

2>0.08 (Supplementary Table 2), and low correlation between traits.
We performed basic QC on each trait, removing outliers outside the reasonable range for each
quantitative trait and quantile normalizing within sex strata after correcting for covariates as de-
scribed in previous GWAS [11–16].

In all association analyses, we included assessment center, genotyping array, sex, age, and age
squared as covariates. In linear regression analyses (implemented in the BOLT-LMM software),
we also included 20 principal components to correct for ancestry (provided with the UK Biobank
data release [5]). In our primary BOLT-LMM analyses, we included 20 principal components
computed on our filtered marker set using the FastPCA [17] algorithm (as implemented in PLINK
2.0 [18] --pca approx). In auxiliary BOLT-LMM analyses, we varied the number of principal
components included as covariates (Supplementary Table 7).

2 BOLT-LMM version 2.3

Our new release of the BOLT-LMM software (version 2.3) performs much faster processing of im-
puted genotypes, which we discovered was the bottleneck for analyses of extremely large imputed
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data sets (e.g., ∼93 million variants in the UK Biobank N=500K release). This step of the BOLT-
LMM computation, which occurs after the model-fitting steps and scales only linearly in sample
size and variant count, nonetheless accounted for the large majority of running time for previous
versions of BOLT-LMM on UK Biobank data. To overcome this bottleneck, we implemented
fast multi-threaded support for analysis of imputed genotypes in the new BGEN v1.2 file format
(used to encode genotype probabilities in the UK Biobank full release). Streaming BGEN data and
decompressing it in a thread-safe manner (and also applying MAF and INFO filters to allow early-
exit when possible) requires careful implementation given that BGEN is a compressed format that
is not guaranteed to be indexed. BOLT-LMM v2.3 analyzes these imputed genotypes by reading
compressed probability data for blocks of 400 variants at a time from disk and then analyzing these
data in parallel compute threads. Analysis of a single variant involves decompressing the genotype
probabilities, computing the variant’s allele frequency and INFO score (and exiting early if MAF
or INFO thresholds are not met), projecting out covariates, and computing the BOLT-LMM test
statistic (via a dot product with the residualized phenotype and rescaling term [3]).

For analyses of very large data sets with BOLT-LMM v2.3, we additionally now recommend in-
cluding principal components as covariates for the purpose of increasing the rate of convergence of
the iterative computations performed during BOLT-LMM’s model-fitting steps [3]. For phenotypes
with high heritability, these steps of the computation account for the majority of run time (after the
improvements to processing of imputed data described above) but can be sped up by including PC
covariates. Projecting out top PCs (which can be computed rapidly using FastPCA [17]) improves
the conditioning of the matrix computations that BOLT-LMM implicitly performs, improving con-
vergence; details are provided in Section 5 below.

3 Power analyses

We benchmarked statistical power of three association analysis approaches: linear regression (us-
ing 20 principal component covariates), BOLT-LMM using a Gaussian SNP effect prior (BOLT-
LMM-inf, equivalent to the standard “infinitesimal” mixed model [1, 2, 19–24]), and BOLT-LMM
using its default mixture-of-Gaussians prior on SNP effect sizes, which accounts for larger-effect
SNPs [3]. We tested all three methods on the subset of N=337,539 unrelated British samples, and
we additionally tested BOLT-LMM-inf and BOLT-LMM (which are robust to sample structure) on
the full set of N=459,327 European-ancestry samples.

We performed two types of benchmarks to assess statistical power afforded by each analysis.
First, we counted independent genome-wide significant associations identified by each analysis.
To obtain counts that were robust to linkage disequilibrium among associated variants and avoided
double-counting of loci, we used PLINK’s LD clumping algorithm [18] using LD computed in
N=113,851 unrelated British individuals [25] at 9.6 million imputed SNPs with MAF>0.1% and
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INFO>0.6 (corresponding to a conservative genome-wide significance threshold of p<5×10–9).
We used a stringent 5Mb window and R2 threshold of 0.01 for LD clumping, and we further
collapsed associated SNPs within 100kb of each other. These analyses demonstrated that BOLT-
LMM-inf and BOLT-LMM achieved considerable power gains over linear regression when run on
the same set of N=337,539 unrelated British samples (21% and 28% increases in locus discovery,
respectively; Supplementary Table 2). Expanding the sample set to include all European individu-
als (allowing relatives) achieved even larger boosts in power (76% and 84%, respectively; Fig. 1a
and Supplementary Table 2).

Second, to provide additional insight into the power gain achieved by BOLT-LMM, we exam-
ined the amounts of phenotypic variance explained by BOLT-LMM’s internal linear predictors and
the increases in χ2 test statistics (for BOLT-LMM-inf and BOLT-LMM vs. linear regression) at
associated SNPs. We previously showed that these two quantities are tightly coupled [3]; the intu-
ition is that independent of its ability to analyze data sets containing sample structure (and thereby
gain power by analyzing more samples), BOLT-LMM also achieves increased power by implicitly
conditioning on polygenic predictions using genome-wide SNPs [3,6]. Conditioning on polygenic
predictions effectively reduces noise in an association test, producing a multiplicative boost in χ2

statistics at associated loci in a manner similar to increasing sample size.
We compared the variance explained by BOLT-LMM’s linear predictor—using either the de-

fault mixture-of-Gaussians prior on SNP effect sizes or the single-Gaussian BOLT-LMM-inf model,
equivalent to best linear unbiased prediction (BLUP)—to the variance theoretically explained by
an optimal linear predictor, i.e., SNP-heritability hg

2. Variance explained by the linear predic-
tors within BOLT-LMM and BOLT-LMM-inf were estimated internally by the BOLT-LMM soft-
ware via out-of-sample benchmarks (training on 80% of samples and testing on the remaining
20%). We observed that for several traits, BOLT-LMM successfully predicted more than half of
SNP-heritability; for height and hair color, BOLT-LMM predicted >40% of phenotypic variance
(Fig. 1b, Supplementary Fig. 1, and Supplementary Table 3).

Estimation of effective sample size. To estimate the effective sample size achieved by BOLT-
LMM and BOLT-LMM-inf, we then measured the boosts in χ2 association statistics of BOLT-
LMM and BOLT-LMM-inf (on either N=337,539 or 459,327 samples) versus linear regression on
N=337,539 unrelated British samples. Specifically, for BOLT-LMM (resp. BOLT-LMM-inf) on
N=459,327 samples, we computed the median ratio of BOLT-LMM (resp. BOLT-LMM-inf) χ2

statistics on N=459,327 samples to linear regression χ2 statistics (on N=337,539 samples) across
genotyped SNPs with χ2>30 (roughly corresponding to the usual 5×10–8 genome-wide signif-
icance threshold) in BOLT-LMM N=337,539 analyses. We ascertained associated SNPs in this
way—using an association test different from the two methods being compared—to avoid bias-
ing our benchmarks in favor of either BOLT-LMM (resp. BOLT-LMM-inf) (N=459,327) or linear
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regression (N=337,539). We conducted the other benchmarks (for BOLT-LMM and BOLT-LMM-
inf on N=337,539 samples) in an analogous manner, swapping the roles of the N=337,539 and
N=459,327 data sets. We observed boosts in χ2 test statistics at associated SNPs (equivalently,
boosts in effective sample size) that tracked closely with the proportions of variance predicted by
BOLT-LMM and BOLT-LMM-inf (Fig. 1b, Supplementary Fig. 1, and Supplementary Table 3).
(We verified that these boosts were robust to the ascertainment threshold χ2>30 for selecting as-
sociated benchmark SNPs. Replacing this threshold with χ2>20 or χ2>40 had a negligible effect
on the results: the estimated boosts in effective sample size (Supplementary Table 3b) change by
a mean multiplicative factor of 0.98 (standard deviation 0.03) when using a threshold of χ2>20
instead of χ2>30. Similarly, using χ2>40 instead of χ2>30 changes these numbers by a mean
multiplicative factor of 1.01 (standard deviation 0.02).)

For traits in which BOLT-LMM predicted only a very small fraction of phenotypic variance
(e.g., hypothyroidism and smoking status), we observed that BOLT-LMM N=459,327 analyses
still achieved moderate gains in association power over linear regression on N=337,539 unrelated
British samples; here, BOLT-LMM still benefited from the increased sample size (achieving power
equivalent to ∼430K unrelated individuals; Supplementary Table 3). For traits in which BOLT-
LMM predicted large fractions of phenotypic variance (e.g., height and hair color), we observed
that BOLT-LMM N=459,327 analyses achieved power equivalent to linear regression on up to
∼700K unrelated samples (Fig. 1b, Supplementary Fig. 1, and Supplementary Table 3). As ex-
pected, BOLT-LMM achieved substantial additional gains over BOLT-LMM-inf for traits with
larger-effect SNPs (e.g., hair color, tanning ability, and blood cell traits; Supplementary Table 3).

We also considered estimating effective sample size based on polygenic prediction accuracy,
but this approach is subject to the concern that prediction accuracy is a function not only of sam-
ple size and SNP-heritability, but also of the effective number of chromosome segments (Me)—
which may be different in different sample sets [26, 27]. Here, we found that Me differed very
slightly between the N=337,539 and N=459,327 sample sets: using the inverse variance of off-
diagonal genetic relationship matrix (GRM) entries to estimate Me [26,27], we obtained estimates
of Me=106K for the N=337K data and Me=104K for the N=459K data. The observation of near-
identical Me between the N=337,539 and N=459,327 sample sets—the latter of whcih contains re-
lated individuals—suggests that the the level of relatedness present in UK Biobank is low enough
not to substantially affect the overall genetic structure of the data set, which is consistent with our
observation that linear regression on the full N=459K data—without accounting for relatedness—
only exhibits slight confounding (Supplementary Table 4).

Comparison to other UK Biobank LMM analyses. LMM analyis of at “atlas” of UK Biobank
traits has also been undertaken in [9]. We compared BOLT-LMM p-values to GeneATLAS p-
values [9] by regressing BOLT-LMM –log10p-values on GeneATLAS –log10p-values for height.
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We observed a high correlation of 0.96 and a regression slope of 1.31 (driven by greater signif-
icance at top associated SNPs), indicating that BOLT-LMM was achieving substantially greater
power. This observation was expected given that (a) the BOLT-LMM analysis included an ad-
ditional ∼50K non-white-British individuals, (b) the BOLT-LMM analysis used a LOCO (leave-
one-chromosome-out) approach when conditioning on polygenic predictions to increase statistical
power, whereas the GeneATLAS analysis used an odd/even-chromosome leave-out approach that
conditioned on only half the genome, and (c) the BOLT-LMM analysis modeled non-infinitesimal
genetic architectures and was thus better able to condition on larger-effect SNPs (whereas the
“atlas” analysis conditioned on polygenic predictions constructed assuming an infinitesimal archi-
tecture, as in standard mixed model analysis).

4 Calibration analyses

To assess the calibration of BOLT-LMM (i.e., control of false positives) when used to analyze
all N=459,327 European samples (keeping related individuals) we performed benchmarks using
LD score regression [7]. For each phenotype, we considered BOLT-LMM N=459,327 association
statistics, linear regression N=337,539 association statistics computed using 20 principal compo-
nent covariates (as a negative control robust to confounding), and linear regression N=337,539
association statistics computed without PC covariates (as a positive control susceptible to slight
confounding from population stratification among British individuals). We used the LDSC soft-
ware to run LD score regression on each set of association statistics using the baselineLD model [8]
(which applies stratified LD score regression, S-LDSC [28]). (In brief, the baselineLD model is
comprised of 59 “baseline” annotations (based on coding, UTR, promoter, and intronic regions,
histone marks, DNAse hypersensitivity sites, ENCODE annotations, conserved regions, and en-
hancers), 10 MAF bin annotations, and 6 LD-related annotations.) We used LD scores from 1000
Genomes EUR samples [29]; LD scores need to be estimated using sequence data, so estimating
LD scores within the UK Biobank sample was not an option. (Computing LD scores using imputed
data is not recommended [7].)

We previously proposed using the LD score regression intercept as a way of distinguishing
polygenicity from confounding as possible sources of increased association test statistics [7]. In
theory, SNPs with larger numbers of LD partners have more opportunities to tag causal variants,
such that regressing observed χ2 statistics (for a properly calibrated association test) against the
LD score of a SNP should produce a regression line with a y-intercept of 1 (even if the mean
χ2 statistic across all SNPs is larger than 1 due to polygenicity); in contrast, the y-intercept will
be larger than 1 if the association test is confounded by ancestry or relatedness. In practice, we
previously observed that LD score intercepts were typically close to 1 but slightly larger than 1 due
to deviations from the theoretical model (e.g., attenuation bias) [7].
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Here, we observe that in highly-powered analyses of traits with substantial heritability, these
deviations push the LDSC intercept well above 1 for uninflated association tests, e.g., PC-corrected
linear regression on unrelated British samples (Supplementary Fig. 2a and Supplementary Table 4).
The reason is that in such analyses, the mean χ2 test statistic is much larger than 1 (e.g., ∼4 for lin-
ear regression N=337,539 and ∼7 for BOLT-LMM N=459,327 analysis of height, after excluding
SNPs explaining >0.1% of variance), such that even a slight deviation from theory results in large
intercepts (here, as high as 1.5). In general, we observe that LD score regression intercepts tend
to rise with SNP-heritability and sample size (Supplementary Fig. 2a and Supplementary Table 4).
This behavior of the LDSC intercept makes test statistic inflation difficult to discern based on the
value of the LDSC intercept alone: for example, for the height phenotype, linear regression on
N=337,539 unrelated British samples without principal component covariates—which is suscepti-
ble to inflation—and BOLT-LMM on N=459,327 European samples both have LDSC intercepts of
nearly 1.5.

Fortunately, accounting for differences in mean χ2 statistic for different phenotypes and as-
sociation methods improves the interpretability of the LDSC intercept. The attenuation ratio,
(LDSC intercept – 1) / (mean χ2 – 1), calibrates the intercept against the overall shift in χ2

statistics (due to polygenicity for uninflated association tests). Here we observe that for each
trait, PC-corrected linear regression and BOLT-LMM have near-identical attenuation ratios, typi-
cally around 0.08 (Fig. 1c), whereas uncorrected linear regression typically has larger attenuation
ratios, indicating confounding (Supplementary Fig. 2b and Supplementary Table 4). Across 23
traits, we observe similar mean attenuation ratios of 0.078 (s.e.m. 0.006) for PC-corrected linear
regression (N=337,539) and 0.082 (0.005) for BOLT-LMM (N=459,327), a statistically insignif-
icant difference (BOLT-LMM had the higher attenuation ratio for 12 of 23 traits); in contrast,
we observe a much higher mean attenuation ratio of 0.104 (0.012) for uncorrected linear regres-
sion (N=337,539). We also observe a slightly higher mean attenuation ratio of 0.085 (0.006) for
PC-corrected linear regression on all N=459,327 European samples (higher than N=337,539 PC-
corrected linear regression for 17 of 23 traits; binomial p=0.01), indicating slight confounding
from relatedness, as expected. These observations provide confidence that BOLT-LMM is success-
fully controlling for sample structure (as expected for mixed model methods) [1, 2]. We note that
attenuation ratios are broadly smaller under the baselineLD model, which incorporates genome
annotations [8], than under the original LDSC model (Supplementary Table 5), consistent with
better model fit upon incorporating genome annotations.

Intuition for attenuation ratios. Attenuation bias in LDSC analyses is essentially a measure
of model misspecification: the basic assumption of LD score regression is that association chi-
square statistics should (on average) increase linearly with the extent to which a SNP tags other
potentially causal SNPs—i.e., the LD score of the SNP [7]. If this model holds perfectly, then the
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regression has an intercept of 1 and an attenuation ratio of 0; on the other extreme, if LD scores
are completely non-informative, the regression becomes flat with an intercept equal to the mean
chi-square statistic and an attenuation ratio of 1. In general, most LDSC analyses exhibit modest
nonzero attenuation ratios, as previously noted in refs. [3, 7].

As we show in Supplementary Fig. 2 and Supplementary Tables 4 and 5, attenuation ratios
vary among traits (as expected, given that different traits have genetic architectures with different
levels of agreement to the LDSC model); however, for a given trait, attenuation ratios are largely
consistent between analyses of N=337K unrelated individuals vs. N=459K related individuals (also
as expected, given that increasing sample size or relatedness does not affect the underlying genetic
architecture of a trait). We also observe that attenuation ratios under the original LDSC model
(Supplementary Table 5) are generally larger than attenuation ratios under the baselineLD model
(Supplementary Table 4), consistent with improved model fit upon augmenting the LDSC model
with information about genomic annotations.

Estimation of heritability parameters. While estimation of SNP-heritability for UK Biobank
traits was not a primary goal of this manuscript, we do report SNP-heritability estimates to help
with interpretation of our results on power and calibration. These estimates were obtained from
BOLT-LMM N=337K analyses, which estimated hg

2during model-fitting.
LDSC also reports estimates of heritability parameters during execution. However, unlike

BOLT-LMM, LDSC does not estimate the quantity traditionally termed “SNP-heritability” and
denoted hg

2. Whereas BOLT-LMM (and other restricted maximum likelihood approaches) estimate
the proportion of population variance explained by genotyped SNPs (hg

2), LDSC estimates the
causal heritability contributed by common SNPs (excluding those of large effect); this quantity is
usually smaller than hg

2 [28]. As an illustrative example to help intuition, consider a MAF=1%
SNP and a MAF=5% SNP in linkage disequilibrium. If the MAF=1% SNP is causal and untyped
while the MAF=5% SNP is not causal but is typed, then BOLT-LMM will partially include the
causal effect in its hg

2 estimate, while LDSC will include zero effect (because the MAF=1% causal
SNP is not common). If the MAF=1% SNP is causal and both SNPs are typed, then BOLT-LMM
will include the full causal effect in its hg

2 estimate, while LDSC will still include zero effect
(because the MAF=1% causal SNP is not common).

In Supplementary Table 9, we compare BOLT-LMM hg
2 estimates to the heritability parameters

estimated by LDSC (under either the baselineLD model [8] or the original LDSC model [7]).
Across 23 analyzed traits, the average ratio of the LDSC heritability parameter estimate to the
BOLT-LMM hg

2 estimate was 0.68 (s.e.m. 0.03) under the baselineLD model and 0.54 (s.e.m. 0.01)
under the original LDSC model. The ratio showed no correlation to the LDSC intercept (R = –0.03,
p = 0.9).
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5 Running time analyses

We benchmarked the running time of BOLT-LMM v2.3 (with 20 principal component covariates
to increase convergence rate; see below), the previous version of BOLT-LMM [3], and linear re-
gression using 20 principal component covariates (implemented efficiently within the BOLT-LMM
software; cf. Bycroft et al. Table S9 [5]) in example analyses of the years-of-education phenotype.
We ran each method on all European-ancestry individuals in the UK Biobank interim and full data
releases, analyzing ∼72M and ∼93M imputed SNPs, respectively, and imposing a MAF>0.1%
filter on minor allele frequency. (We ran linear regression on all European-ancestry individuals
for the sake of run time comparison even though this analysis would not be performed in practice
due to potential confounding from sample structure. Also, for BOLT-LMM v1 analysis of the full
data release, we analyzed imputed data from only chromosome 22 and extrapolated the compu-
tational cost to the full genome.) We performed all analyses using 8 threads of a 2.10 GHz Intel
Xeon E5-2683 v4 processor and reported the median of 5 runs (Fig. 1d and Supplementary Ta-
ble 6), observing a ∼4x speedup of BOLT-LMM v2.3 over the previous version, achieving speed
comparable to linear regression.

We further explored the effect of including varying numbers of principal components as co-
variates in BOLT-LMM analyses to improve convergence speed. During its model-fitting steps,
BOLT-LMM applies iterative methods (specifically, conjugate gradient iteration and variational
Bayes) to eliminate computationally expensive matrix operations that scale quadratically or cubi-
cally with sample size [3]. The cost of a single iteration scales only linearly with N; however, we
previously observed that the number of iterations required to achieve convergence increases slowly
with N [3]. Our analyses here (Supplementary Table 7) demonstrate that convergence can be sped
up by including principal component covariates (which effectively reduce the condition number
of the underlying matrix computations), thus achieving close-to-linear scaling of run time with
sample size. (Intuitively, projecting out PC covariates produces faster BOLT-LMM convergence
by reducing the amount of genetic structure in the GRM; this structure captured by top PCs is gen-
erally unrelated to genetic effects on phenotype.) We note that to achieve increased convergence,
principal components need to be computed on the set of SNPs used in the mixed model; PCs that
do not match the implicit genetic relationship matrix (GRM) will not improve conditioning. We
also note that after model-fitting, BOLT-LMM performs a linear-time association test on imputed
SNPs (which we sped up separately using multi-threading; see Section 2); the speedup described
here only applies to the model-fitting step.

Comparison to distributed computing approaches. We note that an alternatives exist to BOLT-
LMM’s algorithmic approach to efficient mixed model analysis at large sample sizes. In particular,
the DISSECT software [30], applied in the ref. [9], can utilize distributed computing across a large
compute cluster. This method enables O(N3) analyses of very large numbers of individuals and
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traits by efficiently distributing (and redistributing) data and computation across a suitably large
compute farm (e.g., 5,040 processor cores working together using 5TB of memory [9]). For the
use case of analyzing thousands of traits, the DISSECT approach can be more efficient than BOLT-
LMM as it requires only one expensive eigendecomposition (assuming missing phenotype values
are imputed to allow analysis of a single set of individuals), after which GWAS analyses take
only linear time (in SNPs and samples) per trait. In contrast, BOLT-LMM’s running time scales
superlinearly but subquadratically with sample size.

BOLT-LMM is designed for a different use case. In contrast to phenome-wide, “atlas”-stype
GWAS analyses (e.g., ref. [9]), we have designed BOLT-LMM to be useful to research groups
focused on specific phenotypes, who often wish to run carefully tailored and/or iterated analyses:
e.g., QC-ing and normalizing phenotypes, restricting to various subsets of individuals, applying
different covariate adjustments, etc. A good example is ref. [31], which applied BOLT-LMM to
blood cell traits that had been carefully adjusted for technical covariates (e.g., time between blood
collection and analysis, instrument drift, calibration events and episodes of malfunction), resulting
in de-noising of phenotypes by up to 40%. In contrast, most “atlas”-style endeavors apply minimal
phenotype QC given the infeasibility of performing detailed QC on hundreds of traits.

6 Unbalanced case-control analyses

As pointed out in a recent preprint introducing the SAIGE method [10], association tests (such
as BOLT-LMM) that estimate p-values based on a chi-square distribution can incur inflated type
I error rates when used to analyze highly unbalanced case-control traits (due to deviation from
asymptotic normality). The extent to which chi-square-based p-values suffer miscalibration for
binary traits is a function of three variables: sample size, minor allele frequency, and case-control
ratio. Specifically, miscalibration occurs when the minor allele count (MAC) multiplied by the
case fraction is small (corresponding to the conventional wisdom that chi-square test statistics
break down when expected counts are small). Importantly, genomic control and LD score-based
assessments of inflation do not detect failure to control type I error due to this phenomenon.

To assess the effect of unbalanced case-control ratios on biobank-scale BOLT-LMM analy-
ses, we performed a suite of simulations that vary the three key parameters (N, MAF, and case
fraction), exploring type I error control across significance thresholds from 1×10–4 to 5×10–8

(Supplementary Table 8). Specifically, we considered N = 450K, 150K, 50K; case fraction = 30%,
10%, 3%, 1%; and MAF tranches with boundaries 0.0001, 0.001, 0.01, 0.1, 1. We simulated
case-control traits using a liability threshold model with in which heritable variance (hg

2=0.5)
was distributed across odd-numbered chromosomes under an infinitesimal genetic architecture (all
672K genotyped SNPs causal with normally distributed effect sizes with variance proportional to
(p(1− p))−0.3, where p=MAF [32]). We supplied an LD-pruned set of 495K genome-wide SNPs
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to BOLT-LMM for model-fitting, and we evaluated association test statistics on imputed SNPs on
even chromosomes (which had zero effect) to assess p-values under the null distribution. We per-
formed 20 replicates of each simulation and aggregated type I error across replicates. The results
of these analyses, presented in Supplementary Table 8, demonstrate that at UK Biobank sample
size, BOLT-LMM p-values are well-calibrated for case fractions>10% and MAF>0.1%. At lower
combinations of sample size, case fraction, and MAF, p-values displayed inflated significance, as
expected.

The 23 real phenotypes we analyzed in this manuscript include 7 binary traits with minimum
case fraction 4.2% (Supplementary Table 1). We are confident that BOLT-LMM p-values are well-
calibrated for these analyses based on three lines of reasoning:

1. Based on our simulations (Supplementary Table 8), BOLT-LMM p-values for N=459K and
MAF>0.1% (the lower limit of SNPs we considered) are well-calibrated for case fractions
>10%, and for a case fraction of 3%, BOLT-LMM only overestimates significance for rare
SNPs (MAF<1%). The lowest case fractions of the binary traits we analyzed were 4–5% for
T2D and hypothyroidism and 14% for respiratory disease (Supplementary Table 1), implying
no cause for concern for most of the traits we analyzed.

2. We verified that all genome-wide significant loci identified in our analyses for T2D (62 loci),
hypothyroidism (111 loci), and respiratory disease (76 loci) have a genome-wide significant
hit with MAF>1%, ruling out the possibility of false-positive loci driven solely by rare
SNPs. As noted above, our simulations show that BOLT-LMM p-values are valid at this
MAF threshold for case fractions >3% (Supplementary Table 8).

3. We did not observe a systematic increase in power gain for binary vs. quantitative traits,
which would be expected if BOLT-LMM’s increases in power were driven by false discov-
eries specific to binary traits. Instead, binary and quantitative traits exhibit consistent gains
in power (Fig 1a and Supplementary Table 2).

While we believe for the reasons above that the analyses of binary traits presented here are
robust, the saddlepoint approximation of SAIGE [10] generally solves the problem of p-value mis-
calibration in unbalanced case-control scenarios, and as such, we recommend using SAIGE rather
than BOLT-LMM for analyses of highly unbalanced binary traits (especially if rare variants are to
be analyzed). We do still recommend BOLT-LMM over SAIGE for analyses of (reasonably) bal-
anced case-control traits, as (i) BOLT-LMM performs leave-one-chromosome-out (LOCO) anal-
ysis to guard against power loss due to proximal contamination; (ii) BOLT-LMM models non-
infinitesimal genetic architectures, thereby achieving gains in power for traits with larger-effect
loci (e.g., tanning ability; compare BOLT-LMM to BOLT-LMM-inf in Supplementary Fig. 1 and
Supplementary Tables 2 and 3); and (iii) BOLT-LMM is slightly faster than SAIGE in the bench-
marks of ref. [10].
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Supplementary Figure 1. Conditioning on polygenic predictions from genome-wide SNPs
boosts association power. (a) Comparison of variance explained by BOLT-LMM’s linear
predictor—using either the default mixture-of-Gaussians prior on SNP effect sizes, which
accounts for larger-effect SNPs [3], or the single-Gaussian “infinitesimal” model
(BOLT-LMM-inf, equivalent to best linear unbiased prediction, BLUP)—and variance
theoretically explained by an optimal linear predictor, i.e., SNP-heritability hg

2. BOLT-LMM and
BOLT-LMM-inf results (on N=459,327 European-ancestry samples) are from out-of-sample
prediction performed internally by the BOLT-LMM software (holding out 20% of samples for
testing). (b) Boost in effective sample size using BOLT-LMM or BOLT-LMM-inf on N=459,327
European samples vs. linear regression on N=337,539 unrelated British samples, as assessed by
multiplicative increase in χ2 statistics at associated SNPs (Supplementary Note). Numerical data
are provided in Supplementary Table 3.
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Supplementary Figure 2. LD score regression intercepts. Plotted points correspond to
analyses of 23 phenotypes using 3 association methods (under the baselineLD model [8] of
LDSC). (a) LD score regression intercepts [7] tend to rise with SNP-heritability and sample size,
even for association tests robust to confounding (e.g., linear regression on N=337,539 unrelated
British samples using 20 principal component covariates and BOLT-LMM on N=459,327
European samples). This behavior of the LDSC intercept makes test statistic inflation difficult to
discern based on the value of the LDSC intercept alone: for example, for the height phenotype,
linear regression on N=337,539 unrelated British samples without principal component
covariates—which is susceptible to inflation—and BOLT-LMM on N=459,327 European samples
both have LDSC intercepts of nearly 1.5. (b) Accounting for differences in mean χ2 statistic for
different phenotypes and association methods improves the interpretability of the LDSC intercept.
Deviations from the theoretical model assumed by LD score regression (e.g., attenuation bias [7])
push the LDSC intercept above 1—even for uninflated association tests—toward the mean χ2 test
statistic (which can be much larger than 1 for highly-powered analyses of traits with substantial
heritability, e.g., ∼7 for BOLT-LMM analysis of height, after excluding SNPs explaining >0.1%
of variance). The attenuation ratio, (intercept – 1) / (mean χ2 – 1), calibrates the intercept against
the overall shift in χ2 statistics (due to polygenicity for uninflated association tests). In these data,
we observe that for each trait, PC-corrected linear regression and BOLT-LMM (connected by a
line segment) have near-identical attenuation ratios, typically around 0.08, whereas uncorrected
linear regression typically has larger attenuation ratios, indicating confounding. Numerical data
are provided in Supplementary Table 4.
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Supplementary Table 1. Number of phenotyped individuals analyzed per UK Biobank trait.

Phenotype N Fraction phenotyped Case fraction
Height 458303 1.00 –
Body mass index 457824 1.00 –
Waist hip ratio 458417 1.00 –
Bone mineral density 445921 0.97 –
Forced vital capacity 371949 0.81 –
FEV1 FVC ratio 371949 0.81 –
Red blood cell count 445174 0.97 –
RBC distribution width 442700 0.96 –
White blood cell count 444502 0.97 –
Platelet count 444382 0.97 –
Eosinophil count 439938 0.96 –
Blood pressure (systolic) 422771 0.92 –
Cardiovascular disease 459324 1.00 0.319
Type 2 diabetes 459324 1.00 0.042
Respiratory disease 459324 1.00 0.140
Allergy or eczema 458699 1.00 0.230
Hypothyroidism 459324 1.00 0.049
Neuroticism 372066 0.81 –
Chronotype (morning person) 410520 0.89 0.625
Hair color 452720 0.99 –
Tanning ability 449984 0.98 0.610
Years of education 454813 0.99 –
Smoking status 457683 1.00 –
Self-reported white, QC pass 459327 – –

Phenotypes we analyzed were available for large majorities of the 459,327 UK Biobank
participants we analyzed who self-reported white ancestry and passed genotyping QC
(Supplementary Note). Throughout this manuscript, when we refer to analyses of 459K
European-ancestry individuals, we take it to be understood that the actual number of individuals
analyzed per phenotype is slightly smaller than 459K and varies depending on phenotyping rate.
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Supplementary Table 2. Number of independent GWAS loci identified by different
association analysis methods.

N=337K unrelated British N=459K all European
Linear BOLT-LMM Linear BOLT-LMM

Phenotype hg
2 regression inf. non-inf. regression* inf. non-inf.

Height 0.579 1086 1479 1540 1488 1992 2098
Body mass index 0.308 300 379 387 540 645 665
Waist hip ratio 0.210 217 241 255 326 365 384
Bone mineral density 0.401 537 681 713 758 947 978
Forced vital capacity 0.277 203 244 251 347 406 412
FEV1 FVC ratio 0.313 308 368 391 472 552 566
Red blood cell count 0.324 406 485 505 597 697 714
RBC distribution width 0.288 354 387 418 467 544 570
White blood cell count 0.272 347 387 404 499 555 584
Platelet count 0.404 558 694 751 766 955 1007
Eosinophil count 0.277 342 403 414 506 576 625
Blood pressure 0.271 282 332 346 461 516 522
Cardiovascular disease 0.160 126 131 135 206 210 213
Type 2 diabetes 0.074 38 39 41 59 62 62
Respiratory disease 0.086 46 46 50 69 75 76
Allergy or eczema 0.120 99 99 99 145 149 153
Hypothyroidism 0.088 69 67 70 109 112 111
Neuroticism 0.156 36 41 43 74 75 78
Chronotype 0.143 53 54 57 95 100 101
Hair color 0.454 210 273 326 263 352 436
Tanning ability 0.242 95 105 113 121 129 136
Years of education 0.193 95 89 91 207 165 172
Smoking status 0.134 32 37 36 88 93 96
All phenotypes 5839 7061 7436 8663 10272 10759

Counts of independent genome-wide significant associations (p<5×10–9) are reported for three
types of association tests: linear regression using 20 principal component covariates, BOLT-LMM
using a Gaussian SNP effect prior (the standard “infinitesimal” mixed model, BOLT-LMM-inf),
and BOLT-LMM using its default mixture-of-Gaussians prior on SNP effect sizes, which
accounts for larger-effect SNPs [3]. We tested all three methods on N=337,539 unrelated British
samples and on all individuals who reported white ethnicity (N=459,327 European-ancestry
samples). Linear regression on the full N=459K European-ancestry set is denoted with an
asterisk, as these analyses are expected to be slightly confounded by relatedness. For reference,
we also report SNP-heritability (hg

2) estimated by BOLT-LMM on the N=337K unrelated British
samples during model-fitting.

For each analysis, we counted independent associations by performing stringent LD clumping
(requiring R2<0.01 in 5Mb windows) and further collapsing associated SNPs within 100kb of
each other (Supplementary Note).
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Supplementary Table 3. Conditioning on polygenic predictions boosts association power.

(a) Proportion of variance explained (BOLT-LMM prediction R2 in cross-validation and hg
2)

N=337K unrelated British N=459K all European
Phenotype BOLT-LMM-inf BOLT-LMM hg

2 BOLT-LMM-inf BOLT-LMM hg
2

Height 0.332 0.397 0.579 0.373 0.429 0.570
Body mass index 0.111 0.122 0.308 0.129 0.139 0.303
Waist hip ratio 0.055 0.075 0.210 0.063 0.084 0.205
Bone mineral density 0.168 0.236 0.401 0.191 0.255 0.391
Forced vital capacity 0.079 0.089 0.277 0.095 0.108 0.272
FEV1 FVC ratio 0.102 0.136 0.313 0.115 0.147 0.303
Red blood cell count 0.119 0.166 0.324 0.137 0.181 0.314
RBC distribution width 0.101 0.166 0.288 0.119 0.180 0.279
White blood cell count 0.091 0.124 0.272 0.105 0.137 0.266
Platelet count 0.170 0.255 0.404 0.201 0.275 0.394
Eosinophil count 0.091 0.139 0.277 0.108 0.154 0.272
Blood pressure 0.079 0.101 0.271 0.096 0.116 0.264
Cardiovascular disease 0.034 0.042 0.160 0.039 0.049 0.155
Type 2 diabetes 0.009 0.014 0.074 0.010 0.015 0.073
Respiratory disease 0.013 0.019 0.086 0.014 0.020 0.083
Allergy or eczema 0.022 0.033 0.120 0.025 0.035 0.115
Hypothyroidism 0.012 0.023 0.088 0.014 0.024 0.085
Neuroticism 0.027 0.028 0.156 0.033 0.036 0.151
Chronotype 0.024 0.027 0.143 0.030 0.034 0.138
Hair color 0.234 0.397 0.454 0.257 0.401 0.434
Tanning ability 0.080 0.173 0.242 0.092 0.177 0.226
Years of education 0.050 0.052 0.193 0.061 0.064 0.188
Smoking status 0.025 0.026 0.134 0.033 0.035 0.136

(b) Boost in effective sample size (vs. linear regression on N=337K unrelated British samples)
N=337K unrelated British N=459K all European

Phenotype BOLT-LMM-inf BOLT-LMM BOLT-LMM-inf BOLT-LMM BOLT-LMM Neff

Height 1.37x 1.45x 1.83x 1.93x 650K
Body mass index 1.14x 1.15x 1.45x 1.47x 500K
Waist hip ratio 1.06x 1.08x 1.37x 1.40x 470K
Bone mineral density 1.21x 1.29x 1.62x 1.71x 580K
Forced vital capacity 1.10x 1.11x 1.43x 1.44x 490K
FEV1 FVC ratio 1.13x 1.17x 1.48x 1.53x 520K
Red blood cell count 1.14x 1.19x 1.50x 1.56x 530K
RBC distribution width 1.12x 1.19x 1.45x 1.55x 520K
White blood cell count 1.09x 1.11x 1.40x 1.43x 480K
Platelet count 1.23x 1.33x 1.66x 1.79x 600K
Eosinophil count 1.11x 1.17x 1.46x 1.53x 520K
Blood pressure 1.13x 1.15x 1.42x 1.44x 480K
Cardiovascular disease 1.04x 1.04x 1.32x 1.33x 450K
Type 2 diabetes 1.01x 1.01x 1.33x 1.33x 450K
Respiratory disease 1.02x 1.02x 1.30x 1.32x 440K
Allergy or eczema 1.05x 1.05x 1.29x 1.30x 440K
Hypothyroidism 1.03x 1.05x 1.31x 1.29x 430K
Neuroticism 1.02x 1.02x 1.34x 1.34x 450K
Chronotype 1.04x 1.05x 1.33x 1.34x 450K
Hair color 1.30x 1.60x 1.74x 2.08x 700K
Tanning ability 1.06x 1.17x 1.38x 1.51x 510K
Years of education 1.02x 1.03x 1.31x 1.31x 440K
Smoking status 1.04x 1.05x 1.27x 1.28x 430K

See caption of Supplementary Fig. 1. 19



Supplementary Table 4. LDSC intercepts increase with mean χ2 statistics while attenuation
ratios are consistently low for BOLT-LMM and linear regression with PC covariates.

(a) LDSC intercept (jackknife s.e.) and mean χ2 statistic for different association methods
LDSC intercept (baselineLD model) Mean χ2 statistic

Phenotype hg
2 Lin. reg. w/o PCs LR, N=337K BOLT, 459K LR w/o PCs LR, 337K BOLT, 459K

Height 0.579 1.456 (0.035) 1.252 (0.033) 1.468 (0.057) 4.48 4.19 7.00
Body mass index 0.308 1.121 (0.016) 1.090 (0.015) 1.132 (0.019) 2.68 2.63 3.45
Waist hip ratio 0.210 1.088 (0.016) 1.062 (0.015) 1.091 (0.019) 2.05 2.00 2.44
Bone mineral density 0.401 1.129 (0.034) 1.117 (0.034) 1.250 (0.048) 2.88 2.86 4.01
Forced vital capacity 0.277 1.095 (0.013) 1.089 (0.013) 1.113 (0.015) 2.14 2.13 2.70
FEV1 FVC ratio 0.313 1.071 (0.015) 1.065 (0.016) 1.119 (0.021) 2.20 2.18 2.89
Red blood cell count 0.324 1.183 (0.025) 1.142 (0.026) 1.189 (0.036) 2.46 2.39 3.23
RBC distribution width 0.288 1.078 (0.025) 1.067 (0.025) 1.151 (0.032) 2.26 2.24 2.83
White blood cell count 0.272 1.120 (0.018) 1.097 (0.018) 1.137 (0.021) 2.28 2.24 2.89
Platelet count 0.404 1.163 (0.029) 1.154 (0.029) 1.281 (0.044) 2.68 2.66 3.96
Eosinophil count 0.277 1.108 (0.021) 1.082 (0.021) 1.165 (0.030) 2.26 2.23 2.89
Blood pressure 0.271 1.084 (0.015) 1.079 (0.015) 1.128 (0.018) 2.24 2.23 2.84
Cardiovascular disease 0.160 1.056 (0.013) 1.053 (0.013) 1.083 (0.016) 1.77 1.76 2.03
Type 2 diabetes 0.074 1.040 (0.012) 1.040 (0.012) 1.043 (0.015) 1.31 1.31 1.41
Respiratory disease 0.086 1.024 (0.011) 1.019 (0.011) 1.040 (0.013) 1.37 1.36 1.49
Allergy or eczema 0.120 1.034 (0.014) 1.026 (0.014) 1.043 (0.016) 1.51 1.50 1.70
Hypothyroidism 0.088 1.033 (0.013) 1.029 (0.013) 1.036 (0.013) 1.37 1.36 1.48
Neuroticism 0.156 1.034 (0.015) 1.028 (0.015) 1.069 (0.011) 1.66 1.65 1.85
Chronotype 0.143 1.072 (0.012) 1.043 (0.012) 1.055 (0.013) 1.66 1.62 1.84
Hair color 0.454 1.218 (0.057) 1.139 (0.054) 1.224 (0.078) 1.92 1.82 2.52
Tanning ability 0.242 1.209 (0.032) 1.071 (0.029) 1.105 (0.042) 1.73 1.53 1.81
Years of education 0.193 1.152 (0.013) 1.089 (0.012) 1.112 (0.013) 2.09 1.98 2.26
Smoking status 0.134 1.088 (0.011) 1.032 (0.010) 1.057 (0.011) 1.76 1.67 1.92

(b) LDSC attenuation ratio: (intercept – 1) / (mean χ2 – 1); jackknife s.e.
Phenotype LR w/o PCs, 337K LR, 337K BOLT, 337K LR, 459K* BOLT, 459K
Height 0.131 (0.010) 0.079 (0.010) 0.079 (0.010) 0.084 (0.009) 0.078 (0.009)
Body mass index 0.072 (0.009) 0.055 (0.009) 0.056 (0.009) 0.061 (0.008) 0.054 (0.008)
Waist hip ratio 0.084 (0.015) 0.061 (0.015) 0.067 (0.015) 0.060 (0.013) 0.063 (0.013)
Bone mineral density 0.069 (0.018) 0.063 (0.018) 0.080 (0.017) 0.072 (0.017) 0.083 (0.016)
Forced vital capacity 0.083 (0.012) 0.079 (0.012) 0.076 (0.011) 0.080 (0.010) 0.066 (0.009)
FEV1 FVC ratio 0.060 (0.013) 0.055 (0.013) 0.058 (0.013) 0.063 (0.011) 0.063 (0.011)
Red blood cell count 0.125 (0.018) 0.102 (0.018) 0.094 (0.018) 0.096 (0.016) 0.085 (0.016)
RBC distribution width 0.062 (0.020) 0.054 (0.020) 0.076 (0.020) 0.068 (0.018) 0.082 (0.017)
White blood cell count 0.093 (0.014) 0.078 (0.014) 0.079 (0.013) 0.078 (0.012) 0.072 (0.011)
Platelet count 0.097 (0.017) 0.093 (0.017) 0.092 (0.017) 0.096 (0.016) 0.095 (0.015)
Eosinophil count 0.085 (0.017) 0.067 (0.017) 0.079 (0.017) 0.087 (0.015) 0.087 (0.016)
Blood pressure 0.067 (0.012) 0.065 (0.012) 0.066 (0.011) 0.075 (0.010) 0.069 (0.010)
Cardiovascular disease 0.073 (0.017) 0.070 (0.017) 0.073 (0.017) 0.080 (0.015) 0.081 (0.016)
Type 2 diabetes 0.130 (0.040) 0.129 (0.041) 0.129 (0.041) 0.114 (0.036) 0.105 (0.036)
Respiratory disease 0.064 (0.030) 0.052 (0.031) 0.055 (0.030) 0.085 (0.026) 0.080 (0.026)
Allergy or eczema 0.067 (0.028) 0.051 (0.029) 0.066 (0.027) 0.063 (0.024) 0.061 (0.023)
Hypothyroidism 0.089 (0.035) 0.079 (0.035) 0.121 (0.029) 0.067 (0.029) 0.076 (0.026)
Neuroticism 0.051 (0.024) 0.043 (0.024) 0.068 (0.017) 0.065 (0.017) 0.082 (0.013)
Chronotype 0.109 (0.018) 0.070 (0.019) 0.075 (0.019) 0.067 (0.015) 0.066 (0.015)
Hair color 0.236 (0.062) 0.170 (0.066) 0.141 (0.049) 0.185 (0.065) 0.147 (0.051)
Tanning ability 0.288 (0.045) 0.134 (0.054) 0.120 (0.053) 0.146 (0.053) 0.129 (0.051)
Years of education 0.140 (0.012) 0.091 (0.012) 0.090 (0.013) 0.100 (0.010) 0.089 (0.010)
Smoking status 0.117 (0.015) 0.047 (0.015) 0.062 (0.015) 0.064 (0.012) 0.062 (0.012)

See caption of Supplementary Fig. 2. 20



Supplementary Table 5. LDSC intercepts and attenuation ratios are higher under the
original LDSC model (vs. baselineLD model).

(a) LDSC intercept (jackknife s.e.) and mean χ2 statistic for different association methods
LDSC intercept (original LDSC model) Mean χ2 statistic

Phenotype hg
2 Lin. reg. w/o PCs LR, N=337K BOLT, 459K LR w/o PCs LR, 337K BOLT, 459K

Height 0.579 1.706 (0.031) 1.493 (0.030) 1.870 (0.043) 4.70 4.40 7.62
Body mass index 0.308 1.235 (0.017) 1.202 (0.016) 1.318 (0.019) 2.69 2.64 3.48
Waist hip ratio 0.210 1.217 (0.015) 1.185 (0.015) 1.267 (0.018) 2.05 2.01 2.44
Bone mineral density 0.401 1.315 (0.022) 1.305 (0.022) 1.497 (0.028) 3.12 3.10 4.51
Forced vital capacity 0.277 1.194 (0.014) 1.190 (0.014) 1.267 (0.017) 2.14 2.13 2.70
FEV1 FVC ratio 0.313 1.218 (0.015) 1.212 (0.014) 1.326 (0.018) 2.24 2.22 2.96
Red blood cell count 0.324 1.323 (0.020) 1.272 (0.019) 1.393 (0.026) 2.58 2.51 3.44
RBC distribution width 0.288 1.181 (0.017) 1.171 (0.017) 1.274 (0.022) 2.42 2.40 3.15
White blood cell count 0.272 1.264 (0.018) 1.238 (0.018) 1.349 (0.023) 2.34 2.30 2.97
Platelet count 0.404 1.283 (0.020) 1.272 (0.020) 1.461 (0.026) 2.85 2.83 4.35
Eosinophil count 0.277 1.232 (0.019) 1.207 (0.019) 1.324 (0.024) 2.38 2.36 3.15
Blood pressure 0.271 1.200 (0.014) 1.195 (0.013) 1.303 (0.017) 2.24 2.23 2.85
Cardiovascular disease 0.160 1.127 (0.012) 1.123 (0.012) 1.181 (0.015) 1.77 1.76 2.03
Type 2 diabetes 0.074 1.066 (0.009) 1.065 (0.009) 1.084 (0.010) 1.31 1.31 1.42
Respiratory disease 0.086 1.076 (0.010) 1.071 (0.010) 1.103 (0.011) 1.37 1.36 1.49
Allergy or eczema 0.120 1.114 (0.011) 1.107 (0.011) 1.148 (0.012) 1.51 1.50 1.70
Hypothyroidism 0.088 1.081 (0.011) 1.078 (0.011) 1.103 (0.012) 1.37 1.36 1.49
Neuroticism 0.156 1.079 (0.010) 1.074 (0.010) 1.113 (0.010) 1.66 1.65 1.85
Chronotype 0.143 1.114 (0.011) 1.082 (0.010) 1.103 (0.011) 1.66 1.62 1.84
Hair color 0.454 1.212 (0.017) 1.133 (0.015) 1.238 (0.021) 3.02 2.89 4.80
Tanning ability 0.242 1.219 (0.013) 1.075 (0.011) 1.109 (0.013) 2.35 2.12 2.70
Years of education 0.193 1.216 (0.012) 1.147 (0.011) 1.187 (0.012) 2.09 1.98 2.26
Smoking status 0.134 1.149 (0.010) 1.085 (0.010) 1.125 (0.011) 1.76 1.67 1.92

(b) LDSC attenuation ratio: (intercept – 1) / (mean χ2 – 1); jackknife s.e.
Phenotype LR w/o PCs, 337K LR, 337K BOLT, 459K
Height 0.191 (0.008) 0.145 (0.009) 0.132 (0.006)
Body mass index 0.139 (0.010) 0.123 (0.010) 0.128 (0.008)
Waist hip ratio 0.206 (0.015) 0.184 (0.015) 0.185 (0.013)
Bone mineral density 0.148 (0.010) 0.145 (0.010) 0.142 (0.008)
Forced vital capacity 0.170 (0.013) 0.168 (0.013) 0.157 (0.010)
FEV1 FVC ratio 0.176 (0.012) 0.173 (0.012) 0.166 (0.009)
Red blood cell count 0.204 (0.013) 0.180 (0.013) 0.161 (0.011)
RBC distribution width 0.127 (0.012) 0.122 (0.012) 0.128 (0.010)
White blood cell count 0.197 (0.014) 0.184 (0.014) 0.177 (0.012)
Platelet count 0.153 (0.011) 0.149 (0.011) 0.138 (0.008)
Eosinophil count 0.168 (0.014) 0.153 (0.014) 0.150 (0.011)
Blood pressure 0.162 (0.011) 0.159 (0.011) 0.164 (0.009)
Cardiovascular disease 0.165 (0.016) 0.162 (0.016) 0.177 (0.014)
Type 2 diabetes 0.212 (0.029) 0.211 (0.030) 0.202 (0.025)
Respiratory disease 0.207 (0.028) 0.198 (0.028) 0.209 (0.022)
Allergy or eczema 0.223 (0.022) 0.211 (0.022) 0.211 (0.017)
Hypothyroidism 0.220 (0.029) 0.214 (0.029) 0.212 (0.025)
Neuroticism 0.120 (0.015) 0.113 (0.015) 0.134 (0.012)
Chronotype 0.172 (0.016) 0.134 (0.016) 0.123 (0.013)
Hair color 0.104 (0.008) 0.070 (0.008) 0.063 (0.005)
Tanning ability 0.162 (0.009) 0.067 (0.010) 0.064 (0.008)
Years of education 0.199 (0.011) 0.149 (0.011) 0.148 (0.010)
Smoking status 0.197 (0.014) 0.127 (0.015) 0.137 (0.012)

Compare to Supplementary Table 4. 21



Supplementary Table 6. Running time of association methods on UK Biobank data.

Data set Linear regression BOLT-LMM v1 BOLT-LMM v2.3
N=150K 0.49 days 2.43 days 0.62 days
N=500K 1.62 days 9.34 days 2.54 days

Run time benchmarks for association analyses using BOLT-LMM v2.3 (with 20 principal
component covariates to increase convergence rate; Supplementary Table 7), the previous version
of BOLT-LMM [3], and linear regression using 20 principal component covariates (implemented
efficiently within the BOLT-LMM software; cf. Bycroft et al. Table S9 [5]). We analyzed the
years-of-education phenotype as a representative trait, and we ran all methods on the same set of
all European-ancestry individuals in the UK Biobank N=150K and N=500K data releases
(Supplementary Note), analyzing ∼72M and ∼93M imputed SNPs, respectively, and imposing a
MAF>0.1% filter on minor allele frequency. Analyses used 8 threads on a 2.10 GHz Intel Xeon
E5-2683 v4 processor.
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Supplementary Table 7. Faster convergence of BOLT-LMM iterative computations using
principal component covariates.

Principal component Conjugate gradient Variational Bayes
covariates iterations iterations
0 85 178
10 75 82
20 63 79
30 55 80
40 49 73

During its model-fitting steps, BOLT-LMM applies iterative methods (specifically, conjugate
gradient iteration and variational Bayes) to eliminate computationally expensive matrix operations
that scale quadratically or cubically with sample size [3]. The cost of a single iteration scales only
linearly with N; however, we previously observed that the number of iterations required to achieve
convergence increases slowly with N [3]. Our analyses here demonstrate that convergence can be
sped up by including principal component covariates (which effectively reduce the condition
number of the underlying matrix computations), thus achieving close-to-linear scaling of run time
with sample size. The iteration counts reported in this table are for total numbers of iterations
performed in BOLT-LMM’s conjugate gradient steps (for estimating parameters and fitting the
infinitesimal mixed model) and variational Bayes steps (for estimating parameters and fitting the
mixture-of-Gaussians model) [3]. We note that to achieve increased convergence, principal
components need to be computed on the set of SNPs used in the mixed model; PCs that do not
match the implicit genetic relationship matrix (GRM) will not improve conditioning. We also
note that after model-fitting, BOLT-LMM performs a linear-time association test on imputed
SNPs; the speedup described here only applies to the model-fitting step.
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Supplementary Table 8. Type I error inflation of BOLT-LMM when testing rare variants in
unbalanced case-control settings.

Case N=450K N=150K N=50K
frac. MAF α=1e-4 α=1e-6 α=5e-8 α=1e-4 α=1e-6 α=5e-8 α=1e-4 α=1e-6 α=5e-8
0.3 0.1 0.00012 1.2e-6 1.7e-8 0.00009 4.6e-7 1.0e-7 0.00010 2.9e-7 0

0.01 0.00009 5.4e-7 0 0.00011 4.3e-7 2.2e-8 0.00011 1.5e-6 4.3e-8
0.001 0.00010 8.6e-7 1.5e-8 0.00010 1.1e-6 8.9e-8* 0.00010 1.1e-6 1.0e-7*

0.0001 0.00010 1.3e-6* 7.1e-8** 0.00010* 1.5e-6*** 1.5e-7*** 0.00011*** 1.4e-6** 8.6e-8**
0.1 0.1 0.00012 1.7e-6 0 0.00010 8.7e-7 0 0.00010 9.2e-7 1.7e-8

0.01 0.00010 1.4e-6 0 0.00012 1.5e-6 4.3e-8 0.00012* 1.4e-6 8.7e-8
0.001 0.00010* 1.4e-6* 3.0e-8 0.00012*** 2.7e-6*** 4.0e-7*** 0.00018*** 5.5e-6*** 5.3e-7***

0.0001 0.00019*** 6.0e-6*** 7.7e-7*** 0.00035*** 1.9e-5*** 3.0e-6*** 0.00074*** 5.8e-5*** 1.3e-5***
0.03 0.1 0.00012 2.1e-6 3.4e-8 0.00012 1.8e-6 1.2e-7 0.00010 7.9e-7 0

0.01 0.00010 8.9e-7 0 0.00011 1.6e-6 2.2e-8 0.00014** 2.3e-6** 8.7e-8
0.001 0.00015*** 4.1e-6*** 5.5e-7* 0.00022*** 9.6e-6*** 1.2e-6*** 0.00045*** 3.2e-5*** 7.6e-6***

0.0001 0.00050*** 3.8e-5*** 8.1e-6*** 0.00115*** 1.4e-4*** 4.1e-5*** 0.00277*** 5.4e-4*** 2.1e-4***
0.01 0.1 0.00009 8.0e-7 1.7e-8 0.00010 4.1e-7 1.2e-7 0.00011 9.4e-7 1.4e-7

0.01 0.00011 4.8e-7 4.3e-8 0.00014*** 3.7e-6* 1.7e-7 0.00019*** 6.5e-6*** 5.0e-7**
0.001 0.00024*** 1.0e-5*** 1.3e-6*** 0.00050*** 3.4e-5*** 6.8e-6*** 0.00112*** 1.4e-4*** 4.0e-5***

0.0001 0.00127*** 1.7e-4*** 5.3e-5*** 0.00303*** 6.4e-4*** 2.6e-4*** 0.00672*** 2.2e-3*** 1.2e-3***
0.003 0.1 0.00009 6.3e-7 6.8e-8 0.00011 4.8e-6 0 0.00012 2.1e-6 1.7e-8

0.01 0.00013*** 2.1e-6** 1.5e-7* 0.00017*** 4.8e-6*** 8.3e-7*** 0.00039*** 2.3e-5*** 3.1e-6***
0.001 0.00056*** 5.1e-5*** 1.1e-5*** 0.00128*** 1.7e-4*** 5.1e-5*** 0.00302*** 6.3e-4*** 2.6e-4***

0.0001 0.00345*** 8.0e-4*** 3.4e-4*** 0.00737*** 2.5e-3*** 1.4e-3*** 0.01764*** 8.3e-3*** 5.1e-3***
0.001 0.1 0.00011 1.3e-6 1.0e-7 0.00010 9.9e-7 3.4e-8 0.00014** 2.6e-6 6.8e-8

0.01 0.00019*** 5.9e-6*** 5.9e-7** 0.00037*** 2.1e-5*** 3.0e-6*** 0.00086*** 1.0e-4*** 2.6e-5***
0.001 0.00128*** 1.7e-4*** 5.1e-5*** 0.00301*** 6.5e-4*** 2.6e-4*** 0.00640*** 2.3e-3*** 1.2e-3***

0.0001 0.00743*** 2.5e-3*** 1.4e-3*** 0.01755*** 8.3e-3*** 5.2e-3*** 0.01954*** 1.3e-2*** 1.0e-2***

This table presents results from a suite of simulations that vary the three key parameters affecting
type I error control of BOLT-LMM (and in general, chi-square-based regression tests) on
case-control traits: sample size (N), minor allele frequency (MAF), and case fraction. For each
combination of N and case fraction, we simulated 20 binary traits with heritable variance
distributed across odd-numbered chromosomes, and we assessed MAF-stratified type I error rates
for association tests on SNPs on even chromosomes (Supplementary Note Section 6). Type I error
rates with statistically significant inflation are indicated with asterisks (* = p<0.05, ** = p<0.01,
*** = p<0.001; z-test across 20 simulation replicates).
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Supplementary Table 9. Comparison of heritability parameter estimates from REML and
LDSC.

REML hg
2 LDSC heritability parameter

Phenotype baselineLD model original model
Height 0.578 (0.002) 0.476 (0.019) 0.377 (0.019)
Body mass index 0.309 (0.003) 0.247 (0.007) 0.194 (0.007)
Waist hip ratio 0.212 (0.002) 0.156 (0.007) 0.107 (0.007)
Bone mineral density 0.404 (0.003) 0.284 (0.017) 0.246 (0.024)
Forced vital capacity 0.277 (0.003) 0.206 (0.007) 0.151 (0.006)
FEV1 FVC ratio 0.313 (0.003) 0.237 (0.011) 0.164 (0.010)
Red blood cell count 0.323 (0.003) 0.214 (0.011) 0.170 (0.016)
RBC distribution width 0.289 (0.003) 0.195 (0.013) 0.168 (0.015)
White blood cell count 0.273 (0.003) 0.193 (0.007) 0.139 (0.010)
Platelet count 0.404 (0.003) 0.260 (0.013) 0.227 (0.021)
Eosinophil count 0.278 (0.003) 0.198 (0.011) 0.146 (0.013)
Blood pressure 0.272 (0.003) 0.206 (0.008) 0.147 (0.007)
Cardiovascular disease 0.159 (0.002) 0.117 (0.005) 0.081 (0.004)
Type 2 diabetes 0.073 (0.002) 0.045 (0.003) 0.031 (0.002)
Respiratory disease 0.084 (0.002) 0.057 (0.004) 0.035 (0.003)
Allergy or eczema 0.119 (0.002) 0.081 (0.006) 0.051 (0.004)
Hypothyroidism 0.086 (0.002) 0.053 (0.005) 0.034 (0.004)
Neuroticism 0.156 (0.003) 0.119 (0.008) 0.091 (0.005)
Chronotype 0.142 (0.002) 0.104 (0.005) 0.079 (0.004)
Hair color 0.453 (0.002) 0.115 (0.017) 0.271 (0.104)
Tanning ability 0.241 (0.002) 0.072 (0.012) 0.138 (0.056)
Years of education 0.194 (0.002) 0.148 (0.005) 0.113 (0.004)
Smoking status 0.134 (0.002) 0.104 (0.004) 0.077 (0.003)

This table compares SNP-heritability hg
2 (estimated by BOLT-LMM using restricted maximum

likelihood) with the heritability parameter estimated by LDSC (using either the baselineLD
model [8] or the original LDSC model [7]) in analyses of N=337K unrelated British individuals.
We note that LDSC does not estimate the quantity traditional called “SNP-heritability” and
denoted hg

2; instead LDSC estimates the “causal heritability contributed by common SNPs,
excluding those of large effect” (Supplementary Note Section 4). We also note that the values in
the REML hg

2 column are very slightly different from those reported in preceding Supplementary
Tables, which were computed in BOLT-LMM association analyses during model-fitting; we
computed the estimates in this table using the BOLT-REML [32] algorithm in order to also obtain
standard errors.
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