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Supplementary Section 1: Allelic polymorphisms align with the Pareto front when 

locales can be occupied by more than one individual 

The results presented in the main text used a selection model where each locale could 

only be inhabited one individual. To examine the sensitivity of the results to this 

assumption, we ran simulations in which h individuals can occupy each locale. Note that 

this means that for a population size of N there are N/h locales. We simulated two 

scenarios. In the first scenario, the optimal phenotypes in the different locales are 

equally-spaced along the entire Pareto front (in such cases the distance between 

adjacent optimal phenotypes increases with h, so the average mutation size becomes 

smaller relative to the distance between the locales). In the second scenario, the spacing 

between the optimal phenotypes in different locales doesn’t depend on h but equals the 

distance between the archetypes divided by N-1 (identical to what was used in all 

simulations in the main text), which means that the optimal phenotypes in the available 

locales occupy only 1/h of the front. In both scenarios, the simulation process was as 

described in the main text and Section S6, except that we created h duplicates of each 

locale (Fig S1, S2). 



 

Figure S1. Polymorphisms align with the front when locales can be occupied by more than 
one individual. N/h locales, occupied each by h individuals, were chosen such that their optimal 
phenotypes are equally spaced along the Pareto front. The distance between 2 adjacent locales’ 
optimal phenotypes is 100h/N, and mean mutation effect size is 1. Phenotypes (left) and effect of 
selected allelic polymorphisms (right) after 100,000 simulation-generations for (A) h=2, (B) h=5, 
(C) h=10 and (D) h=100. Simulation parameters: N=1000, µ=0.05, Q1=Q2 =I, infinite 
recombination. 



 

Figure S2. Polymorphisms align with the front when locales can be occupied by more than 
one individual. N/h locales, occupied each by h individuals, were positioned close to archetype 
1. The distance between 2 adjacent locales’ optimal phenotypes is 100/N (as all cases studied in 
the main text), and mean mutation effect size is 1. Phenotypes (left) and effect of selected allelic 
polymorphisms (right) after 100,000 simulation-generations for (A) h=2, (B) h=5, (C) h=10. 
Simulation parameters: N=1000, µ=0.05, Q1=Q2 =I, infinite recombination. 

 

Supplementary Section 2: Polymorphisms align with the Pareto front in an 

example in which fitness depends non-linearly on performance functions  

 



The results presented in the main text for evolution under two tasks were obtained by 

using a fitness function at each locale w! that linearly combines the two performance 

functions,  f!! x = w!P! x + 1 − w! P!(x) (0 ≤ w! ≤ 1). Shoval et. al [1] show that as 

long as the fitness function f!! P! x , P!(x)  is monotonically increasing with both P! x  

and P! x , the maximum of f!! will reside on the line between the archetypes, even when 

f is nonlinear. Here, we demonstrate that polymorphisms align with the Pareto front for a 

class of non-linear fitness-functions that are monotonic in the performance functions: 

f!! x = P! x !!P! x !!!! (0 ≤ w! ≤ 1). We use performance functions that decay from 

the archetype with an Euclidean norm: P! x = m! − x − A!
!
. For simplicity, to avoid 

cases where the performances become negative and the power is not well-defined, we 

look at the equivalent problem of P! x = m! + x − A!
!
, while trying to minimize f!! x . It 

is important to note, that unlike the linear case, where an extremum of f! x  is unique 

and is necessarily a minimum (when looking at P! x = m! + x − A!
!
), in the 

multiplicative case the extremum can be either a minimum or a maximum. For example, 

if we choose m! = m! = 0, each f! will have its minimum at one of the archetypes. 

When m! increases, the range of points along the front that are a minimum increases. 

We chose to work with m! = 1000, A! = (0,0), A! = 50( 2, 2). Hence, locale-optima are 

not spread on the entire Pareto front but rather near its edges (See Fig S3A-B, E). The 

empty region on the front is due to an effect described in Shoval et al [1], for the case 

where performance functions have convex regions. Still, the polymorphisms that persist 

are aligned with the Pareto front (see Fig S3C-D, F). 

 



 

 

Figure S3. Polymorphisms align with the Pareto front even when fitness does not depend 
linearly on the performance functions. All results presented here were performed with 
nonlinear fitness functions of the form f!!^𝑖 x = P! x !!P! x !!!!, w! = i/(N − 1), 

i ∈ {0,1, . . ,N − 1}, P! x = m! + x − A!
!
, m! = 1000, A! = (0,0), A! = 2(50,50), N=1000, 

µ = 0.05, infinite recombination. Phenotypes under (A) medium selection (k=2), (B) strong 
selection (k=5). (C-D) The phenotypic effects of all polymorphisms present in at least 1% of 
genomes after 100,000 generations for k=2 (C) and k=5 (D). (E) Histogram of the location of the 
fitness maximum for all locales 𝑤!. Location is given as percent of the distance between the two 
archetypes. It is seen that no point in the middle of the front maximizes fitness. (F) Alignment of 
polymorphisms with the front as a function of polymorphism’s frequency. 

 

 

Supplementary Section 3. Simulations where locale maxima are sampled from 

normal distributions with various standard deviations result in alignment of 

polymorphisms with the Pareto front 

In the simulations described in this manuscript, each locale has its own fitness function 

(individual selection surface) with locale-specific weights for the different performance 



functions: 𝐹{!!} = 𝑤!𝑃!! , where the weights wi are positive. In the simulations described 

in the main text, we sampled wi uniformly with Σ𝑤! = 1. 

Here, we study the effects of varying the distribution of 𝑤! in simulations of tradeoffs 

between two tasks in a two-dimensional trait space. In such situations there are two 

weights, 𝑤!,𝑤!, such that 𝑤! + 𝑤! = 1 and 0 ≤  𝑤!,𝑤!. To test different distributions of 

locales, we sampled 𝑤! from a Gaussian distribution with mean 0.5 and standard 

deviation S of 0.01, 0.1, 1, 10, (and set 𝑤! = 1 − 𝑤!). Negative 𝑤! was taken as 0, and 

𝑤! > 1 was taken as 1. For small STDs, S = 0.01 and 0.1, genetic variant effects align 

with the front for population sizes above a few hundred (𝜃 < 1°, Fig S4B). For large 

standard deviations, S=1,10, the weight distribution results in most locales concentrated 

near the two archetypes with few in the middle between the archetypes. For this 

polarized locale distribution, alignment increases with population size, but is weaker (Fig 

S4B). See Fig S4. 

 



 

Figure S4. Results stay qualitatively the same when positions of locale-optima are 
sampled from a normal distribution with various standard deviations. (A). Ratio between 
standard deviation perpendicular and parallel to the front decreases with population size N, for all 
standard deviation examined. (B). Median angle of polymorphisms to the front decreases with 
population size N, for all standard deviations studied. Simulation parameters: N=1000. 𝜇=0.05, 



k=2, infinite recombination. (C-G). Phenotypes in the population after 100,000 generations of a 
simulation performed with {𝑤!}′𝑠   sampled from a normal distribution 𝑁(0.5, 𝑆!), where S is 
indicated in the title. Insets: The phenotypic effects of all allelic polymorphisms present in at least 
1% of genomes increasingly align with the Pareto front. Each arrow represents the phenotypic 
effect of one polymorphism (magnified for illustration purposes). 

Supplementary Section 4: Polymorphisms align with the front when mating 

probability depends on fitness 

In the simulations presented in the main text, the fitness was used only to determine 

which individual has the highest fitness in a locale, and hence only the relative order of 

individuals’ fitness in each locale was important. Here, we also study situations in which 

each locale offers a different maximal fitness, in the sense that the locale affects the 

mating probability of the individual. When mating probability depends on fitness, the 

absolute value of fitness is important, and results may depend on the “quality” of 

different locales (which relates to the maximal fitness in each locale). To account for this, 

we consider fitness functions of the form: 𝐹{!!} =  F!{!!} + w!P!!  ,w! ≥ 0, w! = 1! , 

and  𝐹!{!!} is a locale-dependent constant, which allows each locale to have a different 

maximal fitness. P! is the performance function at task i. P! = −c T − A!
!
Q! T − A! , and 

thus the maximal fitness in a locale is given by F!{!!} − F{!!}!"# where F{!!}!"#= 

c w! T!"# − A!
!
Q! T!"# − A!!  and T!"# is the phenotype that maximizes the fitness at 

the locale {w!} (locale-optimum). The coefficient c = 0.001 was chosen to avoid negative 

fitness values in the region close to the Pareto front. 

We examined three settings in which mating probability depends on fitness, for two tasks 

in a two-dimensional trait space.  In the first setting, maximal fitness in all locales 

(F!{!!} − F !! !"#) are equal (Fig S5). In the second setting, we assumed maximal fitness 

is higher in locales whose optimal phenotype (locale-optimum) is close to archetype 1 

than in locales  with locale-optimum that is close to archetype 2, as illustrated in Fig 



S6A. In the third setting, maximal fitness in locales with locale-optimum at the center of 

the front is higher than the maximal fitness in locales with locale-optimum near the 

archetypes (Fig. S7A). We find that for all settings, after a sufficient number of simulation 

generations, phenotypes reside on the front and polymorphisms align with the Pareto 

front (Fig S5-7). 

 

 

 

 

 

 

 



Figure S5. Phenotypes converge to the Pareto front by means of polymorphisms whose 
effects align with the front, when mating probability depends on fitness and fitness 
maxima is equal for all locales.  (A-D) Snapshot of the phenotypes at different generations in a 
simulation, for the case of two tasks. The Pareto front is shown in red. Insets: The phenotypic 
effects of all allelic polymorphisms present in at least 1% of genomes increasingly align with the 
Pareto front. Each arrow represents the phenotypic effect of one polymorphism (magnified for 
illustration purposes). At generation zero, no mutation is present at >1% of the genomes. 
Simulation parameters: N =1000, µ=0.05, k = 2, infinite recombination. Median angle of 
polymorphisms relative to the front was 33°, 17°, 0.8°, for B-D, respectively. Axes are traits 1 and 
2. (E) The ratio of the parallel and perpendicular variance of phenotypes with respect to the front 
increases with generations, and begins to plateau after ~20,000 generations.  (F) Alignment of 
allelic polymorphism effects with the front increases with polymorphism frequency (log-linear 
scale) and selection strength. Simulation parameters are as above except k that varies as 
indicated. Error bars represent 95% confidence intervals from bootstrapping. Alignment is defined 

as A =
2

2 2

a
a a⊥

+

P

P

, where aP
 and a⊥

 are the mean parallel and perpendicular component 

of the mutation effect vectors in each bin of mutation frequency. A = 1 and 0.5 occur when 
mutations are completely aligned or randomly oriented, respectively.   

 

 

 

Figure S6. Phenotypes converge to the Pareto front by means of polymorphisms whose 
effect aligns with the front, when mating probability depends on fitness and fitness 
maxima is maximal near archetype 1. Simulation results for a setting where maximal fitness 
decreases linearly by a factor of 2 between locales close to archetype 1 and locales close to 
archetype 2, for the case of two tasks. (A-D) Snapshot of the phenotypes at different generations 
in a simulation. The Pareto front is shown in red. Insets: The phenotypic effects of all allelic 



polymorphisms present in at least 1% of genomes increasingly align with the Pareto front. Each 
arrow represents the phenotypic effect of one polymorphism. At generation 0, no mutation is 
present at >1% of the genomes. Simulation parameters: N =1000, µ=0.05, k = 2, Q1=Q2=I, infinite 
recombination. θ is the median angle of polymorphisms relative to the front. Circles in A represent 
the contours of the fitness functions at locales that require only 1 of the tasks; darker contour 
color represents higher maximal fitness. 

  

 

Figure S7. Allelic polymorphisms align with the front where the optimal phenotype in the 
locale with highest maximal fitness is at the center of the front. (A) We simulated a scenario 
in which performance functions decay with a Euclidean norm from the archetypes, and maximal 
fitness is highest for locales with locale-optimum at the center of the front and lowest for locales 
with locale-optimum near the archetypes (Pareto front is red line, maximal fitness in a locale is 
represented by the blue curve). (B) Phenotypes at the population after 100,000 generations 
reside on the Pareto front. (D) Allelic polymorphism at the populations (mutations with frequency 
> 1%) are aligned with the Pareto front. (D) Alignment of allelic polymorphisms of all frequencies 



with the front as a function of the polymorphisms frequency. Errors bars represent 95% 
confidence interval and are calculated by bootstrapping. Simulation parameters: 
N=1000,𝜇=0.05,k=2, Q1=Q2=I, infinite recombination, maximal fitness in a locale 0 ≤  𝑤! ≤ 1 was 
2 − 8 𝑤! − 0.5 ! 

 

Supplementary Section 5. Results from simulations where the surviving 

phenotype at a locale is selected with probability proportional to 𝒆𝒙𝒑(𝜷𝑭) 

We ran simulation implementing a less strict selection scheme: instead of selecting the 

phenotype that has highest fitness 𝐹!! in the locale 𝑤!, we select a phenotype with a 

probability proportional to 𝑒𝑥𝑝(𝛽𝐹!!). Larger 𝛽 results in higher probability of more-fit 

phenotypes to be selected, while low 𝛽 results in a more equal probability for all 

phenotypes to be selected regardless of their fitness. We find that as 𝛽 increases, the 

alignment increases (Fig S8).  

Fitness function at locale 𝑤! was defined as 𝐹!!(𝑇) =  1 + w!𝑃!(𝑇) + 1 − 𝑤! 𝑃!(𝑇) −

𝐹!!!"#.  𝐹!!!"#  sets the maximal attainable fitness in locale 𝑤! to 1. 𝑃!(𝑇) =  −0.001 

(𝑇 − 𝐴!)!, 𝐴! = 0, 0 ,𝐴! = (100, 0). 

 

 

 



 

Figure S8. Polymorphisms align with the front and phenotypes reside on the front when 
the surviving phenotype at a locale is selected according to 𝑒𝑥𝑝(𝛽𝐹!), for sufficiently large 
β. (A). Ratio between standard deviation perpendicular and parallel to the front decreases with 
population size N, for large enough 𝛽, and stays close to 1 (which means that phenotypes do not 
align with the front) for smaller 𝛽s. (B). Median angle of polymorphisms to the front decreases 
with population size N, for large enough 𝛽, and stays close to 45° (which means that 
polymorphisms do not align with the front) for smaller 𝛽s. Simulation parameters: Nµ=50, infinite 
recombination. 

 

 

Supplementary Section 6: Technical detail on the simulations 

Each individual is represented by its genome. The genome is diploid, meaning it is 

composed of two chromosomes, both containing the same genes. Each gene has a 

location on the genome, that we represent by a real number r ∈ [0,1] (infinite site model 

[2,3]). Each gene can be a wild-type allele, which we model to have no effect on the 

phenotype, or a mutant allele, which affects the phenotype. A mutant allele is 



represented by a vector (with the same dimension as that of the trait-space), which 

determines the effect that the mutation has on the phenotypes. The effects of mutations 

are additive, so the effect of the mutation does not depend on the genetic background. 

The phenotype is the vector sum of all its mutation-effects. 

We assume that there are N locales. At each locale, the fitness function is given by 

F{!!} = w!P!!  ,w! ≥ 0, w! = 1! , where P! is the performance function at task i. 

P! = − T − A!
!
Q! T − A!  (𝑄! is the positive-definite matrix that defines the inner-

product norm that performance i decays from archetype i with). Thus,  

F{!!} = −c w! T − A!
!
Q! T − A!!  .  

The population size is limited by N, the number of available locales. We select the 

locales such that the weights {𝑤!}, representing the relative importance of the different 

tasks in the locale, are uniformly distributed. Each locale can support only one individual, 

so that the population size is N. The fitness of an individual is determined by its fitness 

computed according to the locale it inhabits.  

The simulation has 4 steps: 

1.Initiation: we start with a population of N individuals, each occupying one locale, where 

both copies of all genes are wild-types. We add to each individual random mutations (we 

chose 10, but this step is not necessary). See details on adding mutations in the 

“mutation” section below. 

2.Mating/Recombination: each generation begins with the production of offspring. We 

model either sexual mating or asexual mating.  

In the sexual mating regime, we produce an offspring by selecting 2 parents randomly. 

To model the mating process, we use either free recombination [4], in the sense that 



each allele has a 50% chance of passing to the offspring, with no linkage between 

alleles, or recombination with linkage, in which recombination was done by swapping 

chromosomes at a single recombination spot (in both cases each offspring gets one 

copy of each gene from each parent). We repeat this process to generate a total number 

of kN offsprings (k>1 is a parameter that determines drift strength).  

In the asexual mating regime, we select kN parents randomly, and each offspring is 

identical to its parent. 

 

3.Mutation: each offspring receives a number of new mutations that is Poisson-

distributed with a mean µ. A new mutation appears in a randomly selected locale 

r ∈ [0,1]. Each mutation has an effect that is a randomly oriented vector in trait space. 

We used an exponential distribution of mutation effect sizes (length of the effect vector); 

other distributions [5] did not qualitatively affect the results. We assume an infinite site 

model [3,6], meaning that each new mutation introduces a new segregating site, and we 

neglect the possibility of multiple mutations at the same site. 

4. Selection: There are kN offsprings, but the N locales support only N individuals. To 

select these N, we choose a locale at random. The individual that is selected to occupy 

the locale is the one which has the highest fitness at this locale out of all remaining 

individuals. We select a locale out of all empty locales, and occupy it with the individual 

that is most-fit for it out of the individuals that weren’t yet selected. We repeat this 

process until all locales are occupied. The N individuals that occupy the N locales 

survive for the next generation. Others are removed. 

We repeat steps 2-4 for a desired number of generations (typically 10N). 



Supplementary Section 7: Allelic polymorphisms align with the front when the 

individual selection surfaces in locales have ridges that are perpendicular to the 

front 

We ran simulation where the two performance functions, and as a result individual 

selection surface (ISS) in all locales, have ridges that point perpendicular to the front, 

rather than circular contours as studies in the main text. We find that also in this case, 

phenotypes evolve to the front, and selected polymorphisms have phenotypic effects 

that align with the front (Fig S9). 

 

Figure S9: Phenotypic effects of polymorphisms align with the front when performance 
functions have ridges that are perpendicular to the front. Left panels depict fitness-function 
contours in 3 different locales: two that require only single tasks, and one that requires both tasks 
with equal weights. Darker contour color represents higher maximal fitness (as described in 
supplementary section S4). (A) has equal maximal fitness across all locales, while in (B) maximal 
fitness is higher in locales with locale-optimum closer to archetype 1, and mating probability 
depends on the parent’s fitness.  Right panels show phenotypes after 105 generations (blue dots) 
and the Pareto front (red line), as well as effects of allelic polymorphisms present in at least 1% of 
the genomes (black arrows). 



Supplementary Section 8: Alignment of polymorphisms with the front for various 

population sizes and mutation rates  

To quantify the alignment of polymorphisms effects with the front as a function of their 

frequency in the population, we define for each mutation its perpendicular and parallel 

effects with respect to the direction of the Pareto front. We bin polymorphisms according 

to their frequency, and computed for each bin the alignment with the front defined as A =

2

2 2

a
a a⊥

+

P

P

, where aP
 and a⊥

 are the mean parallel and perpendicular component 

of the mutation effect vectors. A = 1 occurs when mutations are completely aligned with 

the Pareto front, and A = 0.5 corresponds to randomly oriented mutations.  

 

Fig. 2F in the main text presents the alignment A for different competition parameters k. 

We also studied the dependence of the alignment of polymorphisms A (as defined in the 

main text) with the front on the population size N and mutation rate 𝜇. To study the 

dependence on N, we ran simulations with population sizes of 100, 500, 1000, and 

2000. The mutation rate 𝜇 was changed to keep the mutation inflow per generations 

constant across the simulations. Other parameters were kept constant. See Figure 

S10A.  To study the dependence on 𝜇, we ran simulations with a population sizes of 

1000 and 𝜇 between 0.01-0.05. See Figure S10B. 

 



 

Figure S10. Segregating mutations have effects that are aligned with the Pareto front. 
Graphs present the alignment of the allelic polymorphism’s phenotypic effects with the front (A =

2

2 2

a
a a⊥

+

P

P

) as a function of the polymorphisms frequency among genomes (log-linear scale). 

Different curves correspond to simulations run with different population sizes (A), or different 
mutation sizes (B), as indicated in the legend. All simulations were done with k = 2, Q1=Q2 =I, 𝜇N 
= 50 (A), or N=1000 (B), and infinite recombination. (A) Alignment increases with polymorphism 
frequency for N=1000 and N=2000, while for lower N alignment increases until polymorphisms 
penetrate around half the population and then slightly decreases (see Supplementary Section 9 
for more details). Alignment also increases with population size N. (B) Alignment does not 
depend significantly of mutation rate. Error bars are estimated using bootstrapping and represent 
95% confidence intervals. 

 



Supplementary Section 9: Alignment with the front is greatest at mid-range 

frequency when selection is not strong 

We see in Fig 2F and Fig. S10 that for weaker selection (population size N=1000 and 

k=1.1 or k=1.5, or N=100 or N=500 with k=2), the maximal alignment with the front is 

attained for polymorphisms of frequency of about 0.5 rather than at frequency of 1. We 

hypothesize that the cause for this effect is that polymorphisms with a larger 

perpendicular component spend a shorter amount of time at mid-frequencies, and hence 

they are less likely to be sampled. This is because negative selection on them is 

stronger, and hence those that don’t fixate quickly disappear. When simulations are run 

with parameters that enhance selection (larger k or larger N), this phenomena is not 

observed (alignment is maximal at frequency of 1), because non-parallel polymorphisms 

don’t manage to reach mid-range frequencies. This hypothesis agrees with detailed 

observation of the fixation dynamics of polymorphisms in the simulations (not shown).  

 

Supplementary Section 10: When the Pareto front is curved, polymorphisms align 

with a local region on the front 

 

We studied the distribution of allelic polymorphism under a tradeoff situation that results 

in a curved front. A curved front occurs when the performance functions have eccentric 

contours that point at an angle with respect to each other. To explain this point, note a 

straight line segment between the two archetypes is the resulting Pareto front when the 

performance functions decay with the same distance metric away from the archetypes. 

The distance metric of a task i is defined by an inner product norm: T − A!
!
Q! T − A! , 



where Ai is the archetype at task i, T is the phenotype and Q!is a positive definite matrix. 

Generally, Q! can be represented as  
Cos(θ!) −Sin(θ!)
Sin(θ!) Cos(θ!)

1 0
0 λ!!

Cos(θ!) Sin(θ!)
−Sin(θ!) Cos(θ!)

 . 

Here the angle θ! determines the orientation of the elliptical contours of the performance 

function, and the parameter 𝜆!determines their eccentricity.  

We proved in Sheftel et al. [7] that when the two performance functions depend on 

different matrices Q1 and Q2 (and thus have elliptic contours that point at an angle with 

respect to each other), the Pareto front is a section of a hyperbola that connects the 

archetypes instead of a straight line segment. This hyperbola doesn’t deviate much from 

a straight line as long as contours are not too eccentric (both λs are not very large, see 

quantitative criteria in Sheftel et. al (2)).     

We simulated evolution under tradeoff between two tasks that generate a curved front. 

We set the same eccentricity for both performance functions (same λ), and had their 

contours point at an angle of 0.5 relative to the Pareto front ( θ! =
!
!
+ 0.5 and θ! =

!
!
−

0.5). We start with medium selection (k=2). When λ =1.1 or 1.5, the Pareto front is mildly 

curved, phenotypes occupy the entire front and polymorphisms align relatively well with 

the Pareto front (Fig S11A-D). When λ is larger, λ =4, the Pareto front is highly curved, 

and the phenotypes occupy only the flat area at the top of the Pareto front (Fig S11E-F). 

Polymorphisms are no longer aligned with the line between archetypes for higher values 

of λ such as λ =10 (Fig S11G-H). If phenotypes occupied the entire curved front, many 

offspring would fall far from the front and would be sub-optimal. This is why selected 

phenotypes remain in a region where offspring are likely to remain near the front. A 

different situation may result if instead of random mating we used mating between 

neighboring locales. 



The phenotypes seem to track the shape of the curved front more precisely the stronger 

the selection (higher k). This happens since k determines the number of offsprings, and 

larger number of offsprings increases the chance of performing well in a wider range of 

locales. Polymorphisms still align with the front, but alignment decreases (Fig S12).   

We also studied curved fronts when mating probability depend on fitness, and the 

maximal fitness in different locales is not equal, but rather higher for locales with locale-

optima near one of the archetypes (as descries in section S4, see Fig S13). In this case, 

phenotypes and polymorphism can align with a direction dictated by the local region on 

the front that is closer to the archetypes with the higher fitness (Figure S13).  

 

Figure S11. Polymorphisms align with the direction between the archetypes when the 
Pareto front is slightly curved, and selection is medium. (A,C,E,G) Snapshot of the 
phenotypes after 100,000 simulation-generations for different curvatures of the Pareto front. The 
curvature increases as the parameter λ increases. All simulation used the performance functions: 



P! x = x − A!
Cos θ −Sin θ
Sin θ Cos θ

1 0
0 λ!

Cos[θ] Sin[θ]
−Sin[θ] Cos[θ] x − A! , where A! is the archetype 

number i. θ! was set to !
!
+ 0.5 and θ! to  !

!
− 0.5. The Pareto front is shown in red. Simulation 

parameters: N =1000,  µ = 0.05, k = 2. (B,D,F,H) The phenotypic effects of all polymorphisms 
present in at least 1% of genomes at the stated generation. (I) Alignment of polymorphisms with 
the line between the archetypes for different λs. (J-K) Each point represents a locale-optimum, 
obtained for a different w! (F!! = F!!! + (1 − w!)P! + w!P!) for 0 ≤ w! ≤ 1). Each panel depicts 
all locales used for a certain λ. (J) λ = 4 (K) λ = 10. Locale-optima are not equally spaced along 
the Pareto front, even though the w!′s, the weighting of the different tasks, are equally spaced 
between zero and one. As λ increases, the spacing becomes less uniform. 

 

  

Figure S12. Polymorphisms align with the direction between the archetypes when the 
Pareto front is slightly curved, and selection is strong. (A-B) Phenotypes (blue points) in the 
population after 100,000 simulation generations. Pareto fronts are red curved and archetypes are 
red points. Insets: polymorphisms found in more than 1% of the genomes. Each arrow represents 
the phenotypic effect of 1 polymorphism. Simulation parameters: 𝑁=1000, 𝑘=5, 𝜇=0.05. All 
simulation used the performance functions: 

P! x = x − A!
Cos θ −Sin θ
Sin θ Cos θ

1 0
0 λ!

Cos[θ] Sin[θ]
−Sin[θ] Cos[θ] x − A! , where A! is the archetype 

number i. θ! was set to !
!
+ 0.5 and θ! to  !

!
− 0.5. (A) 𝜆 = 1.5 (B) 𝜆 = 4 . 



 

Figure S13. Polymorphisms align with a local direction on the front. Left column presents 
the contours of the fitness function at three different locales. Darker contour color represents 
higher maximal fitness. Middle column shows the phenotypes in the population after 100,000 
simulation generations. Right columns are the polymorphisms found in more than 1% of the 
genomes. Each arrow represents the phenotypic effect of 1 polymorphism. Simulation 
parameters: 𝑁=1000, 𝑘=2, 𝜇=0.05, maximal fitness in the locale with archetype 1 as a locale-
optimum is twice the maximal fitness in the locale with archetype 2 as a locale-optimum. 
Parameters of the matrices 𝑄! and 𝑄! were: θ! = !

!
+ 0.5 , θ! =  !

!
− 0.5. In the upper row 𝜆 = 1.5 

for both performance functions, in the lower row 𝜆 = 4 for both 𝑄! and 𝑄!. 

 

 

Supplementary Section 11: Polymorphisms align with the triangular Pareto front 

when maximal fitness in different locales is not equal.  

We studied a scenario with three tasks, where the mating probability depends on fitness 

(as described in Supplementary Section 4), and maximal fitness of locale optimum 



located at archetype 3 is 2, 5, or 10-fold higher than the maximal fitness of locale-

optimum located at archetypes 1 and 2. Fitness in each locale {𝑤!𝑤}  is 𝐹{!!,!!} =

𝐹! !!,!! + 𝑤!𝑃! + 𝑤!𝑃! + 1 − 𝑤! − 𝑤! 𝑃!, (𝑤! ≥ 0,𝑤! ≥ 0,𝑤! + 𝑤! ≤ 1). We find that in 

all cases polymorphism effects align with the front (Fig S14). 



 

 



Figure S14. Polymorphisms align with the triangular Pareto front when maximal fitness in 
different locales is not equal. We studied a scenario where the maximal fitness at a locale with 
locale -optimum at archetype 3 is 2, 5, or 10-fold higher than the maximal fitness at a locale 
whose locale -optimum is at archetypes 1 and 2, and the decay in fitness between them is linear. 
In all figures, Pareto front is a red triangle, archetypes are red points whose size corresponds to 
the value of maximal fitness at the locale whose locale -optimum is at the archetype. (A-C). 
Phenotypes and polymorphisms after 100,000 generations from three different angles, for a 2-fold 
(A), 5-fold (B) and 10-fold (C) difference between the fitness at the archetypes. 

Supplementary Section 12: Polymorphisms with epistatic effects between the two 

copies of the same allele, that have a large component perpendicular to the front, 

are selected against. 

We consider the effects of tradeoffs on the non-additive interaction (epistasis) between 

two alleles of the same gene. We modelled this type of epistasis by assigning to each 

mutation i a randomly oriented vector 𝑑!, such that the heterozygote mutant effect is 𝑚! 

and the homozygote is 2𝑚! + 𝑑! (Fig S15A-C). We computed the alignment of the 

epistasis vectors 𝑑! with the front, D =
2

2 2

d
d d ⊥

+

P

P

, where d P
 and d ⊥

 are the mean 

parallel and perpendicular component of the epistasis effect vectors. For common 

polymorphisms, for which a sizable fraction of the population is homozygous [8], D 

approaches 1. Thus, epistatic effects of prevalent allelic polymorphisms are also 

oriented along the Pareto front (Fig S15D-G).  



 

Figure S15. Epistatic effects between two copies of the same allele, which have a large 
component perpendicular to the front, are selected against. (A-C) Definition of epistatic effects 
between two alleles 𝑑!, showing the phenotypic effect of wildtype homozygote, heterozygote and 
mutant homozygote. (B) Phenotypes after 100,000 simulation generations (parameters: N = 1000, µ =
0.05, k = 2, infinite recombination). (E) Phenotypic effect of the additive effect m! of polymorphisms 
(frequency > 1%) in the population, θ is the median angle (in degrees) of polymorphisms relative to the 
front. (F) Phenotypic effect of the dominance d! of polymorphisms (frequency > 1% in the population), 
θ is the median angle (in degrees) of polymorphisms relative to the front. (G) The alignment of 

dominance with the front, (
2

2 2

d
d d ⊥

+

P

P

, green plot) rises with polymorphism frequency. Error bars 

are estimated using bootstrapping and represent 95% confidence intervals. Blue graph represents the 
alignment A of the main effects for comparison. 

 

 



Supplementary Section 13: Molecular mechanism that can generate a triangular 

front  

 

We study a regulatory mechanism where three pathways are regulated by three 

regulators Xi that compete over a limiting factor R. This mechanism is inspired by 

bacterial gene regulation, in which the regulators Xi are sigma factors that compete over 

binding to RNA polymerase R and provide it with specificity to bind to gene promoters.  

The binding reactions can be described by a mass action model: 

[R!]  +  [X!]
!!"
!

[RX!]  

RX!
!!""
!

R! +  X!  

For i=1,2,3, where [R!] is the concentration of free R (unbound to any Xi). At equilibrium 

 RX! =
!!"
!

!!""
! R! [X!]. 

We redefine X! as  !!"
!

!!""
! [X!], to obtain RX! = R! [X!]. 

The total concentration of R in the cell, R!, is the sum of the unbound and bound forms: 

[R!] = [R!] + [RX!
!

] 

We consider the case in which binding is tight (regulator concentrations are much higher 

than their Kd=
!!"
!

!!""
!  for binding to R) and hence free R is limiting. This case is defined by 

very little free R: R! ≪ [RX!! ]. In this case,  



[R!] ≅ [RX!
!

] = R! [X!]
!

 

and hence 

[R!] =
R!
[X!]!

  

The output traits are the expression of gene j, T!. The expression depends on the 

concentration of the bound complex  X! R through the parameters ω!". In bacterial 

regulation, ω!" represent the rate of transcription initiation from the gene promoter by 

RNA polymerase bound to the sigma factor Xi. The total transcription initiation rate is 

T! =  ω!" RX! = ω!"
!!

R! X! = ω!"
R! [X!]
[X!]!

 
!

 

For convenience we define R= R! , remove the brackets to obtain the equation in the 

main text: 

1  T! = R ω!"
X!
X!!

 
!

 

The simulations that model the molecular mechanism presented here are identical to the 

simulation presented in the other sections in their selection and recombination schemes. 

They differ from the previously-described simulations in the mutation scheme, mutation 

effect, and genotype->phenotype mapping. Each mutation affects one of the parameters  

R, X!, or ω!". We use product-rule mutations: each mutation multiplies the value of the 

parameter by a number drawn from a log-normal distribution with a mean of 1 and a 

standard deviation of 1. Product rule mutations are thought to be a better approximation 

for the impact of mutations on biochemical parameters than mutations in which a 

random number is added (sum-rule) [9]. Using standard sum-rule mutations yields the 



same conclusions. The phenotype T depends on the parameters as described in Eq 1. 

Simulations were performed with the three archetypes: A! = 2,1,1 , A! = {1,2,1}, 

A! = {1,1,2}, providing a triangle that is at an angle to all trait axes, and performance 

functions that decay with Euclidean distance from the archetypes.  

This model can be generalized to any number of regulators Xi, and the resulting front is 

a polytope with a number of vertices equal to the number of regulators (a line is provided 

by two regulators, a tetrahedron by four and so on). 

Supplementary Section 14: Parameters 𝝎𝒊𝒋 of the molecular mechanism we model  

become fixed during the simulation 

 

In the main text we described a molecular mechanism that we simulated to study 

epistasis. We mention that the weights 𝜔!" become fixed at some point and the variation 

in phenotypes is due to mutations in the X factors. To show that 𝜔!" become fixed, we 

plot for each 𝜔!" its standard deviation divided by the mean in the population. After about 

1000 generations, this value becomes very small for all the weights (Fig S16). 



 

Figure S16. The weights ω!" fixate after around 1000 generation. Each plot represents the 
standard deviation divided by the mean of a variable ω!" in the population as a function of 
generation. After 1000 generations this value becomes close to zero, which signifies that ω!"s are 
relatively constant in the population at this stage. 

 

Supplementary Section 15: Artificial selection simulations 

In figures 5ABD, and Fig. S17, we present results of artificial selection simulations. In the 

artificial selection simulations, we used as an initial population a population that was 

adapted to a 2-task Pareto front in a 2D trait-space (Fig 5A,B) or a 3-task Pareto front in 

a 3D trait-space (Fig 5A, S17), with parameters of N=1000, µ=0.05, and k=2 (2 tasks, 

Fig S17) or k=5 (3 tasks, Fig S17, Fig 5A), or N=100, 𝜇=0.5, k=2 (2 tasks, Fig 5B). The 

phenotypes and genotypes of such a population are presented at Fig 2A-D for 2 tasks 

and Fig 3A-F for 3 tasks. For the artificial selection simulation results presented in Fig. 

5A and S17B, we took as an initial population the 100 offsprings that were closest to 

archetype 1. For the results presented at Fig. 5B,D and S17D, we took the entire 



population. For the results presented at Fig 5A, we took a target that is distanced from 

the starting population equally along the front and perpendicular to the front. For the 

results presented at 5D and S17B, we took 2 targets: one distanced parallel to the front 

and one distanced perpendicular to the front. At each artificial selection generation, we 

selected the fraction p of individuals closest to the target, and then recombined the 

population (without mutations) to generate a number of offsprings that equals the initial 

population size. For simulations using triangular front we used p=0.1, while for 2-

dimensional fronts we used p=0.5. We repeated this process for a number of 

generations as specified in the relevant captions.  

 

Figure S17. The `response of a simulated population adapted to the Pareto front to 
artificial selection. (A) Artificial selection experiments performed by [10] on butterfly eyespot-
size show that response to selection along the main axis of phenotypic variation of the natural 
population is faster and larger than response to selection perpendicular to this axis. The x and y 
axes represent the normalized sizes of the two dorsal eye-spots, and the mean phenotype of the 
initial population is at the origin. Adapted from Allen et al. 2008 [10]. (B) Time course of mean 
phenotype in simulations under selection towards a far target along front (red) and perpendicular 



to the front (blue). Each point represents the phenotype mean at subsequent generations of 
selection. Initial population was taken as the 10% closest phenotypes to archetype 1, out of a 
population adapted to the front for 100,000 generations in a simulation run with parameters 
N = 1000, µ = 0.05, k = 5. Each generation, 1000 offspring were produced and the 10% closest to 
the target were selected. (C) left panel: variation of corolla tube length and long filament length in 
Wild Radish. Each point is the mean of all offsprings of one sire. Right panel: results of artificial 
selection for 5-6 generations in the directions represented by the arrows in the left panel. Adapted 
by Agrawal et. al [11] from Conner 2003 [12] (D) A population (green) adapted to the triangular 
Pareto front as in (B) was selected to far targets perpendicular to the front. The final populations 
(blue, red) after 100 generations of selection have variation that is on a plane parallel to the 
original Pareto front. 

 

Supplementary Section 16. Details on the construction of Figure 5F 

We used the data presented in Fig. 5B-C in Mallarino et al. [13]. From Fig. 5C we 

obtained beak length, width and depth relative to G.difficilis. Fig 5B shows for each of 

BMP, calmodulin, TGFβIIr, β-catenin and Dkk3 if it had a positive (+), negative(-), or no 

effect (0) on one of the beak’s dimensions. For polymorphism representation, a “+” was 

assigned the value “1”, a “-“ was assigned a value of -1, and 0 was assigned a value of 

0.  
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