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Supplementary Figure 1: Enrichment of BioGRID-supported edges in the K562 cell line of
three di↵erent modeling approaches using three di↵erent pre-processing methods. For binary
peaks (blue), we used MACS2 with paired controls and a lenient peak threshold. For control-
adjusted pileup (red), we took MACS2 pileup output and normalized by a paired control. For
transformed control-adjusted pileup (yellow), we took the square root of the control-adjusted pileup.
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Supplementary Figure 2: Precision when predicting BioGRID interactions using inverse covari-
ance (blue), a binary Markov random field model from [60] (red), and partial correlation (yellow).
A tilde (˜) indicates we took Markov random field precision numbers directly from the published
precision-recall plot in [60]. To generate inverse covariance and partial correlation results, we started
with processed data from [60]. Then, we calculated bootstrap-averaged performance on BioGRID
interactions as Zhou et al. did in their article. We compared methods under three di↵erent testing
regimes. Continuous represents testing on the original control-adjusted, normalized, and binned
data. Binary represents testing on binarized data, without regularization. L1 binary represents
testing on binarized data, with L1 regularization of both models.
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Supplementary Figure 3: Wall clock training time to fit the pairwise pseudo-likelihood Markov
random field model from Zhou et al. [60] on ENCODE data. As the number of variables in the
model increases, the method’s running time becomes infeasible. We tuned regularization parameters
using the same 61 warm-started optimizations used in [60]. We ran this test on a 12-core Intel Xeon
CPU E5645 2.40GHz computer with 24 GB of random access memory.
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Supplementary Figure 4: Histogram of area under the curve (AUC) ratios comparing enrichment
of BioGRID-supported edges in a GroupGM network versus networks created by inverse correla-
tion (red), correlation (yellow), and random edge score assignment (grey). Specifically, we compared
the area under enrichment–edge density curves from 10,000 bootstrap samples from chromatin fac-
tors, excluding edges between di↵erent cell types (Figure 3A). P -values represent the fraction of
bootstrap samples with a ratio of AUC’s less than 1.
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Supplementary Figure 5: One-sided hypergeometric test negative log10 P -values for enrichment of
BioGRID-supported edges within cell types that have 25 supported edges or more (Figure 3C).
The hypergeometric test is less conservative than the bootstrap approach used in Figure 6. Cell
types with more datasets will likely have more significant P -values, since they have more edges to
compare. Dashed line indicates 99% confidence level (P = 0.01). Beneath each cell type name is
the number of datasets in that cell type.

25



1 2

GroupGM / inverse correlation (P = 0.11)

GroupGM / random (P = 0.0095)

GroupGM / correlation (P = 0.13)

ratio of AUCs

bo
ot

st
ra

p 
sa

m
pl

e 
de

ns
ity

Supplementary Figure 6: Histogram of area under the curve (AUC) ratios comparing enrichment
of BioGRID-supported edges in a GroupGM network versus networks created by inverse corre-
lation (red), correlation (yellow), and random assignment (grey). Specifically, we compared the
area under enrichment–edge density curves from 10,000 bootstrap samples from chromatin factors,
including edges between di↵erent cell types (Figure 3B). Variability was much higher than in an
examination of edges within cell types (Figure 4). This is because resampling chromatin factors
measured in many cell types alters many edges across cell types.
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Supplementary Figure 7: Enrichment of BioGRID-supported edges in a GroupGM created from
a binary data matrix of MACS peaks called at two di↵erent thresholds (P < 0.05, blue; P <

0.001, red). Within the larger network we examined BioGRID enrichment among datasets from
K562 myeloid leukemia cells, GM12878 lymphoblastoid cells, and H1-hESC embryonic stem cells.
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Supplementary Figure 8: Enrichment of BioGRID support in edges with a given weight. Nega-
tive coe�cients indicate negative correlation. Dark grey line indicates the fraction of BioGRID-
supported edges in a randomly connected network (8.4%). Light grey shaded area represents those
edges with coe�cient magnitude less than the 0.03 minimum used in the ChromNet interface.
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Supplementary Figure 9: Force-directed 2D embedding embedding of a correlation network of
human ENCODE data, estimated by naive correlation. In contrast to the GroupGM network (Fig-
ure 6), marginal dependence drives the forces here. Datasets targeting the same chromatin factor
are more tightly clustered and spatial relationships between related chromatin factors are much
weaker than in Figure 6.
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Inverse correlation
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Supplementary Figure 10: A precision-recall curve for known protein-protein interactions in Bi-
oGRID among experiments from the K562 cell type. Bootstrapped Bayesian network inference was
performed as in previous work on D. melanogaster [54, 3]. We used networks from 400 bootstrap
re-samples to estimate 400 Bayesian networks.
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Supplementary tables

Supplementary Table 1: Summary of all ENCODE datasets processed by ChromNet broken down
by cell type. This summarizes the full listing of all 1,415 datasets with ENCODE experiment
identifiers (Supplementary Data 1). The transcription factor and histone columns represent how
many unique transcription factors or histones were measured in that cell type. The treatments
column lists the number of additional treatment conditions each cell type was measured under.

Transcription Histone
Cell type Datasets factors modifications Treatments

K562 238 156 12 2
GM12878 146 107 11 1

HepG2 116 82 11 3
A549 93 51 11 2

HeLa-S3 87 64 11 1
H1-hESC 81 60 11 0

MCF-7 53 35 5 1
SK-N-SH 44 27 6 1

endothelial cell of umbilical vein 28 9 12 0
HCT116 28 22 5 0
ECC-1 24 21 0 5

fibroblast of lung 22 2 11 0
keratinocyte 18 2 12 0

mammary epithelial cell 16 2 11 0
SUDHL6 14 2 12 0

Karpas-422 14 2 12 0
CD14-positive monocyte 14 1 11 0

Panc1 13 4 6 0
fibroblast of dermis 13 2 11 0

T-cell acute lymphoblastic leukemia 13 2 11 0
skeletal muscle myoblast 13 2 11 0

astrocyte 13 2 11 0
myotube 13 2 11 0
DOHH2 12 1 11 0
HEK293 12 7 5 0

cardiac mesoderm 12 0 3 0
MCF 10A 12 5 0 2
osteoblast 12 2 10 0
Oci-Ly-1 11 0 11 0
Oci-Ly-3 11 1 10 0
Oci-Ly-7 11 1 10 0
IMR-90 10 10 0 0
NT2/D1 9 3 6 0

GM12891 9 8 0 1
T47D 9 6 0 4

neural cell 8 8 0 0
B cell 8 2 5 0
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Transcription Histone
Cell type Datasets factors modifications Treatments

GM12892 7 6 0 1
HL-60 6 5 1 0

PFSK-1 6 5 0 0
NB4 5 4 1 0

U2OS 4 2 2 0
mononuclear cell 4 0 4 0

bronchial epithelial cell 4 1 3 0
foreskin fibroblast 4 1 1 0

kidney epithelial cell 4 1 3 0
GM06990 4 1 3 0

Caco-2 4 1 3 0
BJ 4 1 3 0

LNCaP clone FGC 3 1 1 1
erythroblast 3 2 0 0

WI38 3 1 1 1
cardiac fibroblast 3 1 1 0

H7-hESC 3 0 3 0
H54 2 2 0 0

SH-SY5Y 2 2 0 0
GM08714 2 1 1 0

WERI-Rb-1 2 1 1 0
SK-N-MC 2 1 1 0

epithelial cell of proximal tubule 2 1 1 0
fibroblast of villous mesenchyme 2 1 1 0

retinal pigment epithelial cell 2 1 1 0
fibroblast of pulmonary artery 2 1 1 0
fibroblast of mammary gland 2 1 1 0

HFF-MYC 2 1 1 0
epithelial cell of esophagus 2 1 1 0

choroid plexus epithelial cell 2 1 1 0
cardiac muscle cell 2 1 1 0

brain microvascular endothelial cell 2 1 1 0
astrocyte of the cerebellum 2 1 1 0
astrocyte of the spinal cord 2 1 1 0

GM12875 2 1 1 0
GM12865 2 1 1 0
GM12864 2 1 1 0

BE2C 2 1 1 0
fibroblast of the aortic adventitia 2 1 1 0

fibroblast of skin of abdomen 2 1 1 0
fibroblast of gingiva 2 1 1 0

fibroblast of pedal digit skin 2 1 1 0
fibroblast of upper leg skin 2 1 1 0

GM15510 2 2 0 1
GM19193 2 2 0 1
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Transcription Histone
Cell type Datasets factors modifications Treatments

GM18951 2 2 0 1
GM19099 2 2 0 1
GM18505 2 2 0 1
GM18526 2 2 0 1
GM10847 2 2 0 1

Loucy 1 0 1 0
spleen 1 1 0 0

pancreas 1 1 0 0
medulloblastoma 1 1 0 0

lung 1 1 0 0
kidney 1 1 0 0

GM20000 1 1 0 0
GM13977 1 1 0 0
GM13976 1 1 0 0
GM10266 1 1 0 0
GM10248 1 1 0 0

Raji 1 1 0 0
skeletal muscle cell 1 0 1 0

Jurkat 1 0 1 0
GM12874 1 1 0 0
GM12873 1 1 0 0
GM12872 1 1 0 0
GM12801 1 1 0 0

Total 1,415 803 353 33
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Chromatin factor Max edge weight Known in BioGRID

MAX 1.403 +
POLR2A 0.685 +

CTCF 0.358 �
FOS 0.345 �

MXI1 0.322 �
JUND 0.306 �
TBP 0.247 +
MAZ 0.247 +

HCFC1 0.233 �
GTF2F1 0.223 +

EP300 0.187 +
STAT3 0.185 �
E2F6 0.172 �
PHF8 0.172 �

RCOR1 0.167 �
BHLEH40 0.166 �

Supplementary Table 2: Top 16 chromatin factors with a strong connection to MYC in ChromNet.
Scores are strongest group edge connecting MYC to the listed factor in any cell type.

Supplementary Note 1: Scalability of previous methods

Only correlation and inverse correlation are compared to ChromNet for the full human chromatin
network. This is because the other previous methods we considered could not scale to the full 1.415
datasets. These are ARACNE (a well-known network learning method for gene expression data)
[35], binary Markov random fields [60], and bootstrapped Baysian networks [54, 3].

ARACNE is designed to handle gene expression which contains a large number of variables,
but not necessarily a large number of samples. This was evident when we sought to apply it to
chromatin network estimation. ARACNE exhausted all memory on a 24 gigabyte system with only
10 variables and 100,000 samples. This precludes it from even approaching the 3 million samples
and 1,415 variables in the ENCODE dataset.

Binary Markov random fields were used successfully to recover chromatin factor interactions
in D. melanogaster, with 73 variables and 300,000 samples [60]. Using the code kindly provided
by Zhou et al., we attempted to apply the Markov random field to the human ENCODE data.
Estimating the full joint distribution of a binary Markov random field model is very expensive.
One approximation that is much more e�cient involves the use of the psuedo-likelihood instead of
the joint likelihood. This was one of the methods used by Zhou et al. [60], however even the pseudo-
likelihood becomes intractable when we consider all ENCODE datasets, taking over 10 hours with
just 60 variables in the model (Supplementary Figure 3).

Bootstrapped versions of Bayesian network inference have been used previously to infer networks
among chromatin factors in D. melanogaster [54, 3]. These experiments were run on binary data
among up to 112 factors, but scaling them to human data is much more challenging. Because
of run-time constraints we restricted the model to only consider 238 datasets from the K562 cell
type. We then used networks from 400 bootstrap re-samples to estimate 400 networks. Each
network took about 1.2 hours of processing time to find good solutions, leading to over 500 CPU
hours of compute time. Inverse correlation uses a normal approximation for the binary data,
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runs in less than 10 seconds, and out-performs the far less e�cient Bayesian network inference
method in terms of known agreement with physical protein-protein interactions labeled in BioGRID
(Supplementary Figure 10).

Supplementary Note 2: Benefits of binary data

ChIP-seq datasets comprise many sequence reads, and these reads match true chromatin factor lo-
cations to varying degrees of quality. Processing of these reads influences the quality of the learned
chromatin factor interactions and the computational resources required to rebuild the network with
new user-provided data. Binary values representing presence or absence of a chromatin factor at
a specific location provided the most e↵ective representation of a ChIP-seq dataset (Supplemen-
tary Figure 1).

We compared three di↵erent signal representations across three di↵erent estimation methods
on all K562 datasets. For all methods, we binned the resulting signal into 1,000 bp regions. For the
binary peaks method, we called peaks from MACS2 with a lenient P = 0.05 cuto↵. For the control-
adjusted pileup method, we took quality filtered (� level 13) non-multimapping reads and calculated
the depth of read pileup in each bin by averaging the depth of the pileup track computed by MACS2
during peak calling. For the transformed control-adjusted pileup method, we took the square root
of the control-adjusted pileup to make the marginal densities better fit a normal distribution.

The binary peaks method showed the best overall enrichment of BioGRID-supported edges,
although the inference method a↵ected performance more than the pre-processing method (Sup-
plementary Figure 1. The binary peaks method likely showed the best performance because it
damped noise in large regions without any chromatin factors present. Binary data also vastly re-
duced data matrix file size. This allows users to download the entire data matrix and add their
own datasets.

Supplementary Note 3: Simulation study of estimating a binary Markov random
field using the inverse covariance matrix

ChromNet uses an e�cient matrix inverse in place of a computationally intensive Markov random
field model. An inverse covariance (or correlation) matrix and a Markov random field edge matrix
have equivalent sparsity structures if the graph of overlaps between the maximal cliques in the
Markov random field graph forms a tree [32]. Trees are a well-known subclass of this set of graphs.
However, many networks fall outside this class, specifically those with chordless cycles of four or
more nodes. For these graphs the inverse covariance matrix and a Markov random field do not
have equivalent sparsity structures [32].

We compared the sparsity structure of a general Markov random field estimated using the
inverse covariance matrix against the structure of a Markov random field using node-wise logistic
regression. We used node-wise logistic regression because it provides a consistent estimator for
Markov random field structure. For comparison with [32], we focus on the inverse covariance
matrix. The same observations hold for the inverse correlation matrix used in the main paper,
which is just the covariance matrix of normalized data.

A chordless loop of four variables provides the simplest network where the sparsity structures of
an inverse covariance matrix and a Markov random field model are not equivalent for binary data.
We created such a four-variable Markov random field model, with the same parameters � used in
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[32]:

� =

0

BB@

0.1 2 0 2
2 0.1 2 0
0 2 0.1 2
2 0 2 0.1

1

CCA (3)

The entries of this matrix are the parameters to Equation 1 (Methods). Estimating an inverse
covariance matrix ⌦ from an infinite number of samples from the � model results in [32]:

⌦ =

0

BB@

51.37 �5.37 �0.17 �5.37
�5.37 51.37 �5.37 �0.17
�0.17 �5.37 51.37 �5.37
�5.37 �0.17 �5.37 51.37

1

CCA (4)

While ⌦ and � do not have equivalent sparsity structures, the o↵-diagonal values in ⌦ that match
zeros in � are small in magnitude. Only the o↵-diagonal values matter since we are not including
self-self edges in our network. In this case, while asymptotically the sparsity structures do not
match, the relative ordering of o↵-diagonal coe�cient magnitudes is fairly consistent. Without
regularization, inverse covariance matrix entries will never be exactly zero, so relative magnitude
of an entry matters most.

To examine how well the true edges separate from the “false” edges when modeling � with
an inverse covariance matrix, we calculated P (�̂i,j  0) for each entry in the estimated matrix
across a range of sample sizes. We calculated this empirically from the underlying model using
1,000 replicates. This gave an empirical estimate of P (�̂i,j  0) at each sample size. A low value
for P (�̂i,j  0) represents a confident detection of a positive edge in the Markov random field.
Then, we compared the P (�̂i,j  0) computed using ⌦ to an equivalent value computed using
logistic regression run on each node. That logistic regression is asymptotically consistent with the
underlying Markov random field [32]. We seek to use the inverse covariance matrix instead of
node-wise logistic regression because GroupGM relies on inverse covariance matrix properties not
found in a matrix estimated by node-wise regression.

Logistic regression and inverse covariance have very similar power to detect true edges in �,
although only logistic regression is asymptotically consistent in the considered scenario (Supple-
mentary Figure 11). Supplementary Figure 12 extends the range of sample sizes considered for the
inverse covariance matrix estimation. After a 100-fold increase in sample size, false edges not in �
also begin to be detected, confirming the theoretical inconsistency of the inverse covariance matrix
on graphs with chordless cycles. However, the power separation between the true and false edges is
very strong. This suggests that, in practice, a proper threshold may be able to separate true from
false edges.

When analysing ChIP-seq data in ChromNet we do not test against the null hypothesis of zero
edge weight, we instead use a variable threshold controlled by the user, constrained to capture edges
enriched for prior interactions (Supplementary Figure 8). This means the relative ordering of edge
strengths is what matters for ChromNet. We compared the ability of logistic regression and the
inverse covariance to separate the true edges from the false edges using a magnitude threshold. This
comparison demonstrated nearly equal power between the two methods (Supplementary Figure 13).

While for simulation we compare against logistic regression, we also observe similar perfor-
mance between a full Markov random field model and inverse covariance in modENCODE data
(Supplementary Figure 2, Methods).
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Supplementary Figure 11: Power to detect positive entries in � estimated using (A) the inverse
covariance matrix or (B) node-wise logistic regression. P (�̂i,j  0) represents the probability that
an edge is estimated as negative or zero under each method. A small value represents a confident
detection of a positive edge. We computed P (�̂i,j  0) empirically by re-running the estimation
procedure 1,000 times, while varying the number of samples used to learn the model. Each sample
size represents the number of times a sample was drawn from the true network. More samples
provides more power to detect positive edges. We plot the estimated P (�̂i,j  0) for the two true
zero edges (red) and four true non-zero edges (blue) in �.
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Supplementary Figure 12: The power the inverse covariance matrix to detect true edges is similar
to logistic regression, but unlike logistic regression it eventually identifies false edges as well. The
key point to note is the 100-fold separation in power between the true and false edges.
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Supplementary Figure 13: Random 8-node Markov random field models were generated with 40%
of the pairwise weight parameters set drawn from N (�0.5, 1), 1% were set to a large value of 3
to create outliers, and the remaining entries were set to zero. 1,000 such models were drawn and
then sampled from. The minimum separation error of true edge from false edges by magnitude was
computed for both logistic regression and the inverse covariance matrix across a range of sample
sizes. In practive both methods performed equally, even though the inverse covariance matrix is
often not asymptotically consistent.

Supplementary Note 4: Comparison of Markov random field and inverse covari-
ance for network estimation from binary data

Motivated by the computational advantages of the inverse covariance matrix we compared the
performance of both methods applied to binary data from 73 modENCODE ChIP-chip datasets on
D. melanogaster embryonic S2-DRSC cells from Zhou et al. [60] (Supplementary Figure 2). The
authors reported 10 known positives in the top 15 predicted interactions when using an L1-penalized
Markov random field (max entropy) model. We obtained the same performance using L1-penalized
inverse covariance methods (graphical lasso [13]) when choosing a regularization parameter that
maximized the precision. Similarly the performance of unregularized estimation was also equivalent
between the two models. Partial correlation is a rescaled version of the inverse covariance matrix
used by the authors on real valued data. We found it performed similarly to the inverse covariance
matrix. For the tested ChIP-chip datasets, using binary data and L1 regularization shows a clear
advantage (Supplementary Figure 2). For ENCODE ChIP-seq data, however, we found a benefit
for binarization, but not L1 regularization. This may be because the human genome is much longer
than the fly genome, and so provides many more positional samples to prevent overfitting.

Supplementary Note 5: Proof that the group graphical model preserves edge
magnitudes in the presence of arbitrary collinearity

The inverse covariance matrix (a symmetric matrix) can be interpreted in terms of multiple regres-
sion [25, 55], where for simplicity of notation we assume infinite data samples so ⌃̂ = ⌃:
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where �ij is a parameter of the ith regression that predicts the ith variable from all the others, and
R
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Consider an arbitrary edge between two nodes A and B with that correspond to rows A1 and
B1 in ⌦. The strength of the connection in the symmetric matrix ⌦ is SA1�A1B1 = SB1�B1A1 .

Now consider a new data set with a superset of the variables in the original network represented
by ⌦. This new dataset, represented by ⌦(2), has a second B variable with index B2. These two
B variables (B1 and B2) are arbitrarily similar to one another but not identical, and the second
variable bears no relationship to other variables in the network beyond what it gains by being
similar to B1. The regression problem for A1 would be unstable, because B1 and B2 are highly
correlated to each other, which makes it unclear how the weights should be distributed to these
two predictor variables. However, the sum of the coe�cients for the B group remains the same:

�

(2)
A1B1

+ �

(2)
A1B2

= �A1B1 ,

In addition, no new information has been provided about A, so SA remains unchanged (because
the amount of variance explained remains the same):

S

(2)
A = SA,

which means the following:

S

(2)
A �

(2)
A1B1

+ S

(2)
A �

(2)
A1B2

= SA�A1B1 ,

which is equivalent to:

⌦(2)
A1B1

+ ⌦(2)
A1B2

= ⌦A1B1 .

This means that the connection strength that was present in between A and B in ⌦ is now preserved
as a sum of two entries in ⌦(2). This argument generalizes to any number of variables in the B

group.
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Now after adding a redundant B variable consider adding a redundant A variable to create a
new data set ⌦(3). Since the B variables cannot choose between A1 and A2 their coe�cients are
unstable but still sum to their previous value:

�

(3)
B1A1

+ �

(3)
B1A2

= �

(2)
B1A1

(5)

�

(3)
B2A1

+ �

(3)
B2A2

= �

(2)
B2A1

(6)

adding A2 provided no new explanatory power for the B variables so

S

(3)
B1

= S

(2)
B1

(7)

S

(3)
B2

= S

(2)
B2

, (8)

which means

S

(3)
B1

�

(3)
B1A1

+ S

(3)
B1

�

(3)
B1A2

= S

(2)
B1

�

(2)
B1A1

(9)

S

(3)
B2

�

(3)
B2A1

+ S

(3)
B2

�

(3)
B2A2

= S

(2)
B2

�

(2)
B2A1

, (10)

and

⌦(3)
B1A1

+ ⌦(3)
B1A2

= ⌦(2)
B1A1

(11)

⌦(3)
B2A1

+ ⌦(3)
B2A2

= ⌦(2)
B2A1

. (12)

Because ⌦ is symmetric we know that

⌦(2)
A1B1

+ ⌦(2)
A1B2

= ⌦(2)
B1A1

+ ⌦(2)
B2A1

.

Using this we can now calculate the original connection strength ⌦A1B1 as a sum of entries in ⌦(3).
This can be directly generalized to any number of variables in each group, which means that the
connection strength of an edge between two variables in a non-redundant data set can be recovered
by summing edges in a data set where both variables are in groups of redundant variables.

⌦A1B1 = ⌦(2)
A1B1

+ ⌦(2)
A1B2

(13)

⌦A1B1 = ⌦(2)
B1A1

+ ⌦(2)
B2A1

(14)

⌦A1B1 = ⌦(3)
B1A1

+ ⌦(3)
B1A2

+ ⌦(3)
B2A1

+ ⌦(3)
B2A2

(15)

(16)
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