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1 Introduction

This document describes, in detail, the statistical framework that underpins
the CHiCAGO algorithm.

2 Definitions

• The genome is partitioned into restriction fragments, according to our
choice of restriction enzyme. We follow the HiC protocol, making pairs
of fragments ligate together. Subsequently, the capture step enriches
for fragments of interest.

A bait is a fragment that is captured by this last step. An other end is
a fragment ligated to a bait. Thus, any fragment can be an other end,
baits included.

• i, j are indices that refer to restriction fragments. i and j index over
other ends and baits, respectively. With I other ends and J baits, we
have i ∈ {1, . . . , I} and j ∈ {1, . . . , J}. Since an other end can be a
bait, we have that each baited fragment has both an i and j index.∗

• Let Xij be the number of observed read pairs that span from other end
i to bait j.

• Let a “pair” be some choice (i, j).

• cis and trans are abbrevations for cis-chromosomal and trans-chromosomal,
respectively.

• Let dij be the genomic distance between the midpoints of fragments i
and j (thus, dij ≥ 0). If (i, j) is a trans pair, then we assume dij is
infinite.

• Often we need to group things by genomic distance. Thus, we define
genomic distance bins:

B0 = [0, w), B1 = [w, 2w), . . . , Bb = [bw, (b+ 1)w)

∗Note: in the software package, the indices i and j are not used – rather, each frag-
ment gets an ID according to its genomic location. The ID is referred to as a baitID or
otherEndID depending on context. Thus, if we take a list of potential baitIDs, they need
not be contiguous.
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Let db be the midpoint of bin b. Thus, we can rewrite the definition of
Bb as

Bb = [db − w/2, db + w/2)

• The Negative Binomial (NB) distribution will be parametrized through-
out this document in terms of the mean µ and the dispersion parameter
r (also known as the size parameter). Thus, if X ∼ NB(µ, r),

V ar(X) = µ+
µ2

r

3 Model

The aim of CHiCAGO is to find interaction events : pairs of loci that are
brought together by some protein complex, in a manner that occurs more
often than by chance were that complex not there. Under the null hypothesis
(ie in the absence of such a complex), we assume that a count Xij is a
convolution of two elements:

Xij = Bij + Tij

These two components are:

• a Brownian motion noise component with NB distribution, Bij ∼
NB(µij, r). This count represents read pairs that arise from the ran-
dom collisions due to Brownian motion of the chromosome. (Note that
the term “Brownian motion noise” is not to be confused with the sta-
tistical concept of “Brownian noise”.) Thus, the mean µij decays with
distance. We assume that µij is the product of a bait fragment-specific
bias sj, an other end fragment-specific bias si, and some “distance pro-
file” f that depends on the distance between the fragments:

µij = sisjf(dij)

where
f(d)→ 0 as d→∞

Additional constraints are required to make this model identifiable (for
example, the alternative solutions s′i = αsi, s

′
j =

sj
α

have the same
associated µij). Thus, we set:
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∑
i

log(si) =
∑
j

log(sj) = 0 (1)

As a result, f(dij) represents the frequency of local interactions that
an “average” bait would exhibit.

• a technical noise component, Tij ∼ Pois(λij). This corresponds to
reads introduced by assay artefacts, such as sequencing errors, and
thus Tij counts read pairs that did not arise from contact events. It
is assumed that Tij does not depend on distance. However, we permit
complex non-multiplicative errors (see Section 5).

In practice, we find that Tij is very small.

We estimate each of the parameters f , sj, si, r and λij in turn.

4 Estimation – Brownian noise

For a pair where the bait and other end are close, the technical noise is
negligible compared to the Brownian noise – that is, µij >> λij.

Thus, under the null model, we can assume that

Xij ∼ NB(µij, r)

where
µij = sisjf(dij)

Initially, we aim to find the quantities sj and f(d). This must be done in
a way that is robust against true interactions in the data.

Estimating f(d)

Note that, when estimating f(d), we always ignore bait-to-bait pairs. That
is, when summing over other ends i, we exclude all other ends i that are also
baited fragments.

For a given bait j, we define genomic bins Bb that tile a region of 3mb
centred at the bait fragment. For the HindIII restriction enzyme, we set the
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bin width w = 20kb (approximately 5 restriction fragments). First, calculate
the average count over all of the other ends in a given bin b:

X̄bj =
1

nbj

∑
i;dij∈Bb

Xij

where nbj is the number of other ends in bin b.
We have that

E(X̄bj) ≈ sjf(db)

(see Appendix, Section A.)
Any observations with X̄bj = 0 are censored. This is to ensure that zeros

do not cause numerical instabilities in the next step.
We estimate f(db) as the geometric mean count over all bins at distance

db – that is,

f̂(db) = geojX̄bj

equivalently,

log f̂(db) =
1

J

∑
j

log(X̄bj)

This method is similar to the size factor estimation procedure in DESeq
(Anders and Huber, 2010). We confirmed the accuracy with a simulation
study (data not shown).

To get from f̂(db) to full inference of the function f̂(d), we fit a cubic
function on a log-log scale, extrapolating linearly beyond the given db values
assuming continuity of f(d) and f ′(d).

Estimating sj

When estimating sj, bait-to-bait pairs are ignored as for f(d) estimation.
From the previous Section, we have

E(X̄bj) ≈ sjf(db)

Thus, using our estimate f̂(db) from the previous section, a natural choice
of estimator for sj is X̄bj/f̂(db), for each b. Under the null hypothesis, for any
b, the expected value of this is approximately sj. However, if bin b contains
many true interactions then this expectation no longer holds.
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To avoid the influence of true interactions and gain a robust estimator of
the sj, we take the median as follows:

ŝj = medianb
X̄bj

f̂(db)

Note that this procedure also follows the DESeq model – specifically, the
library size estimation procedure.

Estimating si

Our si estimation procedure is broadly similar to the sj estimation procedure,
but differs in one important aspect.

We have that
E(Xij) = sjsif(dij)

Consider a specific other end, i. An obvious estimator for si is the “nor-
malised” count, Yij =

Xij

ŝj f̂(dij)
. We could then take the median across js (i.e.

across baits). However, this strategy fails, because we only get information
about si for a small number of nearby baits. (Most baits have Yij = 0 and are
therefore not very informative.) Indeed, if some of these baits j significantly
interact with other end i, then si is greatly overestimated.

To address this, we “pool” other ends together according to how “noisy”
they are. However, rather than assuming that noise specifically regresses
against some arbitrary choice of explanatory variables, we take a data-driven
approach where we postulate that the “noisiness” of each other end is re-
flected in the number of trans read pairs it is involved in, most of which are
noise. Thus, we assign each other end i to a group g(i), according to how
many “trans” non-zero counts it has, and whether or not it is also a bait
fragment:

g(i) = g ⇔


 ∑
j;(i,j) trans

I(Xij > 0)

 ∈ Rg

I(i is a bait) = bg

(2)

where the groups Rg are defined by the cut2() function in the CRAN package
Hmisc – we ask for 1000 other ends per group, 100 other ends per bait-to-bait
group.
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It is assumed that all other ends in group g have approximately the same
si. Thus, si = sg(i).

For each group, we calculate a per-distance bin estimate of sg:

Ȳgb =

∑
i;g(i)=g

∑
j;dij∈Bd

Yij

∑
i;g(i)=g

∑
j;dij∈Bd

1

As before, we take the median across these bins:

ŝg = medianb(Ȳgb)

Estimating r

We now calculate the dispersion, r̂. This is simple to obtain from standard
NB regression techniques – we find the r that maximises the likelihood of
the regression model:

Xij ∼ NB(µij, r)

Since some of the pairs (i, j) are true interactions, there is slightly more
variance across Xij than there would be under the null, therefore we expect
r̂ to be a slight underestimate of r. However, the number of interactions is
very small compared to the number of pairs (we typically call around 1− 2%
of pairs with dij < 1.5mb), and thus this effect should be negligible. In any
event, underestimation of r cannot introduce any false positives.

5 Estimation – Technical noise

Technical noise is assumed distance-invariant:

Tij ∼ Pois(λij)

The parameters λij are estimated using trans pairs, since there is no
contribution from Brownian noise, and thus Xij ≈ Tij.

Because we have little information on λij, we again pool fragments to-
gether, using a similar rationale to the si estimation procedure. Other ends
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get classes g(i) as before (Equation 2). However, this time, each bait j also
gets a class h(j) – as in Equation 2, the class is based on the number of other
ends the bait interacts with in trans.

We assume that λij depends only on the classes of i and j –

λij = Λ(g(i), h(j))

To estimate Λ, we obtain all trans pairs with the appropriate class mem-
bership:

Qg,h = {(i, j); (i, j) trans, g(i) = g, h(j) = h}

and calculate

Λ(g, h) =

∑
(i,j)∈Qg,h

Xij

|Qg,h|

6 Calculating p-values

Putting the previous sections together we have that, under the null, Xij has
Delaporte distribution:

Xij ∼ NB(µij, r) + Pois(λij)

We perform a simple one-sided location test:

H0 : E(Xij) = µij + λij

H1 : E(Xij) > µij + λij

This test is performed using the Delaporte package, obtaining p-values
pij = p(Xij ≥ xij).

† CHiCAGO reports these p-values on the natural loga-
rithmic scale.

†In some rare situations, xij was too large compared to E(Xij), and we encountered
underflow issues. Here, we approximated Xij by a Negative Binomial distribution, using
the Method of Moments. In other words, we assume that, under the null,

Xij ≈ X ′ij ∼ NB(ηij , ρij)

where ηij and ρij are found by equating the mean and variance of E(X) and E(X ′).
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7 Working with multiple replicates

We now consider the situation where multiple biological replicates are anal-
ysed simultaneously. The replicates are indexed by k = 1, . . . , K. Thus, Xijk

is the count for other end i, bait j, replicate k.
We obtain sample-specific scaling factors sk, in a manner akin to that of

DESeq (Anders and Huber, 2010) by looking at regions proximal to baits.
The procedure is:

• Take a window around each bait (by default, 1.5mb in either direction)

• Count number of reads, divide by number of other ends present, to get
Mjk.

• Take geometric mean across samples. Gj = geok(Mjk)

• sk = medianj(Mjk/Gj)

A summarised count is calculated as a weighted average of the individual
samples’ counts:

Xij = round


∑
k

skXijk∑
k

sk


This has parallels to pooling biological replicates (as has been common

in ChIP-seq data, for example), but using a more appropriate estimator of
library size than simply taking the total number of reads.

This summarised count is taken forward in the analysis.
We can also derive normalised counts X̃ijk = 1

sk
Xijk, which can be useful

for visualisation purposes.

8 Multiple testing and p-value weighting

We expect far more interactions to occur at short ranges than at long ranges.
However, suppose that we call interactions by applying a threshold directly to
p-values. Of the hypotheses we test, a large majority are long-range interac-
tions. Thus, with more opportunities to return a p-value below the threshold
by chance, our output is dominated by erroneous long-range calls. Another
way to look at this is that, when ordering p-values, there are sufficiently
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many long-range interactions with lower p-values than true short-range in-
teractions that we cannot call the short-range interactions without accepting
the long-range false positives as well.

Standard multiple testing procedures fail to address this problem. For
example, the Bonferroni and Benjamini-Hochberg methods both choose a
stringent p-value threshold – as described above, this may discard the long-
range false positives, but we also lose many short-range true positives.

A number of relevant approaches are described in Gui et al. (2012). For
example, Sun et al. (2006) use a two-population approach, which we could
apply by splitting our hypotheses in two using a distance threshold. However,
this method is very sensitive to the choice of distance threshold. Moreover,
it also assumes a sudden change of behaviour, which is not biologically plau-
sible as there appears to be a more gradual change in behaviour. Thus, we
chose the Genovese et al. (2006) approach, p-value weighting, which is a
generalized version of Sun et al. (2006).

We also considered the use of an empirical Bayes treatment, where a prior
probability is used to quantify the two behaviours. However, the Bayesian
approach requires explicit assumptions of the read distribution under the al-
ternative hypothesis, over and above requiring a larger mean. p-value weight-
ing can be viewed as a simplified version of an empirical Bayesian treatment,
using a “weight” in place of a prior probability. This method circumvents
the need to make an arbitrary choice of the prior distribution of read counts
under the alternative hypothesis.

The aim of the p-value weighting strategy is to “upweight” the significance
of proximal pairs and “downweight” distal/trans pairs. Using the notation
in Genovese et al. (2006), we make prior “guesses” Uij. We allow Uij to
depend on dij, assuming that short-range interactions are more likely than
long-range interactions, with a smooth transition between the two.

Specifically, we assume a bounded logistic regression model – thus, Uij is
assumed a function of dij and the vector of parameters Θ = (α, β, γ, δ), as
follows:

Uij = ηijUmax + (1− ηij)Umin
where:

ηij = expit(α + βlog(dij)) =
eα+βlog(dij)

1 + eα+βlog(dij)

Umin = expit(γ)
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Umax = expit(δ)

The above depends on the unknown parameter vector, Θ. We estimated
a default value for Θ by producing a “high-confidence” data set, from 7
macrophage samples. To make the procedure more robust against any large
scale interactions, we partitioned the data into 5 subsets, estimate Θ sepa-
rately for each subset, then take the final estimate Θ as the component-wise
median of the subset Θs. If a user wishes to use CHiCAGO on cells whose
interactomes are expected to differ greatly, this analysis can be redone to
obtain new Θ.

To obtain the weights, we first need to calculate Ū , the mean value of Uij:

Ū =
1

m

∑
i

∑
j

Uij

= η̄Umax + (1− η̄)Umin

Hence, we calculate the weights Wij as follows:

Wij =
Uij
Ū

=
ηijUmax + (1− ηij)Umin
η̄Umax + (1− η̄)Umin

=
ηijUrel + (1− ηij)
η̄Urel + (1− η̄)

leading to weighted P -values:

Qij =
Pij
Wij

CHiCAGO reports these values on the log-scale.
Genovese et al. (2006) obtain a false discovery rate, by applying the

Benjamini-Hochberg procedure to their weighted p-values. Unfortunately,
the requirements required for Benjamini-Hochberg are not satisfied: since our
data are discrete, we do not have uniform p-values under the null hypothesis.
Thus, our preferred strategy is to set a threshold on the Qij values.

To aid interpretation, we also compute a score based on the q-value as
follows:
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scoreij = max(0,− logQij − logWmax)

where Wmax is the value that Wij would take when dij = 0.
In other words, the score is non-negative, and a positive score occurs only

when the evidence for an interaction exceeds that of a proximal pair with no
reads.

For most users’ analyses, the score will be the most appropriate quantity
to threshold on.
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A Mean bin value

Claim:
E(X̄bj) = sjf(db) +O

(
log(si)

2
)

Proof:

E(X̄bj) =
1

nbj

∑
i;dij∈Bb

E(Xij)

= sjf(db)
1

nbj

∑
i;dij∈Bb

si (3)
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From a Taylor expansion:

1

nbj

∑
i;dij∈Bb

si

=
1

nbj

∑
i;dij∈Bb

elog(si)

=
1

nbj

∑
i;dij∈Bb

{
1 + log(si) +O

(
log(si)

2
)}

=
1

nbj

∑
i;dij∈Bb

{
1 +O

(
log(si)

2
)}

= 1 +O
(
log(si)

2
)

(4)

where the penultimate step is an application of Equation (1), and the final

step uses the definition of nbj, namely nbj =
∑

i;dij∈Bb

1.

Plugging Equation (4) into Equation (3) gives the required result.
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