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Abstract 
Deep learning, which describes a class of machine learning algorithms, has recently showed 
impressive results across a variety of domains. Biology and medicine are data rich, but the data are 
complex and often ill-understood. Problems of this nature may be particularly well-suited to deep 
learning techniques. We examine applications of deep learning to a variety of biomedical problems—
patient classification, fundamental biological processes, and treatment of patients—and discuss 
whether deep learning will transform these tasks or if the biomedical sphere poses unique 
challenges. We find that deep learning has yet to revolutionize or definitively resolve any of these 
problems, but promising advances have been made on the prior state of the art. Even when 
improvement over a previous baseline has been modest, we have seen signs that deep learning 
methods may speed or aid human investigation. More work is needed to address concerns related to 
interpretability and how to best model each problem. Furthermore, the limited amount of labeled data 
for training presents problems in some domains, as do legal and privacy constraints on work with 
sensitive health records. Nonetheless, we foresee deep learning powering changes at both bench 
and bedside with the potential to transform several areas of biology and medicine. 

Introduction to deep learning 
Biology and medicine are rapidly becoming data-intensive. A recent comparison of genomics with 
social media, online videos, and other data-intensive disciplines suggests that genomics alone will 
equal or surpass other fields in data generation and analysis within the next decade [1]. The volume 
and complexity of these data present new opportunities, but also pose new challenges. Automated 
algorithms that extract meaningful patterns could lead to actionable knowledge and change how we 
develop treatments, categorize patients, or study diseases, all within privacy-critical environments. 

The term deep learning has come to refer to a collection of new techniques that, together, have 
demonstrated breakthrough gains over existing best-in-class machine learning algorithms across 
several fields. For example, over the past five years these methods have revolutionized image 
classification and speech recognition due to their flexibility and high accuracy [2]. More recently, 
deep learning algorithms have shown promise in fields as diverse as high-energy physics [3], 
dermatology [4], and translation among written languages [5]. Across fields, “off-the-shelf” 
implementations of these algorithms have produced comparable or higher accuracy than previous 
best-in-class methods that required years of extensive customization, and specialized 
implementations are now being used at industrial scales. 

Deep learning approaches grew from research in neural networks, which were first proposed in 
1943 [6] as a model for how our brains process information. The history of neural networks is 
interesting in its own right [7]. In neural networks, inputs are fed into the input layer, which feeds into 
one or more hidden layers, which eventually link to an output layer. A layer consists of a set of 
nodes, sometimes called “features” or “units,” which are connected via edges to the immediately 
earlier and the immediately deeper layers. In some special neural network architectures, nodes can 
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connect to themselves with a delay. The nodes of the input layer generally consist of the variables 
being measured in the dataset of interest—for example, each node could represent the intensity 
value of a specific pixel in an image or the expression level of a gene in a specific transcriptomic 
experiment. The neural networks used for deep learning have multiple hidden layers. Each layer 
essentially performs feature construction for the layers before it. The training process used often 
allows layers deeper in the network to contribute to the refinement of earlier layers. For this reason, 
these algorithms can automatically engineer features that are suitable for many tasks and customize 
those features for one or more specific tasks. 

Deep learning does many of the same things as more familiar machine learning approaches. In 
particular, deep learning approaches can be used both in supervised applications—where the goal is 
to accurately predict one or more labels or outcomes associated with each data point—in the place 
of regression approaches, as well as in unsupervised, or “exploratory” applications—where the goal 
is to summarize, explain, or identify interesting patterns in a data set—as a form of clustering. Deep 
learning methods may in fact combine both of these steps. When sufficient data are available and 
labeled, these methods construct features tuned to a specific problem and combine those features 
into a predictor. In fact, if the dataset is “labeled” with binary classes, a simple neural network with 
no hidden layers and no cycles between units is equivalent to logistic regression if the output layer is 
a sigmoid (logistic) function of the input layer. Similarly, for continuous outcomes, linear regression 
can be seen as a simple neural network. Thus, in some ways, supervised deep learning approaches 
can be seen as a generalization of regression models that allow for greater flexibility. Recently, 
hardware improvements and very large training datasets have allowed these deep learning 
techniques to surpass other machine learning algorithms for many problems. In a famous and early 
example, scientists from Google demonstrated that a neural network “discovered” that cats, faces, 
and pedestrians were important components of online videos [8] without being told to look for them. 
What if, more generally, deep learning could solve the challenges presented by the growth of data in 
biomedicine? Could these algorithms identify the “cats” hidden in our data—the patterns unknown to 
the researcher—and suggest ways to act on them? In this review, we examine deep learning’s 
application to biomedical science and discuss the unique challenges that biomedical data pose for 
deep learning methods. 

Several important advances make the current surge of work done in this area possible. Easy-to-use 
software packages have brought the techniques of the field out of the specialist’s toolkit to a broad 
community of computational scientists. Additionally, new techniques for fast training have enabled 
their application to larger datasets [9]. Dropout of nodes, edges, and layers makes networks more 
robust, even when the number of parameters is very large. Finally, the larger datasets now available 
are also sufficient for fitting the many parameters that exist for deep neural networks. The 
convergence of these factors currently makes deep learning extremely adaptable and capable of 
addressing the nuanced differences of each domain to which it is applied. 
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Figure 1: Neural networks come in many different forms. Left: a key for the various types of 
nodes used in neural networks. Simple FFNN: a feed forward neural network in which inputs are 
connected via some function to an output node and the model is trained to produce some output 
for a set of inputs. MLP: the multi-layer perceptron is a feed forward neural network in which 
there is at least one hidden layer between the input and output nodes. CNN: the convolutional 
neural network is a feed forward neural network in which the inputs are grouped spatially into 
hidden nodes. In the case of this example, each input node is only connected to hidden nodes 
alongside their neighboring input node. Autoencoder: a type of MLP in which the neural network 
is trained to produce an output that matches the input to the network. RNN: a deep recurrent 
neural network is used to allow the neural network to retain memory over time or sequential 
inputs. This figure was inspired by the Neural Network Zoo by Fjodor Van Veen. 

This review discusses recent work in the biomedical domain, and most successful applications 
select neural network architectures that are well suited to the problem at hand. We sketch out a few 
simple example architectures in Figure 1. If data have a natural adjacency structure, a convolutional 
neural network (CNN) can take advantage of that structure by emphasizing local relationships, 
especially when convolutional layers are used in early layers of the neural network. Other neural 
network architectures such as autoencoders require no labels and are now regularly used for 
unsupervised tasks. In this review, we do not exhaustively discuss the different types of deep neural 
network architectures; an overview of the principal terms used herein is given in Table 1. 
Table 1 also provides select example applications, though in practice each neural network 
architecture has been broadly applied across multiple types of biomedical data. A recent book from 
Goodfellow et al. covers neural network architectures in detail [10], and LeCun et al. provide a more 
general introduction [2]. 
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Table 1: Glossary. 

Term Definition Example applications 

Supervised 
learning 

Machine-learning approaches with goal of 
prediction of labels or outcomes 

 

Unsupervised 
learning 

Machine-learning approaches with goal of 
data summarization or pattern identification 

 

Neural network 
(NN) 

Machine-learning approach inspired by 
biological neurons where inputs are fed into 
one or more layers, producing an output 
layer  

Deep neural 
network 

NN with multiple hidden layers. Training 
happens over the network, and 
consequently such architectures allow for 
feature construction to occur alongside 
optimization of the overall training 
objective. 

 

Feed-forward 
neural network 
(FFNN) 

NN that does not have cycles between 
nodes in the same layer 

Most of the examples below 
are special cases of FFNNs, 
except recurrent neural 
networks. 

Multi-layer 
perceptron 
(MLP) 

Type of FFNN with at least one hidden 
layer where each deeper layer is a 
nonlinear function of each earlier layer 

MLPs do not impose 
structure and are frequently 
used when there is no 
natural ordering of the 
inputs (e.g. as with gene 
expression measurements). 
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Term Definition Example applications 

Convolutional 
neural network 
(CNN) 

A NN with layers in which connectivity 
preserves local structure. If the data meet 
the underlying assumptionsperformance is 
often good, and such networks can require 
fewer examples to train effectively because 
they have fewer parameters and also 
provide improved efficiency. 

CNNs are used for 
sequence data—such as 
DNA sequences—or grid 
data—such as medical and 
microscopy images. 

Recurrent 
neural network 
(RNN) 

A neural network with cycles between 
nodes within a hidden layer. 

The RNN architecture is 
used for sequential data—
such as clinical time series 
and text or genome 
sequences. 

Long short-
term memory 
(LSTM) neural 
network 

This special type of RNN has features that 
enable models to capture longer-term 
dependencies. 

LSTMs are gaining a 
substantial foothold in the 
analysis of natural 
language, and may become 
more widely applied to 
biological sequence data. 

Autoencoder 
(AE) 

A NN where the training objective is to 
minimize the error between the output layer 
and the input layer. Such neural networks 
are unsupervised and are often used for 
dimensionality reduction. 

Autoencoders have been 
used for unsupervised 
analysis of gene expression 
data as well as data 
extracted from the 
electronic health record. 

Variational 
autoencoder 
(VAE) 

This special type of AE has the added 
constraint that the model is trained to learn 
normally-distributed features. 

VAEs have a track record of 
producing a valuable 
reduced representation in 
the imaging domain, and 
some early publications 
have used VAEs to analyze 
gene expression data. 
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Term Definition Example applications 

Denoising 
autoencoder 
(DA) 

This special type of AE includes a step 
where noise is added to the input during 
the training process. The denoising step 
acts as smoothing and may allow for 
effective use on input data that is inherently 
noisy. 

Like AEs, DAs have been 
used for unsupervised 
analysis of gene expression 
data as well as data 
extracted from the 
electronic health record. 

Generative 
neural network 

Neural networks that fall into this class can 
be used to generate data similar to input 
data. These models can be sampled to 
produce hypothetical examples. 

A number of the 
unsupervised learning 
neural network architectures 
that are summarized here 
can be used in a generative 
fashion. 

Restricted 
Boltzmann 
machine (RBM) 

A generative NN that forms the building 
block for many deep learning approaches, 
having a single input layer and a single 
hidden layer, with no connections between 
the nodes within each layer 

RBMs have been applied to 
combine multiple types of 
omic data (e.g. DNA 
methylation, mRNA 
expression, and miRNA 
expression). 

Deep belief 
network (DBN) 

Generative NN with several hidden layers, 
which can be obtained from combining 
multiple RBMs 

DBNs can be used to 
predict new relationships in 
a drug-target interaction 
network. 

Generative 
adversarial 
network (GAN) 

A generative NN approach where two 
neural networks are trained. One neural 
network, the generator, is provided with a 
set of randomly generated inputs and 
tasked with generating samples. The 
second, the discriminator, is trained to 
differentiate real and generated samples. 
After the two neural networks are trained 

GANs can synthesize new 
examples with the same 
statistical properties of 
datasets that contain 
individual-level records and 
are subject to sharing 
restrictions. They have also 
been applied to generate 
microscopy images. 
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Term Definition Example applications 

against each other, the resulting generator 
can be used to produce new examples. 

Adversarial 
training 

A process by which artificial training 
examples are maliciously designed to fool a 
NN and then input as training examples to 
make the resulting NN robust (no relation to 
GANs) 

Adversarial training has 
been used in image 
analysis. 

Data 
augmentation 

A process by which transformations that do 
not affect relevant properties of the input 
data (e.g. arbitrary rotations of 
histopathology images) are applied to 
training examples to increase the size of 
the training set. 

Data augmentation is widely 
used in the analysis of 
images because rotation 
transformations for 
biomedical images often do 
not change relevant 
properties of the image. 

While deep learning shows increased flexibility over other machine learning approaches, as seen in 
the remainder of this review, it requires large training sets in order to fit the hidden layers, as well as 
accurate labels for the supervised learning applications. For these reasons, deep learning has 
recently become popular in some areas of biology and medicine, while having lower adoption in 
other areas. At the same time, this highlights the potentially even larger role that it may play in future 
research, given the increases in data in all biomedical fields. It is also important to see it as a branch 
of machine learning and acknowledge that it has the same limitations as other approaches in that 
field. In particular, the results are still dependent on the underlying study design and the usual 
caveats of correlation versus causation still apply—a more precise answer is only better than a less 
precise one if it answers the correct question. 

Will deep learning transform the study of human disease? 
With this review, we ask the question: what is needed for deep learning to transform how we 
categorize, study, and treat individuals to maintain or restore health? We choose a high bar for 
“transform.” Andrew Grove, the former CEO of Intel, coined the term Strategic Inflection Point to 
refer to a change in technologies or environment that requires a business to be fundamentally 
reshaped [11]. Here, we seek to identify whether deep learning is an innovation that can induce a 
Strategic Inflection Point in the practice of biology or medicine. 

There are already a number of reviews focused on applications of deep learning in biology [12–16], 
healthcare [17,18], and drug discovery [19–22]. Under our guiding question, we sought to highlight 
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cases where deep learning enabled researchers to solve challenges that were previously considered 
infeasible or makes difficult, tedious analyses routine. We also identified approaches that 
researchers are using to sidestep challenges posed by biomedical data. We find that domain-
specific considerations have greatly influenced how to best harness the power and flexibility of deep 
learning. Model interpretability is often critical. Understanding the patterns in data may be just as 
important as fitting the data. In addition, there are important and pressing questions about how to 
build networks that efficiently represent the underlying structure and logic of the data. Domain 
experts can play important roles in designing networks to represent data appropriately, encoding the 
most salient prior knowledge and assessing success or failure. There is also great potential to create 
deep learning systems that augment biologists and clinicians by prioritizing experiments or 
streamlining tasks that do not require expert judgment. We have divided the large range of topics 
into three broad classes: Disease and Patient Categorization, Fundamental Biological Study, and 
Treatment of Patients. Below, we briefly introduce the types of questions, approaches and data that 
are typical for each class in the application of deep learning. 

Disease and patient categorization 
A key challenge in biomedicine is the accurate classification of diseases and disease subtypes. In 
oncology, current “gold standard” approaches include histology, which requires interpretation by 
experts, or assessment of molecular markers such as cell surface receptors or gene expression. 
One example is the PAM50 approach to classifying breast cancer where the expression of 50 
marker genes divides breast cancer patients into four subtypes. Substantial heterogeneity still 
remains within these four subtypes [23,24]. Given the increasing wealth of molecular data available, 
a more comprehensive subtyping seems possible. Several studies have used deep learning 
methods to better categorize breast cancer patients: For instance, denoising autoencoders, an 
unsupervised approach, can be used to cluster breast cancer patients [25], and CNN can help count 
mitotic divisions, a feature that is highly correlated with disease outcome in histological images [26]. 
Despite these recent advances, a number of challenges exist in this area of research, most notably 
the integration of molecular and imaging data with other disparate types of data such as electronic 
health records (EHRs). 

Fundamental biological study 
Deep learning can be applied to answer more fundamental biological questions; it is especially 
suited to leveraging large amounts of data from high-throughput “omics” studies. One classic 
biological problem where machine learning, and now deep learning, has been extensively applied is 
molecular target prediction. For example, deep recurrent neural networks (RNNs) have been used to 
predict gene targets of microRNAs [27], and CNNs have been applied to predict protein residue-
residue contacts and secondary structure [28–30]. Other recent exciting applications of deep 
learning include recognition of functional genomic elements such as enhancers and promoters [31–
33] and prediction of the deleterious effects of nucleotide polymorphisms [34]. 

Treatment of patients 
Although the application of deep learning to patient treatment is just beginning, we expect new 
methods to recommend patient treatments, predict treatment outcomes, and guide the development 
of new therapies. One type of effort in this area aims to identify drug targets and interactions or 
predict drug response. Another uses deep learning on protein structures to predict drug interactions 
and drug bioactivity [35]. Drug repositioning using deep learning on transcriptomic data is another 
exciting area of research [36]. Restricted Boltzmann machines (RBMs) can be combined into deep 
belief networks (DBNs) to predict novel drug-target interactions and formulate drug repositioning 
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hypotheses [37,38]. Finally, deep learning is also prioritizing chemicals in the early stages of drug 
discovery for new targets [22]. 

Deep learning and patient categorization 
In healthcare, individuals are diagnosed with a disease or condition based on symptoms, the results 
of certain diagnostic tests, or other factors. Once diagnosed with a disease, an individual might be 
assigned a stage based on another set of human-defined rules. While these rules are refined over 
time, the process is evolutionary and ad hoc, potentially impeding the identification of underlying 
biological mechanisms and their corresponding treatment interventions. 

Deep learning methods applied to a large corpus of patient phenotypes may provide a meaningful 
and more data-driven approach to patient categorization. For example, they may identify new shared 
mechanisms that would otherwise be obscured due to ad hoc historical definitions of disease. 
Perhaps deep neural networks, by reevaluating data without the context of our assumptions, can 
reveal novel classes of treatable conditions. 

In spite of such optimism, the ability of deep learning models to indiscriminately extract predictive 
signals must also be assessed and operationalized with care. Imagine a deep neural network is 
provided with clinical test results gleaned from electronic health records. Because physicians may 
order certain tests based on their suspected diagnosis, a deep neural network may learn to 
“diagnose” patients simply based on the tests that are ordered. For some objective functions, such 
as predicting an International Classification of Diseases (ICD) code, this may offer good 
performance even though it does not provide insight into the underlying disease beyond physician 
activity. This challenge is not unique to deep learning approaches; however, it is important for 
practitioners to be aware of these challenges and the possibility in this domain of constructing highly 
predictive classifiers of questionable actual utility. 

Our goal in this section is to assess the extent to which deep learning is already contributing to the 
discovery of novel categories. Where it is not, we focus on barriers to achieving these goals. We 
also highlight approaches that researchers are taking to address challenges within the field, 
particularly with regards to data availability and labeling. 

Imaging applications in healthcare 
Deep learning methods have transformed the analysis of natural images and video, and similar 
examples are beginning to emerge with medical images. Deep learning has been used to classify 
lesions and nodules; localize organs, regions, landmarks and lesions; segment organs, organ 
substructures and lesions; retrieve images based on content; generate and enhance images; and 
combine images with clinical reports [18,39]. 

Though there are many commonalities with the analysis of natural images, there are also key 
differences. In all cases that we examined, fewer than one million images were available for training, 
and datasets are often many orders of magnitude smaller than collections of natural images. 
Researchers have developed subtask-specific strategies to address this challenge. 

Data augmentation provides an effective strategy for working with small training sets. The practice is 
exemplified by a series of papers that analyze images from mammographies [40–44]. To expand the 
number and diversity of images, researchers constructed adversarial training examples [43]. 
Adversarial training examples are constructed by applying a transformation that changes training 
images but not their content—for example by rotating an image by a random amount. An alternative 
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in the domain is to train towards human-created features before subsequent fine-tuning [41], which 
can help to sidestep this challenge though it does give up deep learning techniques’ strength as 
feature constructors. 

A second strategy repurposes features extracted from natural images by deep learning models, such 
as ImageNet [45], for new purposes. Diagnosing diabetic retinopathy through color fundus images 
became an area of focus for deep learning researchers after a large labeled image set was made 
publicly available during a 2015 Kaggle competition [46]. Most participants trained neural networks 
from scratch [46–48], but Gulshan et al. [49] repurposed a 48-layer Inception-v3 deep architecture 
pre-trained on natural images and surpassed the state-of-the-art specificity and sensitivity. Such 
features were also repurposed to detect melanoma, the deadliest form of skin cancer, from 
dermoscopic [50,51] and non-dermoscopic images of skin lesions [4,52,53] as well as age-related 
macular degeneration [54]. Pre-training on natural images can enable very deep networks to 
succeed without overfitting. For the melanoma task, reported performance was competitive with or 
better than a board of certified dermatologists [4,50]. Reusing features from natural images is also 
an emerging approach for radiographic images, where datasets are often too small to train large 
deep neural networks without these techniques [55–58]. A deep CNN trained on natural images 
boosts performance in radiographic images [57]. However, the target task required either re-training 
the initial model from scratch with special pre-processing or fine-tuning of the whole network on 
radiographs with heavy data augmentation to avoid overfitting. 

The technique of reusing features from a different task falls into the broader area of transfer learning 
(see Discussion). Though we’ve mentioned numerous successes for the transfer of natural image 
features to new tasks, we expect that a lower proportion of negative results have been published. 
The analysis of magnetic resonance images (MRIs) is also faced with the challenge of small training 
sets. In this domain, Amit et al. [59] investigated the tradeoff between pre-trained models from a 
different domain and a small CNN trained only with MRI images. In contrast with the other selected 
literature, they found a smaller network trained with data augmentation on few hundred images from 
a few dozen patients can outperform a pre-trained out-of-domain classifier. 

Another way of dealing with limited training data is to divide rich data—e.g. 3D images—into 
numerous reduced projections. Shin et al. [56] compared various deep network architectures, 
dataset characteristics, and training procedures for computer tomography-based (CT) abnormality 
detection. They concluded that networks as deep as 22 layers could be useful for 3D data, despite 
the limited size of training datasets. However, they noted that choice of architecture, parameter 
setting, and model fine-tuning needed is very problem- and dataset-specific. Moreover, this type of 
task often depends on both lesion localization and appearance, which poses challenges for CNN-
based approaches. Straightforward attempts to capture useful information from full-size images in all 
three dimensions simultaneously via standard neural network architectures were computationally 
unfeasible. Instead, two-dimensional models were used to either process image slices individually 
(2D), or aggregate information from a number of 2D projections in the native space (2.5D). 

Roth et al. compared 2D, 2.5D, and 3D CNNs on a number of tasks for computer-aided detection 
from CT scans and showed that 2.5D CNNs performed comparably well to 3D analogs, while 
requiring much less training time, especially on augmented training sets [60]. Another advantage of 
2D and 2.5D networks is the wider availability of pre-trained models. But reducing the dimensionality 
is not always helpful. Nie et al. [61] showed that multimodal, multi-channel 3D deep architecture was 
successful at learning high-level brain tumor appearance features jointly from MRI, functional MRI, 
and diffusion MRI images, outperforming single-modality or 2D models. Overall, the variety of 
modalities, properties and sizes of training sets, the dimensionality of input, and the importance of 
end goals in medical image analysis are provoking a development of specialized deep neural 
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network architectures, training and validation protocols, and input representations that are not 
characteristic of widely-studied natural images. 

Predictions from deep neural networks can be evaluated for use in workflows that also incorporate 
human experts. In a large dataset of mammography images, Kooi et al. [62] demonstrated that deep 
neural networks outperform the traditional computer-aided diagnosis system at low sensitivity and 
perform comparably at high sensitivity. They also compared network performance to certified 
screening radiologists on a patch level and found no significant difference between the network and 
the readers. However, using deep methods for clinical practice is challenged by the difficulty of 
assigning a level of confidence to each prediction. Leibig et al. [48] estimated the uncertainty of deep 
networks for diabetic retinopathy diagnosis by linking dropout networks with approximate Bayesian 
inference. Techniques that assign confidences to each prediction should aid pathologist-computer 
interactions and improve uptake by physicians. 

Systems to aid in the analysis of histology slides are also promising use cases for deep 
learning [63]. Ciresan et al. [26] developed one of the earliest approaches for histology slides, 
winning the 2012 International Conference on Pattern Recognition’s Contest on Mitosis Detection 
while achieving human-competitive accuracy. In more recent work, Wang et al. [64] analyzed stained 
slides of lymph node slices to identify cancers. On this task a pathologist has about a 3% error rate. 
The pathologist did not produce any false positives, but did have a number of false negatives. The 
algorithm had about twice the error rate of a pathologist, but the errors were not strongly correlated. 
In this area, these algorithms may be ready to be incorporated into existing tools to aid pathologists 
and reduce the false negative rate. Ensembles of deep learning and human experts may help 
overcome some of the challenges presented by data limitations. 

One source of training examples with rich phenotypical annotations is the EHR. Billing information in 
the form of ICD codes are simple annotations but phenotypic algorithms can combine laboratory 
tests, medication prescriptions, and patient notes to generate more reliable phenotypes. Recently, 
Lee et al. [65] developed an approach to distinguish individuals with age-related macular 
degeneration from control individuals. They trained a deep neural network on approximately 100,000 
images extracted from structured electronic health records, reaching greater than 93% accuracy. 
The authors used their test set to evaluate when to stop training. In other domains, this has resulted 
in a minimal change in the estimated accuracy [66], but we recommend the use of an independent 
test set whenever feasible. 

Rich clinical information is stored in EHRs. However, manually annotating a large set requires 
experts and is time consuming. For chest X-ray studies, a radiologist usually spends a few minutes 
per example. Generating the number of examples needed for deep learning is infeasibly expensive. 
Instead, researchers may benefit from using text mining to generate annotations [67], even if those 
annotations are of modest accuracy. Wang et al. [68] proposed to build predictive deep neural 
network models through the use of images with weak labels. Such labels are automatically 
generated and not verified by humans, so they may be noisy or incomplete. In this case, they 
applied a series of natural language processing (NLP) techniques to the associated chest X-ray 
radiological reports. They first extracted all diseases mentioned in the reports using a state-of-the-art 
NLP tool, then applied a new method, NegBio [69], to filter negative and equivocal findings in the 
reports. Evaluation on four independent datasets demonstrated that NegBio is highly accurate for 
detecting negative and equivocal findings (~90% in F₁ score, which balances precision and 
recall [70]). The resulting dataset [71] consisted of 112,120 frontal-view chest X-ray images from 
30,805 patients, and each image was associated with one or more text-mined (weakly-labeled) 
pathology categories (e.g. pneumonia and cardiomegaly) or “no finding” otherwise. Further, Wang et 
al. [68] used this dataset with a unified weakly-supervised multi-label image classification framework, 
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to detect common thoracic diseases. It showed superior performance over a benchmark using fully-
labeled data. 

With the exception of natural image-like problems (e.g. melanoma detection), biomedical imaging 
poses a number of challenges for deep learning. Datasets are typically small, annotations can be 
sparse, and images are often high-dimensional, multimodal, and multi-channel. Techniques like 
transfer learning, heavy dataset augmentation, and the use of multi-view and multi-stream 
architectures are more common than in the natural image domain. Furthermore, high model 
sensitivity and specificity can translate directly into clinical value. Thus, prediction evaluation, 
uncertainty estimation, and model interpretation methods are also of great importance in this domain 
(see Discussion). Finally, there is a need for better pathologist-computer interaction techniques that 
will allow combining the power of deep learning methods with human expertise and lead to better-
informed decisions for patient treatment and care. 

Text applications in healthcare 
Due to the rapid growth of scholarly publications and EHRs, biomedical text mining has become 
increasingly important in recent years. The main tasks in biological and clinical text mining include, 
but are not limited to, named entity recognition, relation/event extraction, and information retrieval 
(Figure 2). Deep learning is appealing in this domain because of its competitive performance versus 
traditional methods and ability to overcome challenges in feature engineering. Relevant applications 
can be stratified by the application domain (biomedical literature vs. clinical notes) and the actual 
task (e.g. concept or relation extraction). 

Figure 2: Deep learning applications, tasks, and models based on NLP perspectives. 
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Named entity recognition (NER) is a task of identifying text spans that refer to a biological concept of 
a specific class, such as disease or chemical, in a controlled vocabulary or ontology. NER is often 
needed as a first step in many complex text mining systems. The current state-of-the-art methods 
typically reformulate the task as a sequence labeling problem and use conditional random fields [72–
74]. In recent years, word embeddings that contain rich latent semantic information of words have 
been widely used to improve the NER performance. Liu et al. studied the effect of word embeddings 
on drug name recognition and compared them with traditional semantic features [75]. Tang et 
al. investigated word embeddings in gene, DNA, and cell line mention detection tasks [76]. 
Moreover, Wu et al. examined the use of neural word embeddings for clinical abbreviation 
disambiguation [77]. Liu et al. exploited task-oriented resources to learn word embeddings for clinical 
abbreviation expansion [78]. 

Relation extraction involves detecting and classifying semantic relationships between entities from 
the literature. At present, kernel methods or feature-based approaches are commonly applied [79–
81]. Deep learning can relieve the feature sparsity and engineering problems. Some studies focused 
on jointly extracting biomedical entities and relations simultaneously [82,83], while others applied 
deep learning on relation classification given the relevant entities. For example, both multichannel 
dependency-based CNNs [84] and shortest path-based CNNs [85,86] are well-suited for sentence-
based protein-protein extraction. Jiang et al. proposed a biomedical domain-specific word 
embedding model to reduce the manual labor of designing semantic representation for the same 
task [87]. Gu et al. employed a maximum entropy model and a CNN model for chemical-induced 
disease relation extraction at the inter- and intra-sentence level, respectively [88]. For drug-drug 
interaction, Zhao et al. used a CNN that employs word embeddings with the syntactic information of 
a sentence as well as features of part-of-speech tags and dependency trees [89]. Asada et 
al. experimented with an attention CNN [90], and Yi et al. a RNN model with multiple attention 
layers [91]. In both cases, it is a single model with attention mechanism, which allows the decoder to 
focus on different parts of the source sentence. As a result, it does not require dependency parsing 
or training multiple models. Both attention CNN and RNN have comparable results, but the CNN 
model has an advantage in that it can be easily computed in parallel, hence making it faster with 
recent graphics processing units (GPUs). 

For biotopes event extraction, Li et al. employed CNN and distributed representation [92] while 
Mehryary et al. used long short-term memory (LSTM) networks to extract complicated relations [93]. 
Li et al. applied word embedding to extract complete events from biomedical text and achieved 
results comparable to the state-of-the-art systems [94]. There are also approaches that identify 
event triggers rather than the complete event [95,96]. Taken together, deep learning models 
outperform traditional kernel methods or feature-based approaches by 1–5% in f-score. Among 
various deep learning approaches, CNN stands out as the most popular model both in terms of 
computational complexity and performance, while RNN has achieved continuous progress. 

Information retrieval is a task of finding relevant text that satisfies an information need from within a 
large document collection. While deep learning has not yet achieved the same level of success in 
this area as seen in others, the recent surge of interest and work suggest that this may be quickly 
changing. For example, Mohan et al. described a deep learning approach to modeling the relevance 
of a document’s text to a query, which they applied to the entire biomedical literature [97]. 

To summarize, deep learning has shown promising results in many biomedical text mining tasks and 
applications. But to realize its full potential in this domain, either large size of labeled data or 
technical advancements in current methods coping with limited labeled data are required. 

Electronic health records 



EHR data include substantial amounts of free text, which remains challenging to approach [98]. 
Often, researchers developing algorithms that perform well on specific tasks must design and 
implement domain-specific features [99]. These features capture unique aspects of the literature 
being processed. Deep learning methods are natural feature constructors. In recent work, the 
authors evaluated the extent to which deep learning methods could be applied on top of generic 
features for domain-specific concept extraction [100]. They found that performance was in line with, 
but lower than the best domain-specific method [100]. This raises the possibility that deep learning 
may impact the field by reducing the researcher time and cost required to develop specific solutions, 
but it may not always lead to performance increases. 

In recent work, Yoon et al.[101] analyzed simple features using deep neural networks and found that 
the patterns recognized by the algorithms could be re-used across tasks. Their aim was to analyze 
the free text portions of pathology reports to identify the primary site and laterality of tumors. The 
only features the authors supplied to the algorithms were unigrams (counts for single words) and 
bigrams (counts for two-word combinations) in a free text document. They subset the full set of 
words and word combinations to the 400 most common. The machine learning algorithms that they 
employed (naïve Bayes, logistic regression, and deep neural networks) all performed relatively 
similarly on the task of identifying the primary site. However, when the authors evaluated the more 
challenging task, evaluating the laterality of each tumor, the deep neural network outperformed the 
other methods. Of particular interest, when the authors first trained a neural network to predict 
primary site and then repurposed those features as a component of a secondary neural network 
trained to predict laterality, the performance was higher than a laterality-trained neural network. This 
demonstrates how deep learning methods can repurpose features across tasks, improving overall 
predictions as the field tackles new challenges. The Discussion further reviews this type of transfer 
learning. 

Several authors have created reusable feature sets for medical terminologies using natural language 
processing and neural embedding models, as popularized by word2vec [102]. Minarro-Giménez et 
al. [103] applied the word2vec deep learning toolkit to medical corpora and evaluated the efficiency 
of word2vec in identifying properties of pharmaceuticals based on mid-sized, unstructured medical 
text corpora without any additional background knowledge. A goal of learning terminologies for 
different entities in the same vector space is to find relationships between different domains 
(e.g. drugs and the diseases they treat). It is difficult for us to provide a strong statement on the 
broad utility of these methods. Manuscripts in this area tend to compare algorithms applied to the 
same data but lack a comparison against overall best-practices for one or more tasks addressed by 
these methods. Techniques have been developed for free text medical notes [104], ICD and 
National Drug Codes [105,106], and claims data [107]. Methods for neural embeddings learned from 
electronic health records have at least some ability to predict disease-disease associations and 
implicate genes with a statistical association with a disease [108], but the evaluations performed did 
not differentiate between simple predictions (i.e. the same disease in different sites of the body) and 
non-intuitive ones. Jagannatha and Yu [109] further employed a bidirectional LSTM structure to 
extract adverse drug events from electronic health records, and Lin et al. [110] investigated using 
CNN to extract temporal relations. While promising, a lack of rigorous evaluations of the real-world 
utility of these kinds of features makes current contributions in this area difficult to evaluate. 
Comparisons need to be performed to examine the true utility against leading approaches 
(i.e. algorithms and data) as opposed to simply evaluating multiple algorithms on the same 
potentially limited dataset. 

Identifying consistent subgroups of individuals and individual health trajectories from clinical tests is 
also an active area of research. Approaches inspired by deep learning have been used for both 
unsupervised feature construction and supervised prediction. Early work by Lasko et al. [111], 
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combined sparse autoencoders and Gaussian processes to distinguish gout from leukemia from uric 
acid sequences. Later work showed that unsupervised feature construction of many features via 
denoising autoencoder neural networks could dramatically reduce the number of labeled examples 
required for subsequent supervised analyses [112]. In addition, it pointed towards features learned 
during unsupervised training being useful for visualising and stratifying subgroups of patients within 
a single disease. In a concurrent large-scale analysis of EHR data from 700,000 patients, Miotto et 
al. [113] used a deep denoising autoencoder architecture applied to the number and co-occurrence 
of clinical events to learn a representation of patients (DeepPatient). The model was able to predict 
disease trajectories within one year with over 90% accuracy and patient-level predictions were 
improved by up to 15% when compared to other methods. Choi et al. [114]attempted to model the 
longitudinal structure of EHRs with a RNN to predict future diagnosis and medication prescriptions 
on a cohort of 260,000 patients followed for 8 years (Doctor AI). Pham et al. [115] built upon this 
concept by utilising a RNN with a LSTM architecture enabling explicit modelling of patient 
trajectories through the use of memory cells. The method, DeepCare, performed better than shallow 
models or plain RNN when tested on two independent cohorts for its ability to predict disease 
progression, intervention recommendation and future risk prediction. Nguyen et al. [116] took a 
different approach and used word embeddings from EHRs to train a CNN that could detect and pool 
local clinical motifs to predict unplanned readmission after six months, with performance better than 
the baseline method (Deepr). Razavian et al. [117] used a set of 18 common lab tests to predict 
disease onset using both CNN and LSTM architectures and demonstrated an improvement over 
baseline regression models. However, numerous challenges including data integration (patient 
demographics, family history, laboratory tests, text-based patient records, image analysis, genomic 
data) and better handling of streaming temporal data with many features, will need to be overcome 
before we can fully assess the potential of deep learning for this application area. 

Still, recent work has also revealed domains in which deep networks have proven superior to 
traditional methods. Survival analysis models the time leading to an event of interest from a shared 
starting point, and in the context of EHR data, often associates these events to subject covariates. 
Exploring this relationship is difficult, however, given that EHR data types are often heterogeneous, 
covariates are often missing, and conventional approaches require the covariate-event relationship 
be linear and aligned to a specific starting point [118]. Early approaches, such as the Faraggi-Simon 
feed-forward network, aimed to relax the linearity assumption, but performance gains were 
lacking [119]. Katzman et al. in turn developed a deep implementation of the Faraggi-Simon network 
that, in addition to outperforming Cox regression, was capable of comparing the risk between a 
given pair of treatments, thus potentially acting as recommender system [120]. To overcome the 
remaining difficulties, researchers have turned to deep exponential families, a class of latent 
generative models that are constructed from any type of exponential family distributions [121]. The 
result was a deep survival analysis model capable of overcoming challenges posed by missing data 
and heterogeneous data types, while uncovering nonlinear relationships between covariates and 
failure time. They showed their model more accurately stratified patients as a function of disease risk 
score compared to the current clinical implementation. 

There is a computational cost for these methods, however, when compared to traditional, non-neural 
network approaches. For the exponential family models, despite their scalability [122], an important 
question for the investigator is whether he or she is interested in estimates of posterior uncertainty. 
Given that these models are effectively Bayesian neural networks, much of their utility simplifies to 
whether a Bayesian approach is warranted for a given increase in computational cost. Moreover, as 
with all variational methods, future work must continue to explore just how well the posterior 
distributions are approximated, especially as model complexity increases [123]. 

Challenges and opportunities in patient categorization 
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Generating ground-truth labels can be expensive or impossible 
A dearth of true labels is perhaps among the biggest obstacles for EHR-based analyses that employ 
machine learning. Popular deep learning (and other machine learning) methods are often used to 
tackle classification tasks and thus require ground-truth labels for training. For EHRs this can mean 
that researchers must hire multiple clinicians to manually read and annotate individual patients’ 
records through a process called chart review. This allows researchers to assign “true” labels, 
i.e. those that match our best available knowledge. Depending on the application, sometimes the 
features constructed by algorithms also need to be manually validated and interpreted by clinicians. 
This can be time consuming and expensive [124]. Because of these costs, much of this research, 
including the work cited in this review, skips the process of expert review. Clinicians’ skepticism for 
research without expert review may greatly dampen their enthusiasm for the work and consequently 
reduce its impact. To date, even well-resourced large national consortia have been challenged by 
the task of acquiring enough expert-validated labeled data. For instance, in the eMERGE consortia 
and PheKB database [125], most samples with expert validation contain only 100 to 300 patients. 
These datasets are quite small even for simple machine learning algorithms. The challenge is 
greater for deep learning models with many parameters. While unsupervised and semi-supervised 
approaches can help with small sample sizes, the field would benefit greatly from large collections of 
anonymized records in which a substantial number of records have undergone expert review. This 
challenge is not unique to EHR-based studies. Work on medical images, omics data in applications 
for which detailed metadata are required, and other applications for which labels are costly to obtain 
will be hampered as long as abundant curated data are unavailable. 

Successful approaches to date in this domain have sidestepped this challenge by making 
methodological choices that either reduce the need for labeled examples or that use transformations 
to training data to increase the number of times it can be used before overfitting occurs. For 
example, the unsupervised and semi-supervised methods that we have discussed reduce the need 
for labeled examples [112]. The anchor and learn framework [126] uses expert knowledge to identify 
high-confidence observations from which labels can be inferred. The strategies of adversarial 
training mentioned above can reduce overfitting, if transformations are available that preserve the 
meaningful content of the data while transforming irrelevant features [43]. While adversarial training 
examples can be easily imagined for certain methods that operate on images, it is more challenging 
to figure out what an equivalent transformation would be for a patient’s clinical test results. 
Consequently, it may be hard to employ adversarial training examples with other applications. 
Finally, approaches that transfer features can also help use valuable training data most efficiently. 
Rajkomar et al. trained a deep neural network using generic images before tuning using only 
radiology images [57]. Datasets that require many of the same types of features might be used for 
initial training, before fine tuning takes place with the more sparse biomedical examples. Though the 
analysis has not yet been attempted, it is possible that analogous strategies may be possible with 
electronic health records. For example, features learned from the electronic health record for one 
type of clinical test (e.g. a decrease over time in a lab value) may transfer across phenotypes. 
Methods to accomplish more with little high-quality labeled data arose in other domains and may 
also be adapted to this challenge, e.g. data programming [127]. In data programming, noisy 
automated labeling functions are integrated. 

Numerous commentators have described data as the new oil [128,129]. The idea behind this 
metaphor is that data are available in large quantities, valuable once refined, and this underlying 
resource will enable a data-driven revolution in how work is done. Contrasting with this perspective, 
Ratner, Bach, and Ré described labeled training data, instead of data, as “The New New Oil” [130]. 
In this framing, data are abundant and not a scarce resource. Instead, new approaches to solving 
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problems arise when labeled training data become sufficient to enable them. Based on our review of 
research on deep learning methods to categorize disease, the latter framing rings true. 

We expect improved methods for domains with limited data to play an important role if deep learning 
is going to transform how we categorize states of human health. We don’t expect that deep learning 
methods will replace expert review. We expect them to complement expert review by allowing more 
efficient use of the costly practice of manual annotation. 

Data sharing is hampered by standardization and privacy considerations 
To construct the types of very large datasets that deep learning methods thrive on, we need robust 
sharing of large collections of data. This is in part a cultural challenge. We touch on this challenge in 
Discussion. Beyond the cultural hurdles around data sharing, there are also technological and legal 
hurdles related to sharing individual health records or deep models built from such records. This 
subsection deals primarily with these challenges. 

EHRs are designed chiefly for clinical, administrative and financial purposes, such as patient care, 
insurance and billing [131]. Science is at best a tertiary priority, presenting challenges to EHR-based 
research in general and to deep learning research in particular. Although there is significant work in 
the literature around EHR data quality and the impact on research [132], we focus on three types of 
challenges: local bias, wider standards, and legal issues. Note these problems are not restricted to 
EHRs but can also apply to any large biomedical dataset, e.g. clinical trial data. 

Even within the same healthcare system, EHRs can be used differently [133,134]. Individual users 
have unique documentation and ordering patterns, with different departments and different hospitals 
having different priorities that code patients and introduce missing data in a non-random 
fashion [135]. Patient data may be kept across several “silos” within a single health system 
(e.g. separate nursing documentation, registries, etc.). Even the most basic task of matching 
patients across systems can be challenging due to data entry issues [136]. The situation is further 
exacerbated by the ongoing introduction, evolution, and migration of EHR systems, especially where 
reorganized and acquired healthcare facilities have to merge. Further, even the ostensibly least-
biased data type, laboratory measurements, can be biased based by both the healthcare process 
and patient health state [137]. As a result, EHR data can be less complete and less objective than 
expected. 

In the wider picture, standards for EHRs are numerous and evolving. Proprietary systems, indifferent 
and scattered use of health information standards, and controlled terminologies makes combining 
and comparison of data across systems challenging [138]. Further diversity arises from variation in 
languages, healthcare practices, and demographics. Merging EHRs gathered in different systems 
(and even under different assumptions) is challenging [139]. 

Combining or replicating studies across systems thus requires controlling for both the above biases 
and dealing with mismatching standards. This has the practical effect of reducing cohort size, limiting 
statistical significance, preventing the detection of weak effects [140], and restricting the number of 
parameters that can be trained in a model. Further, rules-based algorithms have been popular in 
EHR-based research, but because these are developed at a single institution and trained with a 
specific patient population, they do not transfer easily to other healthcare systems [141]. Genetic 
studies using EHR data are subject to even more bias, as the differences in population ancestry 
across health centers (e.g. proportion of patients with African or Asian ancestry) can affect algorithm 
performance. For example, Wiley et al. [142] showed that warfarin dosing algorithms often under-
perform in African Americans, illustrating that some of these issues are unresolved even at a 
treatment best practices level. Lack of standardization also makes it challenging for investigators 
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skilled in deep learning to enter the field, as numerous data processing steps must be performed 
before algorithms are applied. 

Finally, even if data were perfectly consistent and compatible across systems, attempts to share and 
combine EHR data face considerable legal and ethical barriers. Patient privacy can severely restrict 
the sharing and use of EHR data [143]. Here again, standards are heterogeneous and evolving, but 
often EHR data can often not be exported or even accessed directly for research purposes without 
appropriate consent. In the United States, research use of EHR data is subject both to the Common 
Rule and the Health Insurance Portability and Accountability Act (HIPAA). Ambiguity in the 
regulatory language and individual interpretation of these rules can hamper use of EHR data [144]. 
Once again, this has the effect of making data gathering more laborious and expensive, reducing 
sample size and study power. 

Several technological solutions have been proposed in this direction, allowing access to sensitive 
data satisfying privacy and legal concerns. Software like DataShield [145] and ViPAR [146], although 
not EHR-specific, allow querying and combining of datasets and calculation of summary statistics 
across remote sites by “taking the analysis to the data”. The computation is carried out at the remote 
site. Conversely, the EH4CR project [138] allows analysis of private data by use of an inter-
mediation layer that interprets remote queries across internal formats and datastores and returns the 
results in a de-identified standard form, thus giving real-time consistent but secure access. 
Continuous Analysis [147] can allow reproducible computing on private data. Using such techniques, 
intermediate results can be automatically tracked and shared without sharing the original data. While 
none of these have been used in deep learning, the potential is there. 

Even without sharing data, algorithms trained on confidential patient data may present security risks 
or accidentally allow for the exposure of individual level patient data. Tramer et al. [148]showed the 
ability to steal trained models via public application programming interfaces (APIs). Dwork and 
Roth [149] demonstrate the ability to expose individual level information from accurate answers in a 
machine learning model. Attackers can use similar attacks to find out if a particular data instance 
was present in the original training set for the machine learning model [150], in this case, whether a 
person’s record was present. To protect against these attacks, Simmons et al. [151] developed the 
ability to perform genome-wide association studies (GWASs) in a differentially private manner, and 
Abadi et al. [152] show the ability to train deep learning classifiers under the differential privacy 
framework. 

These attacks also present a potential hazard for approaches that aim to generate data. Choi et 
al. propose generative adversarial neural networks (GANs) as a tool to make sharable EHR 
data [153], and Esteban et al. [154] showed that recurrent GANs could be used for time series data. 
However, in both cases the authors did not take steps to protect the model from such attacks. There 
are approaches to protect models, but they pose their own challenges. Training in a differentially 
private manner provides a limited guarantee that an algorithm’s output will be equally likely to occur 
regardless of the participation of any one individual. The limit is determined by parameters which 
provide a quantification of privacy. Beaulieu-Jones et al. demonstrated the ability to generate data 
that preserved properties of the SPRINT clinical trial with GANs under the differential privacy 
framework [155]. Both Beaulieu-Jones et al. and Esteban et al. train models on synthetic data 
generated under differentially private and observe performance from a transfer learning evaluation 
that is only slightly below models trained on the original, real data. Taken together, these results 
suggest that differentially private GANs may be an attractive way to generate sharable datasets for 
downstream reanalysis. 
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Federated learning [156] and secure aggregations [157] are complementary approaches that 
reinforce differential privacy. Both aim to maintain privacy by training deep learning models from 
decentralized data sources such as personal mobile devices without transferring actual training 
instances. This is becoming of increasing importance with the rapid growth of mobile health 
applications. However, the training process in these approaches places constraints on the 
algorithms used and can make fitting a model substantially more challenging. It can be trivial to train 
a model without differential privacy, but quite difficult to train one within the differential privacy 
framework [155]. This problem can be particularly pronounced with small sample sizes. 

While none of these problems are insurmountable or restricted to deep learning, they present 
challenges that cannot be ignored. Technical evolution in EHRs and data standards will doubtless 
ease—although not solve—the problems of data sharing and merging. More problematic are the 
privacy issues. Those applying deep learning to the domain should consider the potential of 
inadvertently disclosing the participants’ identities. Techniques that enable training on data without 
sharing the raw data may have a part to play. Training within a differential privacy framework may 
often be warranted. 

Discrimination and “right to an explanation” laws 
In April 2016, the European Union adopted new rules regarding the use of personal information, the 
General Data Protection Regulation [159]. A component of these rules can be summed up by the 
phrase “right to an explanation”. Those who use machine learning algorithms must be able to explain 
how a decision was reached. For example, a clinician treating a patient who is aided by a machine 
learning algorithm may be expected to explain decisions that use the patient’s data. The new rules 
were designed to target categorization or recommendation systems, which inherently profile 
individuals. Such systems can do so in ways that are discriminatory and unlawful. 

As datasets become larger and more complex, we may begin to identify relationships in data that are 
important for human health but difficult to understand. The algorithms described in this review and 
others like them may become highly accurate and useful for various purposes, including within 
medical practice. However, to discover and avoid discriminatory applications it will be important to 
consider interpretability alongside accuracy. A number of properties of genomic and healthcare data 
will make this difficult. 

First, research samples are frequently non-representative of the general population of interest; they 
tend to be disproportionately sick [160], male [161], and European in ancestry [162]. One well-known 
consequence of these biases in genomics is that penetrance is consistently lower in the general 
population than would be implied by case-control data, as reviewed in [160]. Moreover, real genetic 
associations found in one population may not hold in other populations with different patterns of 
linkage disequilibrium (even when population stratification is explicitly controlled for [163]). As a 
result, many genomic findings are of limited value for people of non-European ancestry [162] and 
may even lead to worse treatment outcomes for them. Methods have been developed for mitigating 
some of these problems in genomic studies [160,163], but it is not clear how easily they can be 
adapted for deep models that are designed specifically to extract subtle effects from high-
dimensional data. For example, differences in the equipment that tended to be used for cases 
versus controls have led to spurious genetic findings ( e.g. Sebastiani et al.’s retraction [164]). In 
some contexts, it may not be possible to correct for all of these differences to the degree that a deep 
network is unable to use them. Moreover, the complexity of deep networks makes it difficult to 
determine when their predictions are likely to be based on such nominally-irrelevant features of the 
data (called “leakage” in other fields [165]). When we are not careful with our data and models, we 
may inadvertently say more about the way the data was collected (which may involve a history of 
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unequal access and discrimination) than about anything of scientific or predictive value. This fact can 
undermine the privacy of patient data [165] or lead to severe discriminatory consequences [166]. 

There is a small but growing literature on the prevention and mitigation of data leakage [165], as well 
as a closely-related literature on discriminatory model behavior [167], but it remains difficult to 
predict when these problems will arise, how to diagnose them, and how to resolve them in practice. 
There is even disagreement about which kinds of algorithmic outcomes should be considered 
discriminatory [168]. Despite the difficulties and uncertainties, machine learning practitioners (and 
particularly those who use deep neural networks, which are challenging to interpret) must remain 
cognizant of these dangers and make every effort to prevent harm from discriminatory predictions. 
To reach their potential in this domain, deep learning methods will need to be interpretable (see 
Discussion). Researchers need to consider the extent to which biases may be learned by the model 
and whether or not a model is sufficiently interpretable to identify bias. We discuss the challenge of 
model interpretability more thoroughly in Discussion. 

Applications of deep learning to longitudinal analysis 
Longitudinal analysis follows a population across time, for example, prospectively from birth or from 
the onset of particular conditions. In large patient populations, longitudinal analyses such as the 
Framingham Heart Study [169] and the Avon Longitudinal Study of Parents and Children [170]have 
yielded important discoveries about the development of disease and the factors contributing to 
health status. Yet, a common practice in EHR-based research is to take a snapshot at a point in time 
and convert patient data to a traditional vector for machine learning and statistical analysis. This 
results in loss of information as timing and order of events can provide insight into a patient’s 
disease and treatment [171]. Efforts to model sequences of events have shown promise [172] but 
require exceedingly large patient sizes due to discrete combinatorial bucketing. Lasko et 
al. [111]used autoencoders on longitudinal sequences of serum uric acid measurements to identify 
population subtypes. More recently, deep learning has shown promise working with both sequences 
(CNNs) [173] and the incorporation of past and current state (RNNs, LSTMs) [115]. This may be a 
particular area of opportunity for deep neural networks. The ability to recognize relevant sequences 
of events from a large number of trajectories requires powerful and flexible feature construction 
methods—an area in which deep neural networks excel. 

Deep learning to study the fundamental biological 
processes underlying human disease 
The study of cellular structure and core biological processes—transcription, translation, signaling, 
metabolism, etc.—in humans and model organisms will greatly impact our understanding of human 
disease over the long horizon [174]. Predicting how cellular systems respond to environmental 
perturbations and are altered by genetic variation remain daunting tasks. Deep learning offers new 
approaches for modeling biological processes and integrating multiple types of omic data [175], 
which could eventually help predict how these processes are disrupted in disease. Recent work has 
already advanced our ability to identify and interpret genetic variants, study microbial communities, 
and predict protein structures, which also relates to the problems discussed in the drug development 
section. In addition, unsupervised deep learning has enormous potential for discovering novel 
cellular states from gene expression, fluorescence microscopy, and other types of data that may 
ultimately prove to be clinically relevant. 

Progress has been rapid in genomics and imaging, fields where important tasks are readily adapted 
to well-established deep learning paradigms. One-dimensional convolutional and recurrent neural 
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networks are well-suited for tasks related to DNA- and RNA-binding proteins, epigenomics, and RNA 
splicing. Two dimensional CNNs are ideal for segmentation, feature extraction, and classification in 
fluorescence microscopy images [16]. Other areas, such as cellular signaling, are biologically 
important but studied less-frequently to date, with some exceptions [176]. This may be a 
consequence of data limitations or greater challenges in adapting neural network architectures to the 
available data. Here, we highlight several areas of investigation and assess how deep learning might 
move these fields forward. 

Gene expression 
Gene expression technologies characterize the abundance of many thousands of RNA transcripts 
within a given organism, tissue, or cell. This characterization can represent the underlying state of 
the given system and can be used to study heterogeneity across samples as well as how the system 
reacts to perturbation. While gene expression measurements were traditionally made by quantitative 
polymerase chain reaction (qPCR), low-throughput fluorescence-based methods, and microarray 
technologies, the field has shifted in recent years to primarily performing RNA sequencing (RNA-
seq) to catalog whole transcriptomes. As RNA-seq continues to fall in price and rise in throughput, 
sample sizes will increase and training deep models to study gene expression will become even 
more useful. 

Already several deep learning approaches have been applied to gene expression data with varying 
aims. For instance, many researchers have applied unsupervised deep learning models to extract 
meaningful representations of gene modules or sample clusters. Denoising autoencoders have been 
used to cluster yeast expression microarrays into known modules representing cell cycle 
processes [177] and to stratify yeast strains based on chemical and mutational perturbations [178]. 
Shallow (one hidden layer) denoising autoencoders have also been fruitful in extracting biological 
insight from thousands of Pseudomonas aeruginosa experiments [179,180] and in aggregating 
features relevant to specific breast cancer subtypes [25]. These unsupervised approaches applied to 
gene expression data are powerful methods for identifying gene signatures that may otherwise be 
overlooked. An additional benefit of unsupervised approaches is that ground truth labels, which are 
often difficult to acquire or are incorrect, are nonessential. However, the genes that have been 
aggregated into features must be interpreted carefully. Attributing each node to a single specific 
biological function risks over-interpreting models. Batch effects could cause models to discover non-
biological features, and downstream analyses should take this into consideration. 

Deep learning approaches are also being applied to gene expression prediction tasks. For example, 
a deep neural network with three hidden layers outperformed linear regression in inferring the 
expression of over 20,000 target genes based on a representative, well-connected set of about 
1,000 landmark genes [181]. However, while the deep learning model outperformed existing 
algorithms in nearly every scenario, the model still displayed poor performance. The paper was also 
limited by computational bottlenecks that required data to be split randomly into two distinct models 
and trained separately. It is unclear how much performance would have increased if not for 
computational restrictions. 

Epigenomic data, combined with deep learning, may have sufficient explanatory power to infer gene 
expression. For instance, the DeepChrome CNN [182] improved prediction accuracy of high or low 
gene expression from histone modifications over existing methods. AttentiveChrome [183]added a 
deep attention model to further enhance DeepChrome. Deep learning can also integrate different 
data types. For example, Liang et al. combined RBMs to integrate gene expression, DNA 
methylation, and miRNA data to define ovarian cancer subtypes [184]. While these approaches are 
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promising, many convert gene expression measurements to categorical or binary variables, thus 
ablating many complex gene expression signatures present in intermediate and relative numbers. 

Deep learning applied to gene expression data is still in its infancy, but the future is bright. Many 
previously untestable hypotheses can now be interrogated as deep learning enables analysis of 
increasing amounts of data generated by new technologies. For example, the effects of cellular 
heterogeneity on basic biology and disease etiology can now be explored by single-cell RNA-seq 
and high-throughput fluorescence-based imaging, techniques we discuss below that will benefit 
immensely from deep learning approaches. 

Splicing 
Pre-mRNA transcripts can be spliced into different isoforms by retaining or skipping subsets of 
exons or including parts of introns, creating enormous spatiotemporal flexibility to generate multiple 
distinct proteins from a single gene. This remarkable complexity can lend itself to defects that 
underlie many diseases. For instance, splicing mutations in the lamin A (LMNA) gene can lead to 
specific variants of dilated cardiomyopathy and limb girdle muscular dystrophy [185]. A recent study 
found that quantitative trait loci that affect splicing in lymphoblastoid cell lines are enriched within risk 
loci for schizophrenia, multiple sclerosis, and other immune diseases, implicating mis-splicing as a 
more widespread feature of human pathologies than previously thought [186]. Therapeutic strategies 
that aim to modulate splicing are also currently being considered for disorders such as Duchenne 
muscular dystrophy and spinal muscular atrophy [185]. 

Sequencing studies routinely return thousands of unannotated variants, but which cause functional 
changes in splicing and how are those changes manifested? Prediction of a “splicing code” has been 
a goal of the field for the past decade. Initial machine learning approaches used a naïve Bayes 
model and a 2-layer Bayesian neural network with thousands of hand-derived sequence-based 
features to predict the probability of exon skipping [187,188]. With the advent of deep learning, more 
complex models provided better predictive accuracy [189,190]. Importantly, these new approaches 
can take in multiple kinds of epigenomic measurements as well as tissue identity and RNA binding 
partners of splicing factors. Deep learning is critical in furthering these kinds of integrative studies 
where different data types and inputs interact in unpredictable (often nonlinear) ways to create 
higher-order features. Moreover, as in gene expression network analysis, interrogating the hidden 
nodes within neural networks could potentially illuminate important aspects of splicing behavior. For 
instance, tissue-specific splicing mechanisms could be inferred by training networks on splicing data 
from different tissues, then searching for common versus distinctive hidden nodes, a technique 
employed by Qin et al. for tissue-specific transcription factor (TF) binding predictions [191]. 

A parallel effort has been to use more data with simpler models. An exhaustive study using readouts 
of splicing for millions of synthetic intronic sequences uncovered motifs that influence the strength of 
alternative splice sites [192]. The authors built a simple linear model using hexamer motif 
frequencies that successfully generalized to exon skipping. In a limited analysis using single 
nucleotide polymorphisms (SNPs) from three genes, it predicted exon skipping with three times the 
accuracy of an existing deep learning-based framework [189]. This case is instructive in that clever 
sources of data, not just more descriptive models, are still critical. 

We already understand how mis-splicing of a single gene can cause diseases such as limb girdle 
muscular dystrophy. The challenge now is to uncover how genome-wide alternative splicing 
underlies complex, non-Mendelian diseases such as autism, schizophrenia, Type 1 diabetes, and 
multiple sclerosis [193]. As a proof of concept, Xiong et al. [189] sequenced five autism spectrum 
disorder and 12 control samples, each with an average of 42,000 rare variants, and identified mis-
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splicing in 19 genes with neural functions. Such methods may one day enable scientists and 
clinicians to rapidly profile thousands of unannotated variants for functional effects on splicing and 
nominate candidates for further investigation. Moreover, these nonlinear algorithms can deconvolve 
the effects of multiple variants on a single splice event without the need to perform combinatorial in 
vitro experiments. The ultimate goal is to predict an individual’s tissue-specific, exon-specific splicing 
patterns from their genome sequence and other measurements to enable a new branch of precision 
diagnostics that also stratifies patients and suggests targeted therapies to correct splicing defects. 
However, to achieve this we expect that methods to interpret the “black box” of deep neural 
networks and integrate diverse data sources will be required. 

Transcription factors 
Transcription factors are proteins that bind regulatory DNA in a sequence-specific manner to 
modulate the activation and repression of gene transcription. High-throughput in vitro experimental 
assays that quantitatively measure the binding specificity of a TF to a large library of short 
oligonucleotides [194] provide rich datasets to model the naked DNA sequence affinity of individual 
TFs in isolation. However, in vivo TF binding is affected by a variety of other factors beyond 
sequence affinity, such as competition and cooperation with other TFs, TF concentration, and 
chromatin state (chemical modifications to DNA and other packaging proteins that DNA is wrapped 
around) [194]. TFs can thus exhibit highly variable binding landscapes across the same genomic 
DNA sequence across diverse cell types and states. Several experimental approaches such as 
chromatin immunoprecipitation followed by sequencing (ChIP-seq) have been developed to profile in 
vivo binding maps of TFs [194]. Large reference compendia of ChIP-seq data are now freely 
available for a large collection of TFs in a small number of reference cell states in humans and a few 
other model organisms [195]. Due to fundamental material and cost constraints, it is infeasible to 
perform these experiments for all TFs in every possible cellular state and species. Hence, predictive 
computational models of TF binding are essential to understand gene regulation in diverse cellular 
contexts. 

Several machine learning approaches have been developed to learn generative and discriminative 
models of TF binding from in vitro and in vivo TF binding datasets that associate collections of 
synthetic DNA sequences or genomic DNA sequences to binary labels (bound/unbound) or 
continuous measures of binding. The most common class of TF binding models in the literature are 
those that only model the DNA sequence affinity of TFs from in vitro and in vivo binding data. The 
earliest models were based on deriving simple, compact, interpretable sequence motif 
representations such as position weight matrices (PWMs) and other biophysically inspired 
models [196–198]. These models were outperformed by general k-mer based models including 
support vector machines (SVMs) with string kernels [199,200]. 

In 2015, Alipanahi et al. developed DeepBind, the first CNN to classify bound DNA sequences based 
on in vitro and in vivo assays against random DNA sequences matched for dinucleotide sequence 
composition [201]. The convolutional layers learn pattern detectors reminiscent of PWMs from a 
one-hot encoding of the raw input DNA sequences. DeepBind outperformed several state-of-the-art 
methods from the DREAM5 in vitro TF-DNA motif recognition challenge [198]. Although DeepBind 
was also applied to RNA-binding proteins, in general RNA binding is a separate problem [202] and 
accurate models will need to account for RNA secondary structure. Following DeepBind, several 
optimized convolutional and recurrent neural network architectures as well as novel hybrid 
approaches that combine kernel methods with neural networks have been proposed that further 
improve performance [203–206]. Specialized layers and regularizers have also been proposed to 
reduce parameters and learn more robust models by taking advantage of specific properties of DNA 
sequences such as their reverse complement equivalence [207,208]. 
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While most of these methods learn independent models for different TFs, in vivo multiple TFs 
compete or cooperate to occupy DNA binding sites, resulting in complex combinatorial co-binding 
landscapes. To take advantage of this shared structure in in vivo TF binding data, multi-task neural 
network architectures have been developed that explicitly share parameters across models for 
multiple TFs [206,209,210]. Some of these multi-task models train and evaluate classification 
performance relative to an unbound background set of regulatory DNA sequences sampled from the 
genome rather than using synthetic background sequences with matched dinucleotide composition. 

The above-mentioned TF binding prediction models that use only DNA sequences as inputs have a 
fundamental limitation. Because the DNA sequence of a genome is the same across different cell 
types and states, a sequence-only model of TF binding cannot predict different in vivo TF binding 
landscapes in new cell types not used during training. One approach for generalizing TF binding 
predictions to new cell types is to learn models that integrate DNA sequence inputs with other cell-
type-specific data modalities that modulate in vivo TF binding such as surrogate measures of TF 
concentration (e.g. TF gene expression) and chromatin state. Arvey et al. showed that combining the 
predictions of SVMs trained on DNA sequence inputs and cell-type specific DNase-seq data, which 
measures genome-wide chromatin accessibility, improved in vivo TF binding prediction within and 
across cell types [211]. Several “footprinting” based methods have also been developed that learn to 
discriminate bound from unbound instances of known canonical motifs of a target TF based on high-
resolution footprint patterns of chromatin accessibility that are specific to the target TF [212]. 
However, the genome-wide predictive performance of these methods in new cell types and states 
has not been evaluated. 

Recently, a community challenge known as the “ENCODE-DREAM in vivo TF Binding Site 
Prediction Challenge” was introduced to systematically evaluate genome-wide performance of 
methods that can predict TF binding across cell states by integrating DNA sequence and in vitroDNA 
shape with cell-type-specific chromatin accessibility and gene expression [213]. A deep learning 
model called FactorNet was amongst the top three performing methods in the challenge [214]. 
FactorNet uses a multi-modal hybrid convolutional and recurrent architecture that integrates DNA 
sequence with chromatin accessibility profiles, gene expression, and evolutionary conservation of 
sequence. It is worth noting that FactorNet was slightly outperformed by an approach that does not 
use neural networks [215]. This top ranking approach uses an extensive set of curated features in a 
weighted variant of a discriminative maximum conditional likelihood model in combination with a 
novel iterative training strategy and model stacking. There appears to be significant room for 
improvement because none of the current approaches for cross cell type prediction explicitly account 
for the fact that TFs can co-bind with distinct co-factors in different cell states. In such cases, 
sequence features that are predictive of TF binding in one cell state may be detrimental to predicting 
binding in another. 

Singh et al. developed transfer string kernels for SVMs for cross-context TF binding [216]. Domain 
adaptation methods that allow training neural networks which are transferable between differing 
training and test set distributions of sequence features could be a promising avenue going 
forward [217,218]. These approaches may also be useful for transferring TF binding models across 
species. 

Another class of imputation-based cross cell type in vivo TF binding prediction methods leverage the 
strong correlation between combinatorial binding landscapes of multiple TFs. Given a partially 
complete panel of binding profiles of multiple TFs in multiple cell types, a deep learning method 
called TFImpute learns to predict the missing binding profile of a target TF in some target cell type in 
the panel based on the binding profiles of other TFs in the target cell type and the binding profile of 
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the target TF in other cell types in the panel [191]. However, TFImpute cannot generalize predictions 
beyond the training panel of cell types and requires TF binding profiles of related TFs. 

It is worth noting that TF binding prediction methods in the literature based on neural networks and 
other machine learning approaches choose to sample the set of bound and unbound sequences in a 
variety of different ways. These choices and the choice of performance evaluation measures 
significantly confound systematic comparison of model performance (see Discussion). 

Several methods have also been developed to interpret neural network models of TF binding. 
Alipanahi et al. visualize convolutional filters to obtain insights into the sequence preferences of 
TFs [201]. They also introduced in silico mutation maps for identifying important predictive 
nucleotides in input DNA sequences by exhaustively forward propagating perturbations to individual 
nucleotides to record the corresponding change in output prediction. Shrikumar et al. [219] proposed 
efficient backpropagation based approaches to simultaneously score the contribution of all 
nucleotides in an input DNA sequence to an output prediction. Lanchantin et al. [204] developed 
tools to visualize TF motifs learned from TF binding site classification tasks. These and other general 
interpretation techniques (see Discussion) will be critical to improve our understanding of the 
biologically meaningful patterns learned by deep learning models of TF binding. 

Promoters and enhancers 

From TF binding to promoters and enhancers 
Multiple TFs act in concert to coordinate changes in gene regulation at the genomic regions known 
as promoters and enhancers. Each gene has an upstream promoter, essential for initiating that 
gene’s transcription. The gene may also interact with multiple enhancers, which can amplify 
transcription in particular cellular contexts. These contexts include different cell types in development 
or environmental stresses. 

Promoters and enhancers provide a nexus where clusters of TFs and binding sites mediate 
downstream gene regulation, starting with transcription. The gold standard to identify an active 
promoter or enhancer requires demonstrating its ability to affect transcription or other downstream 
gene products. Even extensive biochemical TF binding data has thus far proven insufficient on its 
own to accurately and comprehensively locate promoters and enhancers. We lack sufficient 
understanding of these elements to derive a mechanistic “promoter code” or “enhancer code”. But 
extensive labeled data on promoters and enhancers lends itself to probabilistic classification. The 
complex interplay of TFs and chromatin leading to the emergent properties of promoter and 
enhancer activity seems particularly apt for representation by deep neural networks. 

Promoters 
Despite decades of work, computational identification of promoters remains a stubborn 
problem [220]. Researchers have used neural networks for promoter recognition as early as 
1996 [221]. Recently, a CNN recognized promoter sequences with sensitivity and specificity 
exceeding 90% [222]. Most activity in computational prediction of regulatory regions, however, has 
moved to enhancer identification. Because one can identify promoters with straightforward 
biochemical assays [223,224], the direct rewards of promoter prediction alone have decreased. But 
the reliable ground truth provided by these assays makes promoter identification an appealing test 
bed for deep learning approaches that can also identify enhancers. 

Enhancers 
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Recognizing enhancers presents additional challenges. Enhancers may be up to 1,000,000 bp away 
from the affected promoter, and even within introns of other genes [225]. Enhancers do not 
necessarily operate on the nearest gene and may affect multiple genes. Their activity is frequently 
tissue- or context-specific. No biochemical assay can reliably identify all enhancers. Distinguishing 
them from other regulatory elements remains difficult, and some believe the distinction somewhat 
artificial [226]. While these factors make the enhancer identification problem more difficult, they also 
make a solution more valuable. 

Several neural network approaches yielded promising results in enhancer prediction. Both 
Basset [227] and DeepEnhancer [228] used CNNs to predict enhancers. DECRES 

 used a feed-forward neural network [229] to distinguish between different kinds of regulatory 
elements, such as active enhancers, and promoters. DECRES had difficulty distinguishing between 
inactive enhancers and promoters. They also investigated the power of sequence features to drive 
classification, finding that beyond CpG islands, few were useful. 

Comparing the performance of enhancer prediction methods illustrates the problems in using metrics 
created with different benchmarking procedures. Both the Basset and DeepEnhancer studies include 
comparisons to a baseline SVM approach, gkm-SVM [200]. The Basset study reports gkm-SVM 
attains a mean area under the precision-recall curve (AUPR) of 0.322 over 164 cell types [227]. The 
DeepEnhancer study reports for gkm-SVM a dramatically different AUPR of 0.899 on nine cell 
types [228]. This large difference means it’s impossible to directly compare the performance of 
Basset and DeepEnhancer based solely on their reported metrics. DECRES used a different set of 
metrics altogether. To drive further progress in enhancer identification, we must develop a common 
and comparable benchmarking procedure (see Discussion). 

Promoter-enhancer interactions 
In addition to the location of enhancers, identifying enhancer-promoter interactions in three-
dimensional space will provide critical knowledge for understanding transcriptional regulation. SPEID 
used a CNN to predicted these interactions with only sequence and the location of putative 
enhancers and promoters along a one-dimensional chromosome [230]. It compared well to other 
methods using a full complement of biochemical data from ChIP-seq and other epigenomic methods. 
Of course, the putative enhancers and promoters used were themselves derived from epigenomic 
methods. But one could easily replace them with the output of one of the enhancer or promoter 
prediction methods above. 

Micro-RNA binding 
Prediction of microRNAs (miRNAs) and miRNA targets is of great interest, as they are critical 
components of gene regulatory networks and are often conserved across great evolutionary 
distance [231,232]. While many machine learning algorithms have been applied to these tasks, they 
currently require extensive feature selection and optimization. For instance, one of the most widely 
adopted tools for miRNA target prediction, TargetScan, trained multiple linear regression models on 
14 hand-curated features including structural accessibility of the target site on the mRNA, the degree 
of site conservation, and predicted thermodynamic stability of the miRNA-mRNA complex [233]. 
Some of these features, including structural accessibility, are imperfect or empirically derived. In 
addition, current algorithms suffer from low specificity [234]. 

As in other applications, deep learning promises to achieve equal or better performance in predictive 
tasks by automatically engineering complex features to minimize an objective function. Two recently 
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variety of other functional elements, like promoters, 
silencers, and repressors. ...	[24]
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published tools use different recurrent neural network-based architectures to perform miRNA and 
target prediction with solely sequence data as input [234,235]. Though the results are preliminary 
and still based on a validation set rather than a completely independent test set, they were able to 
predict microRNA target sites with higher specificity and sensitivity than TargetScan. Excitingly, 
these tools seem to show that RNNs can accurately align sequences and predict bulges, 
mismatches, and wobble base pairing without requiring the user to input secondary structure 
predictions or thermodynamic calculations. Further incremental advances in deep learning for 
miRNA and target prediction will likely be sufficient to meet the current needs of systems biologists 
and other researchers who use prediction tools mainly to nominate candidates that are then tested 
experimentally. 

Protein secondary and tertiary structure 
Proteins play fundamental roles in almost all biological processes, and understanding their structure 
is critical for basic biology and drug development. UniProt currently has about 94 million protein 
sequences, yet fewer than 100,000 proteins across all species have experimentally-solved 
structures in Protein Data Bank (PDB). As a result, computational structure prediction is essential for 
a majority of proteins. However, this is very challenging, especially when similar solved structures, 
called templates, are not available in PDB. Over the past several decades, many computational 
methods have been developed to predict aspects of protein structure such as secondary structure, 
torsion angles, solvent accessibility, inter-residue contact maps, disorder regions, and side-chain 
packing. In recent years, multiple deep learning architectures have been applied, including deep 
belief networks, LSTMs, CNNs, and deep convolutional neural fields (DeepCNFs) [30,236]. 

Here we focus on deep learning methods for two representative sub-problems: secondary structure 
prediction and contact map prediction. Secondary structure refers to local conformation of a 
sequence segment, while a contact map contains information on all residue-residue contacts. 
Secondary structure prediction is a basic problem and an almost essential module of any protein 
structure prediction package. Contact prediction is much more challenging than secondary structure 
prediction, but it has a much larger impact on tertiary structure prediction. In recent years, the 
accuracy of contact prediction has greatly improved [28,237–239]. 

One can represent protein secondary structure with three different states (alpha helix, beta strand, 
and loop regions) or eight finer-grained states. Accuracy of a three-state prediction is called Q3, and 
accuracy of an 8-state prediction is called Q8. Several groups [29,240,241] applied deep learning to 
protein secondary structure prediction but were unable to achieve significant improvement over 
the de facto standard method PSIPRED [242], which uses two shallow feedforward neural networks. 
In 2014, Zhou and Troyanskaya demonstrated that they could improve Q8 accuracy by using a deep 
supervised and convolutional generative stochastic network [243]. In 2016 Wang et al. developed a 
DeepCNF model that improved Q3 and Q8 accuracy as well as prediction of solvent accessibility 
and disorder regions [30,236]. DeepCNF achieved a higher Q3 accuracy than the standard 
maintained by PSIPRED for more than 10 years. This improvement may be mainly due to the ability 
of convolutional neural fields to capture long-range sequential information, which is important for 
beta strand prediction. Nevertheless, the improvements in secondary structure prediction from 
DeepCNF are unlikely to result in a commensurate improvement in tertiary structure prediction since 
secondary structure mainly reflects coarse-grained local conformation of a protein structure. 

Protein contact prediction and contact-assisted folding (i.e. folding proteins using predicted contacts 
as restraints) represents a promising new direction for ab initio folding of proteins without good 
templates in PDB. Co-evolution analysis is effective for proteins with a very large number (>1000) of 
sequence homologs [239], but fares poorly for proteins without many sequence homologs. By 
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combining co-evolution information with a few other protein features, shallow neural network 
methods such as MetaPSICOV [237] and CoinDCA-NN [244] have shown some advantage over 
pure co-evolution analysis for proteins with few sequence homologs, but their accuracy is still far 
from satisfactory. In recent years, deeper architectures have been explored for contact prediction, 
such as CMAPpro [245], DNCON [246] and PConsC [247]. However, blindly tested in the well-
known CASP competitions, these methods did not show any advantage over MetaPSICOV [237]. 

Recently, Wang et al. proposed the deep learning method RaptorX-Contact [28], which significantly 
improves contact prediction over MetaPSICOV and pure co-evolution methods, especially for 
proteins without many sequence homologs. It employs a network architecture formed by one 1D 
residual neural network and one 2D residual neural network. Blindly tested in the latest CASP 
competition (i.e. CASP12 [248]), RaptorX-Contact ranked first in F₁ score on free-modeling targets 
as well as the whole set of targets. In CAMEO (which can be interpreted as a fully-automated 
CASP) [249], its predicted contacts were also able to fold proteins with a novel fold and only 65–330 
sequence homologs. This technique also worked well on membrane proteins even when trained on 
non-membrane proteins [250]. RaptorX-Contact performed better mainly due to introduction of 
residual neural networks and exploitation of contact occurrence patterns by simultaneously 
predicting all the contacts in a single protein. 

Taken together, ab initio folding is becoming much easier with the advent of direct evolutionary 
coupling analysis and deep learning techniques. We expect further improvements in contact 
prediction for proteins with fewer than 1000 homologs by studying new deep network architectures. 
However, it is unclear if there is an effective way to use deep learning to improve prediction for 
proteins with few or no sequence homologs. Finally, the deep learning methods summarized above 
also apply to interfacial contact prediction for protein complexes but may be less effective since on 
average protein complexes have fewer sequence homologs. 

Structure determination and cryo-electron microscopy 
Complementing computational prediction approaches, cryo-electron microscopy (cryo-EM) allows 
near-atomic resolution determination of protein models by comparing individual electron 
micrographs [251]. 
Detailed structures require tens of thousands of protein images [252]. Technological development 
has increased the throughput of image capture. New hardware, such as direct electron detectors, 
has made large-scale image production practical, while new software has focused on rapid, 
automated image processing. 

Some components of cryo-EM image processing remain difficult to automate. For instance, in 
particle picking, micrographs are scanned to identify individual molecular images that will be used in 
structure refinement. In typical applications, hundreds of thousands of particles are necessary to 
determine a structure to near atomic resolution, making manual selection impractical [252]. Typical 
selection approaches are semi-supervised; a user will select several particles manually, and these 
selections will be used to train a classifier [253,254]. Now CNNs are being used to select particles in 
tools like DeepPicker [255] and DeepEM [256]. In addition to addressing shortcomings from manual 
selection, such as selection bias and poor discrimination of low-contrast images, these approaches 
also provide a means of full automation. DeepPicker can be trained by reference particles from other 
experiments with structurally unrelated macromolecules, allowing for fully automated application to 
new samples. 

Downstream of particle picking, deep learning is being applied to other aspects of cryo-EM image 
processing. Statistical manifold learning has been implemented in the software package ROME to 
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classify selected particles and elucidate the different conformations of the subject molecule 
necessary for accurate 3D structures [257]. These recent tools highlight the general applicability of 
deep learning approaches for image processing to increase the throughput of high-resolution cryo-
EM. 

Protein-protein interactions 
Protein-protein interactions (PPIs) are highly specific and non-accidental physical contacts between 
proteins, which occur for purposes other than generic protein production or degradation [258]. 
Abundant interaction data have been generated in-part thanks to advances in high-throughput 
screening methods, such as yeast two-hybrid and affinity-purification with mass spectrometry. 
However, because many PPIs are transient or dependent on biological context, high-throughput 
methods can fail to capture a number of interactions. The imperfections and costs associated with 
many experimental PPI screening methods have motivated an interest in high-throughput 
computational prediction. 

Many machine learning approaches to PPI have focused on text mining the literature [259,260], but 
these approaches can fail to capture context-specific interactions, motivating de novo PPI prediction. 
Early de novo prediction approaches used a variety of statistical and machine learning tools on 
structural and sequential data, sometimes with reference to the existing body of protein structure 
knowledge. In the context of PPIs—as in other domains—deep learning shows promise both for 
exceeding current predictive performance and for circumventing limitations from which other 
approaches suffer. 

One of the key difficulties in applying deep learning techniques to binding prediction is the task of 
representing peptide and protein sequences in a meaningful way. DeepPPI [261] made PPI 
predictions from a set of sequence and composition protein descriptors using a two-stage deep 
neural network that trained two subnetworks for each protein and combined them into a single 
network. Sun et al. [262] applied autocovariances, a coding scheme that returns uniform-size vectors 
describing the covariance between physicochemical properties of the protein sequence at various 
positions. Wang et al. [263] used deep learning as an intermediate step in PPI prediction. They 
examined 70 amino acid protein sequences from each of which they extracted 1260 features. A 
stacked sparse autoencoder with two hidden layers was then used to reduce feature dimensions and 
noisiness before a novel type of classification vector machine made PPI predictions. 

Beyond predicting whether or not two proteins interact, Du et al. [264] employed a deep learning 
approach to predict the residue contacts between two interacting proteins. Using features that 
describe how similar a protein’s residue is relative to similar proteins at the same position, the 
authors extracted uniform-length features for each residue in the protein sequence. A stacked 
autoencoder took two such vectors as input for the prediction of contact between two residues. The 
authors evaluated the performance of this method with several classifiers and showed that a deep 
neural network classifier paired with the stacked autoencoder significantly exceeded classical 
machine learning accuracy. 

Because many studies used predefined higher-level features, one of the benefits of deep learning—
automatic feature extraction—is not fully leveraged. More work is needed to determine the best ways 
to represent raw protein sequence information so that the full benefits of deep learning as an 
automatic feature extractor can be realized. 

MHC-peptide binding 



An important type of PPI involves the immune system’s ability to recognize the body’s own cells. The 
major histocompatibility complex (MHC) plays a key role in regulating this process by binding 
antigens and displaying them on the cell surface to be recognized by T cells. Due to its importance 
in immunity and immune response, peptide-MHC binding prediction is a useful problem in 
computational biology, and one that must account for the allelic diversity in MHC-encoding gene 
region. 

Shallow, feed-forward neural networks are competitive methods and have made progress toward 
pan-allele and pan-length peptide representations. Sequence alignment techniques are useful for 
representing variable-length peptides as uniform-length features [265,266]. For pan-allelic prediction, 
NetMHCpan [267,268] used a pseudo-sequence representation of the MHC class I molecule, which 
included only polymorphic peptide contact residues. The sequences of the peptide and MHC were 
then represented using both sparse vector encoding and Blosum encoding, in which amino acids are 
encoded by matrix score vectors. A comparable method to the NetMHC tools is MHCflurry [269], a 
method which shows superior performance on peptides of lengths other than nine. MHCflurry adds 
placeholder amino acids to transform variable-length peptides to length 15 peptides. In training the 
MHCflurry feed-forward neural network [270], the authors imputed missing MHC-peptide binding 
affinities using a Gibbs sampling method, showing that imputation improves performance for data-
sets with roughly 100 or fewer training examples. MHCflurry’s imputation method increases its 
performance on poorly characterized alleles, making it competitive with NetMHCpan for this task. 
Kuksa et al. [271] developed a shallow, higher-order neural network (HONN) comprised of both 
mean and covariance hidden units to capture some of the higher-order dependencies between 
amino acid locations. Pretraining this HONN with a semi-restricted Boltzmann machine, the authors 
found that the performance of the HONN exceeded that of a simple deep neural network, as well as 
that of NetMHC. 

Deep learning’s unique flexibility was recently leveraged by Bhattacharya et al. [272], who used a 
gated RNN method called MHCnuggets to overcome the difficulty of multiple length peptides. Under 
this framework, they used smoothed sparse encoding to represent amino acids individually. Because 
MHCnuggets had to be trained for every MHC allele, performance was far better for alleles with 
abundant, balanced training data. Vang et al. [273] developed HLA-CNN, a method which maps 
amino acids onto a 15-dimensional vector space based on their context relation to other amino acids 
before making predictions with a CNN. In a comparison of several current methods, Bhattacharya et 
al. found that the top methods—NetMHC, NetMHCpan, MHCflurry, and MHCnuggets—showed 
comparable performance, but large differences in speed. Convolutional neural networks (in this 
case, HLA-CNN) showed comparatively poor performance, while shallow and recurrent neural 
networks performed the best. They found that MHCnuggets—the recurrent neural network—was by 
far the fastest training among the top performing methods. 

PPI networks and graph analysis 
Because interacting proteins are more likely to share a similar function, the connectivity of a PPI 
network itself can be a valuable information source for the prediction of protein function [274]. To 
incorporate higher-order network information, it is necessary to find a lower-level embedding of 
network structure that preserves this higher-order structure. Rather than use hand-crafted network 
features, deep learning shows promise for the automatic discovery of predictive features within 
networks. For example, Navlakha [275] showed that a deep autoencoder was able to compress a 
graph to 40% of its original size, while being able to reconstruct 93% of the original graph’s edges, 
improving upon standard dimension reduction methods. To achieve this, each graph was 
represented as an adjacency matrix with rows sorted in descending node degree order, then 
flattened into a vector and given as input to the autoencoder. While the activity of some hidden 



layers correlated with several popular hand-crafted network features such as k-core size and graph 
density, this work showed that deep learning can effectively reduce graph dimensionality while 
retaining much of its structural information. 

An important challenge in PPI network prediction is the task of combining different networks and 
types of networks. Gligorijevic et al. [276] developed a multimodal deep autoencoder, deepNF, to 
find a feature representation common among several different PPI networks. This common lower-
level representation allows for the combination of various PPI data sources towards a single 
predictive task. An SVM classifier trained on the compressed features from the middle layer of the 
autoencoder outperformed previous methods in predicting protein function. 

Hamilton et al. addressed the issue of large, heterogeneous, and changing networks with an 
inductive approach called GraphSAGE [277]. By finding node embeddings through learned 
aggregator functions that describe the node and its neighbors in the network, the GraphSAGE 
approach allows for the generalization of the model to new graphs. In a classification task for the 
prediction of protein function, Chen and Zhu [278] optimized this approach and enhanced the graph 
convolutional network with a preprocessing step that uses an approximation to the dropout 
operation. This preprocessing effectively reduces the number of graph convolutional layers and it 
significantly improves both training time and prediction accuracy. 

Morphological phenotypes 
A field poised for dramatic revolution by deep learning is bioimage analysis. Thus far, the primary 
use of deep learning for biological images has been for segmentation—that is, for the identification 
of biologically relevant structures in images such as nuclei, infected cells, or vasculature—in 
fluorescence or even brightfield channels [279]. Once so-called regions of interest have been 
identified, it is often straightforward to measure biological properties of interest, such as fluorescence 
intensities, textures, and sizes. Given the dramatic successes of deep learning in biological imaging, 
we simply refer to articles that review recent advancements [16,279,280]. For deep learning to 
become commonplace for biological image segmentation, we need user-friendly tools. 

We anticipate an additional paradigm shift in bioimaging that will be brought about by deep learning: 
what if images of biological samples, from simple cell cultures to three-dimensional organoids and 
tissue samples, could be mined for much more extensive biologically meaningful information than is 
currently standard? For example, a recent study demonstrated the ability to predict lineage fate in 
hematopoietic cells up to three generations in advance of differentiation [281]. In biomedical 
research, most often biologists decide in advance what feature to measure in images from their 
assay system. Although classical methods of segmentation and feature extraction can produce 
hundreds of metrics per cell in an image, deep learning is unconstrained by human intuition and can 
in theory extract more subtle features through its hidden nodes. Already, there is evidence deep 
learning can surpass the efficacy of classical methods [282], even using generic deep convolutional 
networks trained on natural images [283], known as transfer learning. Recent work by Johnson et 
al. [284] demonstrated how the use of a conditional adversarial autoencoder allows for a probabilistic 
interpretation of cell and nuclear morphology and structure localization from fluorescence images. 
The proposed model is able to generalize well to a wide range of subcellular localizations. The 
generative nature of the model allows it to produce high-quality synthetic images predicting 
localization of subcellular structures by directly modeling the localization of fluorescent labels. 
Notably, this approach reduces the modeling time by omitting the subcellular structure segmentation 
step. 
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The impact of further improvements on biomedicine could be enormous. Comparing cell population 
morphologies using conventional methods of segmentation and feature extraction has already 
proven useful for functionally annotating genes and alleles, identifying the cellular target of small 
molecules, and identifying disease-specific phenotypes suitable for drug screening [285–287]. Deep 
learning would bring to these new kinds of experiments—known as image-based profiling or 
morphological profiling—a higher degree of accuracy, stemming from the freedom from human-
tuned feature extraction strategies. 

Single-cell data 
Single-cell methods are generating excitement as biologists characterize the vast heterogeneity 
within unicellular species and between cells of the same tissue type in the same organism [288]. For 
instance, tumor cells and neurons can both harbor extensive somatic variation [289]. Understanding 
single-cell diversity in all its dimensions—genetic, epigenomic, transcriptomic, proteomic, 
morphologic, and metabolic—is key if treatments are to be targeted not only to a specific individual, 
but also to specific pathological subsets of cells. Single-cell methods also promise to uncover a 
wealth of new biological knowledge. A sufficiently large population of single cells will have enough 
representative “snapshots” to recreate timelines of dynamic biological processes. If tracking 
processes over time is not the limiting factor, single-cell techniques can provide maximal resolution 
compared to averaging across all cells in bulk tissue, enabling the study of transcriptional bursting 
with single-cell fluorescence in situ hybridization or the heterogeneity of epigenomic patterns with 
single-cell Hi-C or ATAC-seq [290,291]. Joint profiling of single-cell epigenomic and transcriptional 
states provides unprecedented views of regulatory processes [292]. 

However, large challenges exist in studying single cells. Relatively few cells can be assayed at once 
using current droplet, imaging, or microwell technologies, and low-abundance molecules or 
modifications may not be detected by chance due to a phenomenon known as dropout, not to be 
confused with the dropout layer of deep learning. To solve this problem, Angermueller et 
al. [293]trained a neural network to predict the presence or absence of methylation of a specific CpG 
site in single cells based on surrounding methylation signal and underlying DNA sequence, 
achieving several percentage points of improvement compared to random forests or deep networks 
trained only on CpG or sequence information. Similar deep learning methods have been applied to 
impute low-resolution ChIP-seq signal from bulk tissue with great success, and they could easily be 
adapted to single-cell data [191,294]. Deep learning has also been useful for dealing with batch 
effects [295]. 

Examining populations of single cells can reveal biologically meaningful subsets of cells as well as 
their underlying gene regulatory networks [296]. Unfortunately, machine learning methods generally 
struggle with imbalanced data—when there are many more examples of class 1 than class 2—
because prediction accuracy is usually evaluated over the entire dataset. To tackle this challenge, 
Arvaniti et al. [297] classified healthy and cancer cells expressing 25 markers by using the most 
discriminative filters from a CNN trained on the data as a linear classifier. They achieved impressive 
performance, even for cell types where the subset percentage ranged from 0.1 to 1%, significantly 
outperforming logistic regression and distance-based outlier detection methods. However, they did 
not benchmark against random forests, which tend to work better for imbalanced data, and their data 
was relatively low dimensional. 

Neural networks can also learn low-dimensional representations of single-cell gene expression data 
for visualization, clustering, and other tasks. Both scvis [298] and scVI [299] are unsupervised 
approaches based on VAEs. Whereas scvis primarily focuses on single-cell visualization as a 
replacement for t-Distributed Stochastic Neighbor Embedding [300], the scVI model accounts for 
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zero-inflated expression distributions and can impute zero values that are due to technical effects. 
Beyond VAEs, Lin et al. developed a supervised model to predict cell type [301]. Similar to transfer 
learning approaches for microscopy images [283], they demonstrated that the hidden layer 
representations were informative in general and could be used to identify cellular subpopulations or 
match new cells to known cell types. The supervised neural network’s representation was better 
overall at retrieving cell types than alternatives, but all methods struggled to recover certain cell 
types such as hematopoietic stem cells and inner cell mass cells. As the Human Cell Atlas [302]and 
related efforts generate more single-cell expression data, there will be opportunities to assess how 
well these low-dimensional representations generalize to new cell types as well as abundant training 
data to learn broadly-applicable representations. 

The sheer quantity of omic information that can be obtained from each cell, as well as the number of 
cells in each dataset, uniquely position single-cell data to benefit from deep learning. In the future, 
lineage tracing could be revolutionized by using autoencoders to reduce the feature space of 
transcriptomic or variant data followed by algorithms to learn optimal cell differentiation 
trajectories [303] or by feeding cell morphology and movement into neural networks [281]. 
Reinforcement learning algorithms [304] could be trained on the evolutionary dynamics of cancer 
cells or bacterial cells undergoing selection pressure and reveal whether patterns of adaptation are 
random or deterministic, allowing us to develop therapeutic strategies that forestall resistance. We 
are excited to see the creative applications of deep learning to single-cell biology that emerge over 
the next few years. 

Metagenomics 
Metagenomics, which refers to the study of genetic material—16S rRNA or whole-genome shotgun 
DNA—from microbial communities, has revolutionized the study of micro-scale ecosystems within 
and around us. In recent years, machine learning has proved to be a powerful tool for metagenomic 
analysis. 16S rRNA has long been used to deconvolve mixtures of microbial genomes, yet this 
ignores more than 99% of the genomic content. Subsequent tools aimed to classify 300–3000 bp 
reads from complex mixtures of microbial genomes based on tetranucleotide frequencies, which 
differ across organisms [305], using supervised [306,307] or unsupervised methods [308]. Then, 
researchers began to use techniques that could estimate relative abundances from an entire sample 
faster than classifying individual reads [309–312]. There is also great interest in identifying and 
annotating sequence reads [313,314]. However, the focus on taxonomic and functional annotation is 
just the first step. Several groups have proposed methods to determine host or environment 
phenotypes from the organisms that are identified [315–318] or overall sequence composition [319]. 
Also, researchers have looked into how feature selection can improve classification [318,320], and 
techniques have been proposed that are classifier-independent [321,322]. 

Most neural networks are used for phylogenetic classification or functional annotation from sequence 
data where there is ample data for training. Neural networks have been applied successfully to gene 
annotation (e.g. Orphelia [323] and FragGeneScan [324]). Representations (similar to 
Word2Vec [102] in natural language processing) for protein family classification have been 
introduced and classified with a skip-gram neural network [325]. Recurrent neural networks show 
good performance for homology and protein family identification [326,327]. 

One of the first techniques of de novo genome binning used self-organizing maps, a type of neural 
network [308]. Essinger et al. [328] used Adaptive Resonance Theory to cluster similar genomic 
fragments and showed that it had better performance than k-means. However, other methods based 
on interpolated Markov models [329] have performed better than these early genome binners. 
Neural networks can be slow and therefore have had limited use for reference-based taxonomic 
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classification, with TAC-ELM [330] being the only neural network-based algorithm to taxonomically 
classify massive amounts of metagenomic data. An initial study successfully applied neural networks 
to taxonomic classification of 16S rRNA genes, with convolutional networks providing about 10% 
accuracy genus-level improvement over RNNs and random forests [331]. However, this study 
evaluated only 3000 sequences. 

Neural network uses for classifying phenotype from microbial composition are just beginning. A 
simple multi-layer perceptron (MLP) was able to classify wound severity from microbial species 
present in the wound [332]. Recently, Ditzler et al. associated soil samples with pH level using 
MLPs, DBNs, and RNNs [333]. Besides classifying samples appropriately, internal phylogenetic tree 
nodes inferred by the networks represented features for low and high pH. Thus, hidden nodes might 
provide biological insight as well as new features for future metagenomic sample comparison. Also, 
an initial study has shown promise of these networks for diagnosing disease [334]. 

Challenges remain in applying deep neural networks to metagenomics problems. They are not yet 
ideal for phenotype classification because most studies contain tens of samples and hundreds or 
thousands of features (species). Such underdetermined, or ill-conditioned, problems are still a 
challenge for deep neural networks that require many training examples. Also, due to convergence 
issues [335], taxonomic classification of reads from whole genome sequencing seems out of reach 
at the moment for deep neural networks. There are only thousands of full-sequenced genomes as 
compared to hundreds of thousands of 16S rRNA sequences available for training. 

However, because RNNs have been applied to base calls for the Oxford Nanopore long-read 
sequencer with some success [336] (discussed below), one day the entire pipeline, from denoising 
to functional classification, may be combined into one step using powerful LSTMs [337]. For 
example, metagenomic assembly usually requires binning then assembly, but could deep neural 
nets accomplish both tasks in one network? We believe the greatest potential in deep learning is to 
learn the complete characteristics of a metagenomic sample in one complex network. 

Sequencing and variant calling 
While we have so far primarily discussed the role of deep learning in analyzing genomic data, deep 
learning can also substantially improve our ability to obtain the genomic data itself. We discuss two 
specific challenges: calling SNPs and indels (insertions and deletions) with high specificity and 
sensitivity and improving the accuracy of new types of data such as nanopore sequencing. These 
two tasks are critical for studying rare variation, allele-specific transcription and translation, and 
splice site mutations. In the clinical realm, sequencing of rare tumor clones and other genetic 
diseases will require accurate calling of SNPs and indels. 

Current methods achieve relatively high (>99%) precision at 90% recall for SNPs and indel calls 
from Illumina short-read data [338], yet this leaves a large number of potentially clinically-important 
remaining false positives and false negatives. These methods have so far relied on experts to build 
probabilistic models that reliably separate signal from noise. However, this process is time 
consuming and fundamentally limited by how well we understand and can model the factors that 
contribute to noise. Recently, two groups have applied deep learning to construct data-driven 
unbiased noise models. One of these models, DeepVariant, leverages Inception, a neural network 
trained for image classification by Google Brain, by encoding reads around a candidate SNP as a 
221x100 bitmap image, where each column is a nucleotide and each row is a read from the sample 
library [338]. The top 5 rows represent the reference, and the bottom 95 rows represent randomly 
sampled reads that overlap the candidate variant. Each RGBA (red/green/blue/alpha) image pixel 
encodes the base (A, C, G, T) as a different red value, quality score as a green value, strand as a 
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blue value, and variation from the reference as the alpha value. The neural network outputs 
genotype probabilities for each candidate variant. They were able to achieve better performance 
than GATK [339], a leading genotype caller, even when GATK was given information about 
population variation for each candidate variant. Another method, still in its infancy, hand-developed 
62 features for each candidate variant and fed these vectors into a fully connected deep neural 
network [340]. Unfortunately, this feature set required at least 15 iterations of software development 
to fine-tune, which suggests that these models may not generalize. 

Variant calling will benefit more from optimizing neural network architectures than from developing 
features by hand. An interesting and informative next step would be to rigorously test if encoding raw 
sequence and quality data as an image, tensor, or some other mixed format produces the best 
variant calls. Because many of the latest neural network architectures (ResNet, Inception, Xception, 
and others) are already optimized for and pre-trained on generic, large-scale image datasets [341], 
encoding genomic data as images could prove to be a generally effective and efficient strategy. 

In limited experiments, DeepVariant was robust to sequencing depth, read length, and even 
species [338]. However, a model built on Illumina data, for instance, may not be optimal for Pacific 
Biosciences long-read data or MinION nanopore data, which have vastly different specificity and 
sensitivity profiles and signal-to-noise characteristics. Recently, Boza et al. used bidirectional 
recurrent neural networks to infer the E. coli sequence from MinION nanopore electric current data 
with higher per-base accuracy than the proprietary hidden Markov model-based algorithm 
Metrichor [336]. Unfortunately, training any neural network requires a large amount of data, which is 
often not available for new sequencing technologies. To circumvent this, one very preliminary study 
simulated mutations and spiked them into somatic and germline RNA-seq data, then trained and 
tested a neural network on simulated paired RNA-seq and exome sequencing data [342]. However, 
because this model was not subsequently tested on ground-truth datasets, it is unclear whether 
simulation can produce sufficiently realistic data to produce reliable models. 

Method development for interpreting new types of sequencing data has historically taken two steps: 
first, easily implemented hard cutoffs that prioritize specificity over sensitivity, then expert 
development of probabilistic models with hand-developed inputs [342]. We anticipate that these 
steps will be replaced by deep learning, which will infer features simply by its ability to optimize a 
complex model against data. 

Neuroscience 
Artificial neural networks were originally conceived as a model for computation in the brain [6]. 
Although deep neural networks have evolved to become a workhorse across many fields, there is 
still a strong connection between deep networks and the study of the brain. The rich parallel history 
of artificial neural networks in computer science and neuroscience is reviewed in [343–345]. 

Convolutional neural networks were originally conceived as faithful models of visual information 
processing in the primate visual system, and are still considered so [346]. The activations of hidden 
units in consecutive layers of deep convolutional networks have been found to parallel the activity of 
neurons in consecutive brain regions involved in processing visual scenes. Such models of neural 
computation are called “encoding” models, as they predict how the nervous system might encode 
sensory information in the world. 

Even when they are not directly modeling biological neurons, deep networks have been a useful 
computational tool in neuroscience. They have been developed as statistical time series models of 
neural activity in the brain. And in contrast to the encoding models described earlier, these models 
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are used for decoding neural activity, for instance in brain machine interfaces [347]. They have been 
crucial to the field of connectomics, which is concerned with mapping the connectivity of biological 
neural networks in the brain. In connectomics, deep networks are used to segment the shapes of 
individual neurons and to infer their connectivity from 3D electron microscopic images [348], and 
they have been also been used to infer causal connectivity from optical measurement and 
perturbation of neural activity [349]. 

It is an exciting time for neuroscience. Recent rapid progress in deep networks continues to inspire 
new machine learning based models of brain computation [343]. And neuroscience continues to 
inspire new models of artificial intelligence [345]. 

The impact of deep learning in treating disease and 
developing new treatments 
Given the need to make better, faster interventions at the point of care—incorporating the complex 
calculus of a patients symptoms, diagnostics, and life history—there have been many attempts to 
apply deep learning to patient treatment. Success in this area could help to enable personalized 
healthcare or precision medicine [350,351]. Earlier, we reviewed approaches for patient 
categorization. Here, we examine the potential for better treatment, which broadly, may be divided 
into methods for improved choices of interventions for patients and those for development of new 
interventions. 

Clinical decision making 
In 1996, Tu [352] compared the effectiveness of artificial neural networks and logistic regression, 
questioning whether these techniques would replace traditional statistical methods for predicting 
medical outcomes such as myocardial infarction [353] or mortality [354]. He posited that while neural 
networks have several advantages in representational power, the difficulties in interpretation may 
limit clinical applications, a limitation that still remains today. In addition, the challenges faced by 
physicians parallel those encountered by deep learning. For a given patient, the number of possible 
diseases is very large, with a long tail of rare diseases and patients are highly heterogeneous and 
may present with very different signs and symptoms for the same disease. Still, in 2006 Lisboa and 
Taktak [355] examined the use of artificial neural networks in medical journals, concluding that they 
improved healthcare relative to traditional screening methods in 21 of 27 studies. 

While further progress has been made in using deep learning for clinical decision making, it is 
hindered by a challenge common to many deep learning applications: it is much easier to predict an 
outcome than to suggest an action to change the outcome. Several attempts [118,120] at recasting 
the clinical decision-making problem into a prediction problem (i.e. prediction of which treatment will 
most improve the patient’s health) have accurately predicted survival patterns, but technical and 
medical challenges remain for clinical adoption (similar to those for categorization). In particular, 
remaining barriers include actionable interpretability of deep learning models, fitting deep models to 
limited and heterogeneous data, and integrating complex predictive models into a dynamic clinical 
environment. 

A critical challenge in providing treatment recommendations is identifying a causal relationship for 
each recommendation. Causal inference is often framed in terms of counterfactual question [356]. 
Johansson et al. [357] use deep neural networks to create representation models for covariates that 
capture nonlinear effects and show significant performance improvements over existing models. In a 
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less formal approach, Kale et al. [358] first create a deep neural network to model clinical time series 
and then analyze the relationship of the hidden features to the output using a causal approach. 

A common challenge for deep learning is the interpretability of the models and their predictions. The 
task of clinical decision making is necessarily risk-averse, so model interpretability is key. Without 
clear reasoning, it is difficult to establish trust in a model. As described above, there has been some 
work to directly assign treatment plans without interpretability; however, the removal of human 
experts from the decision-making loop make the models difficult to integrate with clinical practice. To 
alleviate this challenge, several studies have attempted to create more interpretable deep models, 
either specifically for healthcare or as a general procedure for deep learning (see Discussion). 

Predicting patient trajectories 
A common application for deep learning in this domain is the temporal structure of healthcare 
records. Many studies [359–362] have used RNNs to categorize patients, but most stop short of 
suggesting clinical decisions. Nemati et al. [363] used deep reinforcement learning to optimize a 
heparin dosing policy for intensive care patients. However, because the ideal dosing policy is 
unknown, the model’s predictions must be evaluated on counter-factual data. This represents a 
common challenge when bridging the gap between research and clinical practice. Because the 
ground-truth is unknown, researchers struggle to evaluate model predictions in the absence of 
interventional data, but clinical application is unlikely until the model has been shown to be effective. 
The impressive applications of deep reinforcement learning to other domains [304] have relied on 
knowledge of the underlying processes (e.g. the rules of the game). Some models have been 
developed for targeted medical problems [364], but a generalized engine is beyond current 
capabilities. 

Clinical trial efficiency 
A clinical deep learning task that has been more successful is the assignment of patients to clinical 
trials. Ithapu et al. [365] used a randomized denoising autoencoder to learn a multimodal imaging 
marker that predicts future cognitive and neural decline from positron emission tomography (PET), 
amyloid florbetapir PET, and structural magnetic resonance imaging. By accurately predicting which 
cases will progress to dementia, they were able to efficiently assign patients to a clinical trial and 
reduced the required sample sizes by a factor of five. Similarly, Artemov et al. [366] applied deep 
learning to predict which clinical trials were likely to fail and which were likely to succeed. By 
predicting the side effects and pathway activations of each drug and translating these activations to 
a success probability, their deep learning-based approach was able to significantly outperform a 
random forest classifier trained on gene expression changes. These approaches suggest promising 
directions to improve the efficiency of clinical trials and accelerate drug development. 

Drug repositioning 
Drug repositioning (or repurposing) is an attractive option for delivering new drugs to the market 
because of the high costs and failure rates associated with more traditional drug discovery 
approaches [367,368]. A decade ago, the Connectivity Map [369] had a sizeable impact. Reverse 
matching disease gene expression signatures with a large set of reference compound profiles 
allowed researchers to formulate repurposing hypotheses at scale using a simple non-parametric 
test. Since then, several advanced computational methods have been applied to formulate and 
validate drug repositioning hypotheses [370–372]. Using supervised learning and collaborative 
filtering to tackle this type of problem is proving successful, especially when coupling disease or 
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compound omic data with topological information from protein-protein or protein-compound 
interaction networks [373–375]. 

For example, Menden et al. [376] used a shallow neural network to predict sensitivity of cancer cell 
lines to drug treatment using both cell line and drug features, opening the door to precision medicine 
and drug repositioning opportunities in cancer. More recently, Aliper et al. [36] used gene- and 
pathway-level drug perturbation transcriptional profiles from the Library of Network-Based Cellular 
Signatures [377] to train a fully connected deep neural network to predict drug therapeutic uses and 
indications. By using confusion matrices and leveraging misclassification, the authors formulated a 
number of interesting hypotheses, including repurposing cardiovascular drugs such as otenzepad 
and pinacidil for neurological disorders. 

Drug repositioning can also be approached by attempting to predict novel drug-target interactions 
and then repurposing the drug for the associated indication [378,379]. Wang et al. [380] devised a 
pairwise input neural network with two hidden layers that takes two inputs, a drug and a target 
binding site, and predicts whether they interact. Wang et al. [37] trained individual RBMs for each 
target in a drug-target interaction network and used these models to predict novel interactions 
pointing to new indications for existing drugs. Wen et al. [38] extended this concept to deep learning 
by creating a DBN called DeepDTIs, which predicts interactions using chemical structure and protein 
sequence features. 

Drug repositioning appears an obvious candidate for deep learning both because of the large 
amount of high-dimensional data available and the complexity of the question being asked. 
However, perhaps the most promising piece of work in this space [36] is more of a proof of concept 
than a real-world hypothesis-generation tool; notably, deep learning was used to predict drug 
indications but not for the actual repositioning. At present, some of the most popular state-of-the-art 
methods for signature-based drug repurposing [381] do not use predictive modeling. A mature and 
production-ready framework for drug repositioning via deep learning is currently missing. 

Drug development 

Ligand-based prediction of bioactivity 
High-throughput chemical screening in biomedical research aims to improve therapeutic options 
over a long term horizon [21]. The objective is to discover which small molecules (also referred to as 
chemical compounds or ligands) specifically affect the activity of a target, such as a kinase, protein-
protein interaction, or broader cellular phenotype. This screening is often one of the first steps in a 
long drug discovery pipeline, where novel molecules are pursued for their ability to inhibit or enhance 
disease-relevant biological mechanisms [382]. Initial hits are confirmed to eliminate false positives 
and proceed to the lead generation stage [383], where they are evaluated for absorption, 
distribution, metabolism, excretion, and toxicity (ADMET) and other properties. It is desirable to 
advance multiple lead series, clusters of structurally-similar active chemicals, for further optimization 
by medicinal chemists to protect against unexpected failures in the later stages of drug 
discovery [382]. 

Computational work in this domain aims to identify sufficient candidate active compounds without 
exhaustively screening libraries of hundreds of thousands or millions of chemicals. Predicting 
chemical activity computationally is known as virtual screening. An ideal algorithm will rank a 
sufficient number of active compounds before the inactives, but the rankings of actives relative to 
other actives and inactives are less important [384]. Computational modeling also has the potential 
to predict ADMET traits for lead generation [385] and how drugs are metabolized [386]. 
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Ligand-based approaches train on chemicals’ features without modeling target features (e.g. protein 
structure). Neural networks have a long history in this domain [19,22], and the 2012 Merck Molecular 
Activity Challenge on Kaggle generated substantial excitement about the potential for high-
parameter deep learning approaches. The winning submission was an ensemble that included a 
multi-task multi-layer perceptron network [387]. The sponsors noted drastic improvements over a 
random forest baseline, remarking “we have seldom seen any method in the past 10 years that 
could consistently outperform [random forest] by such a margin” [388], but not all outside experts 
were convinced [389]. Subsequent work (reviewed in more detail by Goh et al. [20]) explored the 
effects of jointly modeling far more targets than the Merck challenge [390,391], with Ramsundar et 
al. [391] showing that the benefits of multi-task networks had not yet saturated even with 259 
targets. Although DeepTox [392], a deep learning approach, won another competition, the 
Toxicology in the 21st Century (Tox21) Data Challenge, it did not dominate alternative methods as 
thoroughly as in other domains. DeepTox was the top performer on 9 of 15 targets and highly 
competitive with the top performer on the others. However, for many targets there was little 
separation between the top two or three methods. 

The nuanced Tox21 performance may be more reflective of the practical challenges encountered in 
ligand-based chemical screening than the extreme enthusiasm generated by the Merck competition. 
A study of 22 ADMET tasks demonstrated that there are limitations to multi-task transfer learning 
that are in part a consequence of the degree to which tasks are related [385]. Some of the ADMET 
datasets showed superior performance in multi-task models with only 22 ADMET tasks compared to 
multi-task models with over 500 less-similar tasks. In addition, the training datasets encountered in 
practical applications may be tiny relative to what is available in public datasets and organized 
competitions. A study of BACE-1 inhibitors included only 1547 compounds [393]. Machine learning 
models were able to train on this limited dataset, but overfitting was a challenge and the differences 
between random forests and a deep neural network were negligible, especially in the classification 
setting. Overfitting is still a problem in larger chemical screening datasets with tens or hundreds of 
thousands of compounds because the number of active compounds can be very small, on the order 
of 0.1% of all tested chemicals for a typical target [394]. This has motivated low-parameter neural 
networks that emphasize compound-compound similarity, such as influence-relevance 
voter [384,395], instead of predicting compound activity directly from chemical features. 

Chemical featurization and representation learning 
Much of the recent excitement in this domain has come from what could be considered a creative 
experimentation phase, in which deep learning has offered novel possibilities for feature 
representation and modeling of chemical compounds. A molecular graph, where atoms are labeled 
nodes and bonds are labeled edges, is a natural way to represent a chemical structure. Chemical 
features can be represented as a list of molecular descriptors such as molecular weight, atom 
counts, functional groups, charge representations, summaries of atom-atom relationships in the 
molecular graph, and more sophisticated derived properties [396]. Traditional machine learning 
approaches relied on preprocessing the graph into a feature vector of molecular descriptors or a 
fixed-width bit vector known as a fingerprint [397]. The same fingerprints have been used by some 
drug-target interaction methods discussed above [38]. An overly simplistic but approximately correct 
view of chemical fingerprints is that each bit represents the presence or absence of a particular 
chemical substructure in the molecular graph. Instead of using molecular descriptors or fingerprints 
as input, modern neural networks can represent chemicals as textual strings [398] or images [399] or 
operate directly on the molecular graph, which has enabled strategies for learning novel chemical 
representations. 
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Virtual screening and chemical property prediction have emerged as one of the major applications 
areas for graph-based neural networks. Duvenaud et al. [400] generalized standard circular 
fingerprints by substituting discrete operations in the fingerprinting algorithm with operations in a 
neural network, producing a real-valued feature vector instead of a bit vector. Other approaches 
offer trainable networks that can learn chemical feature representations that are optimized for a 
particular prediction task. Lusci et al. [401] applied recursive neural networks for directed acyclic 
graphs to undirected molecular graphs by creating an ensemble of directed graphs in which one 
atom is selected as the root node. Graph convolutions on undirected molecular graphs have 
eliminated the need to enumerate artificially directed graphs, learning feature vectors for atoms that 
are a function of the properties of neighboring atoms and local regions on the molecular graph [402–
404]. More sophisticated graph algorithms [405,406] addressed limitations of standard graph 
convolutions that primarily operate on each node’s local neighborhood. We anticipate that these 
graph-based neural networks could also be applicable in other types of biological networks, such as 
the PPI networks we discussed previously. 

Advances in chemical representation learning have also enabled new strategies for learning 
chemical-chemical similarity functions. Altae-Tran et al. developed a one-shot learning 
network [403] to address the reality that most practical chemical screening studies are unable to 
provide the thousands or millions of training compounds that are needed to train larger multi-task 
networks. Using graph convolutions to featurize chemicals, the network learns an embedding from 
compounds into a continuous feature space such that compounds with similar activities in a set of 
training tasks have similar embeddings. The approach is evaluated in an extremely challenging 
setting. The embedding is learned from a subset of prediction tasks (e.g. activity assays for 
individual proteins), and only one to ten labeled examples are provided as training data on a new 
task. On Tox21 targets, even when trained with one task-specific active compound and oneinactive 
compound, the model is able to generalize reasonably well because it has learned an informative 
embedding function from the related tasks. Random forests, which cannot take advantage of the 
related training tasks, trained in the same setting are only slightly better than a random classifier. 
Despite the success on Tox21, performance on MUV datasets, which contains assays designed to 
be challenging for chemical informatics algorithms, is considerably worse. The authors also 
demonstrate the limitations of transfer learning as embeddings learned from the Tox21 assays have 
little utility for a drug adverse reaction dataset. 

These novel, learned chemical feature representations may prove to be essential for accurately 
predicting why some compounds with similar structures yield similar target effects and others 
produce drastically different results. Currently, these methods are enticing but do not necessarily 
outperform classic approaches by a large margin. The neural fingerprints [400] were narrowly beaten 
by regression using traditional circular fingerprints on a drug efficacy prediction task but were 
superior for predicting solubility or photovoltaic efficiency. In the original study, graph 
convolutions [402] performed comparably to a multi-task network using standard fingerprints and 
slightly better than the neural fingerprints [400] on the drug efficacy task but were slightly worse than 
the influence-relevance voter method on an HIV dataset [384]. Broader recent benchmarking has 
shown that relative merits of these methods depends on the dataset and cross validation 
strategy [407], though evaluation in this domain often uses area under the receiver operating 
characteristic curve (AUROC) [408], which has limited utility due to the large class imbalance (see 
Discussion). 

We remain optimistic for the potential of deep learning and specifically representation learning in 
drug discovery. Rigorous benchmarking on broad and diverse prediction tasks will be as important 
as novel neural network architectures to advance the state of the art and convincingly demonstrate 
superiority over traditional cheminformatics techniques. Fortunately, there has recently been much 
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progress in this direction. The DeepChem software [403,409] and MoleculeNet benchmarking 
suite [407] built upon it contain chemical bioactivity and toxicity prediction datasets, multiple 
compound featurization approaches including graph convolutions, and various machine learning 
algorithms ranging from standard baselines like logistic regression and random forests to recent 
neural network architectures. Independent research groups have already contributed additional 
datasets and prediction algorithms to DeepChem. Adoption of common benchmarking evaluation 
metrics, datasets, and baseline algorithms has the potential to establish the practical utility of deep 
learning in chemical bioactivity prediction and lower the barrier to entry for machine learning 
researchers without biochemistry expertise. 

One open question in ligand-based screening pertains to the benefits and limitations of transfer 
learning. Multi-task neural networks have shown the advantages of jointly modeling many 
targets [390,391]. Other studies have shown the limitations of transfer learning when the prediction 
tasks are insufficiently related [385,403]. This has important implications for representation learning. 
The typical approach to improve deep learning models by expanding the dataset size may not be 
applicable if only “related” tasks are beneficial, especially because task-task relatedness is ill-
defined. The massive chemical state space will also influence the development of unsupervised 
representation learning methods [398,410]. Future work will establish whether it is better to train on 
massive collections of diverse compounds, drug-like small molecules, or specialized subsets. 

Structure-based prediction of bioactivity 
When protein structure is available, virtual screening has traditionally relied on docking programs to 
predict how a compound best fits in the target’s binding site and score the predicted ligand-target 
complex [411]. Recently, deep learning approaches have been developed to model protein structure, 
which is expected to improve upon the simpler drug-target interaction algorithms described above 
that represent proteins with feature vectors derived from amino acid sequences [38,380]. 

Structure-based deep learning methods differ in whether they use experimentally-derived or 
predicted ligand-target complexes and how they represent the 3D structure. The Atomic 
CNN [412]and TopologyNet [413] models take 3D structures from PDBBind [414] as input, ensuring 
the ligand-target complexes are reliable. AtomNet [35] samples multiple ligand poses within the 
target binding site, and DeepVS [415] and Ragoza et al. [416] use a docking program to generate 
protein-compound complexes. If they are sufficiently accurate, these latter approaches would have 
wider applicability to a much larger set of compounds and proteins. However, incorrect ligand poses 
will be misleading during training, and the predictive performance is sensitive to the docking 
quality [415]. 

There are two established options for representing a protein-compound complex. One option, a 3D 
grid, can featurize the input complex [35,416]. Each entry in the grid tracks the types of protein and 
ligand atoms in that region of the 3D space or descriptors derived from those atoms. Alternatively, 
DeepVS [415] and atomic convolutions [412] offer greater flexibility in their convolutions by 
eschewing the 3D grid. Instead, they each implement techniques for executing convolutions over 
atoms’ neighboring atoms in the 3D space. Gomes et al. demonstrate that currently random forest 
on a 1D feature vector that describes the 3D ligand-target structure generally outperforms neural 
networks on the same feature vector as well as atomic convolutions and ligand-based neural 
networks when predicting the continuous-valued inhibition constant on the PDBBind refined 
dataset [412]. However, in the long term, atomic convolutions may ultimately overtake grid-based 
methods, as they provide greater freedom to model atom-atom interactions and the forces that 
govern binding affinity. 
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De novo drug design 
De novo drug design attempts to model the typical design-synthesize-test cycle of drug 
discovery [417,418]. It explores an estimated 1060 synthesizable organic molecules with drug-like 
properties without explicit enumeration [394]. To test or score structures, algorithms like those 
discussed earlier are used. To “design” and “synthesize”, traditional de novo design software relied 
on classical optimizers such as genetic algorithms. Unfortunately, this often leads to overfit, “weird” 
molecules, which are difficult to synthesize in the lab. Current programs have settled on rule-based 
virtual chemical reactions to generate molecular structures [418]. Deep learning models that 
generate realistic, synthesizable molecules have been proposed as an alternative. In contrast to the 
classical, symbolic approaches, generative models learned from data would not depend on 
laboriously encoded expert knowledge. The challenge of generating molecules has parallels to the 
generation of syntactically and semantically correct text [419]. 

As deep learning models that directly output (molecular) graphs remain under-explored, generative 
neural networks for drug design typically represent chemicals with the simplified molecular-input line-
entry system (SMILES), a standard string-based representation with characters that represent 
atoms, bonds, and rings [420]. This allows treating molecules as sequences and leveraging recent 
progress in recurrent neural networks. Gómez-Bombarelli et al. designed a SMILES-to-SMILES 
autoencoder to learn a continuous latent feature space for chemicals [398]. In this learned 
continuous space it was possible to interpolate between continuous representations of chemicals in 
a manner that is not possible with discrete (e.g. bit vector or string) features or in symbolic, 
molecular graph space. Even more interesting is the prospect of performing gradient-based or 
Bayesian optimization of molecules within this latent space. The strategy of constructing simple, 
continuous features before applying supervised learning techniques is reminiscent of autoencoders 
trained on high-dimensional EHR data [112]. A drawback of the SMILES-to-SMILES autoencoder is 
that not all SMILES strings produced by the autoencoder’s decoder correspond to valid chemical 
structures. Recently, the Grammar Variational Autoencoder, which takes the SMILES grammar into 
account and is guaranteed to produce syntactically valid SMILES, has been proposed to alleviate 
this issue [421]. 

Another approach to de novo design is to train character-based RNNs on large collections of 
molecules, for example, ChEMBL [422], to first obtain a generic generative model for drug-like 
compounds [420]. These generative models successfully learn the grammar of compound 
representations, with 94% [423] or nearly 98% [420] of generated SMILES corresponding to valid 
molecular structures. The initial RNN is then fine-tuned to generate molecules that are likely to be 
active against a specific target by either continuing training on a small set of positive 
examples [420] or adopting reinforcement learning strategies [423,424]. Both the fine-tuning and 
reinforcement learning approaches can rediscover known, held-out active molecules. The great 
flexibility of neural networks, and progress in generative models offers many opportunities for deep 
architectures in de novo design (e.g. the adaptation of GANs for molecules). 

Discussion 
Despite the disparate types of data and scientific goals in the learning tasks covered above, several 
challenges are broadly important for deep learning in the biomedical domain. Here we examine 
these factors that may impede further progress, ask what steps have already been taken to 
overcome them, and suggest future research directions. 
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Customizing deep learning models reflects a tradeoff between bias and 
variance 
Some of the challenges in applying deep learning are shared with other machine learning methods. 
In particular, many problem-specific optimizations described in this review reflect a recurring 
universal tradeoff—controlling the flexibility of a model in order to maximize predictivity. Methods for 
adjusting the flexibility of deep learning models include dropout, reduced data projections, and 
transfer learning (described below). One way of understanding such model optimizations is that they 
incorporate external information to limit model flexibility and thereby improve predictions. This 
balance is formally described as a tradeoff between “bias and variance” [10]. 

Although the bias-variance tradeoff is common to all machine learning applications, recent empirical 
and theoretical observations suggest that deep learning models may have uniquely advantageous 
generalization properties [425,426]. Nevertheless, additional advances will be needed to establish a 
coherent theoretical foundation that enables practitioners to better reason about their models from 
first principles. 

Evaluation metrics for imbalanced classification 
Making predictions in the presence of high class imbalance and differences between training and 
generalization data is a common feature of many large biomedical datasets, including deep learning 
models of genomic features, patient classification, disease detection, and virtual screening. 
Prediction of transcription factor binding sites exemplifies the difficulties with learning from highly 
imbalanced data. The human genome has 3 billion base pairs, and only a small fraction of them are 
implicated in specific biochemical activities. Less than 1% of the genome can be confidently labeled 
as bound for most transcription factors. 

Estimating the false discovery rate (FDR) is a standard method of evaluation in genomics that can 
also be applied to deep learning model predictions of genomic features. Using deep learning 
predictions for targeted validation experiments of specific biochemical activities necessitates a more 
stringent FDR (typically 5–25%). However, when predicted biochemical activities are used as 
features in other models, such as gene expression models, a low FDR may not be necessary. 

What is the correspondence between FDR metrics and commonly used classification metrics such 
as AUPR and AUROC? AUPR evaluates the average precision, or equivalently, the average FDR 
across all recall thresholds. This metric provides an overall estimate of performance across all 
possible use cases, which can be misleading for targeted validation experiments. For example, 
classification of TF binding sites can exhibit a recall of 0% at 10% FDR and AUPR greater than 0.6. 
In this case, the AUPR may be competitive, but the predictions are ill-suited for targeted validation 
that can only examine a few of the highest-confidence predictions. Likewise, AUROC evaluates the 
average recall across all false positive rate (FPR) thresholds, which is often a highly misleading 
metric in class-imbalanced domains [70,427]. Consider a classification model with recall of 0% at 
FDR less than 25% and 100% recall at FDR greater than 25%. In the context of TF binding 
predictions where only 1% of genomic regions are bound by the TF, this is equivalent to a recall of 
100% for FPR greater than 0.33%. In other words, the AUROC would be 0.9967, but the classifier 
would be useless for targeted validation. It is not unusual to obtain a chromosome-wide AUROC 
greater than 0.99 for TF binding predictions but a recall of 0% at 10% FDR. Consequently, 
practitioners must select the metric most tailored to their subsequent use case to use these methods 
most effectively. 

Formulation of classification labels 
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Genome-wide continuous signals are commonly formulated into classification labels through signal 
peak detection. ChIP-seq peaks are used to identify locations of TF binding and histone 
modifications. Such procedures rely on thresholding criteria to define what constitutes a peak in the 
signal. This inevitably results in a set of signal peaks that are close to the threshold, not sufficient to 
constitute a positive label but too similar to positively labeled examples to constitute a negative label. 
To avoid an arbitrary label for these examples they may be labeled as “ambiguous”. Ambiguously 
labeled examples can then be ignored during model training and evaluation of recall and FDR. The 
correlation between model predictions on these examples and their signal values can be used to 
evaluate if the model correctly ranks these examples between positive and negative examples. 

Formulation of a performance upper bound 
In assessing the upper bound on the predictive performance of a deep learning model, it is 
necessary to incorporate inherent between-study variation inherent to biomedical research [428]. 
Study-level variability limits classification performance and can lead to underestimating prediction 
error if the generalization error is estimated by splitting a single dataset. Analyses can incorporate 
data from multiple labs and experiments to capture between-study variation within the prediction 
model mitigating some of these issues. 

Uncertainty quantification 
Deep learning based solutions for biomedical applications could substantially benefit from 
guarantees on the reliability of predictions and a quantification of uncertainty. Due to biological 
variability and precision limits of equipment, biomedical data do not consist of precise measurements 
but of estimates with noise. Hence, it is crucial to obtain uncertainty measures that capture how 
noise in input values propagate through deep neural networks. Such measures can be used for 
reliability assessment of automated decisions in clinical and public health applications, and for 
guarding against model vulnerabilities in the face of rare or adversarial cases [429]. Moreover, in 
fundamental biological research, measures of uncertainty help researchers distinguish between true 
regularities in the data and patterns that are false or merely anecdotal. There are two main 
uncertainties that one can calculate: epistemic and aleatoric [430]. Epistemic uncertainty describes 
uncertainty about the model, its structure, or its parameters. This uncertainty is caused by 
insufficient training data or by a difference in the training set and testing set distributions, so it 
vanishes in the limit of infinite data. On the other hand, aleatoric uncertainty describes uncertainty 
inherent in the observations. This uncertainty is due to noisy or missing data, so it vanishes with the 
ability to observe all independent variables with infinite precision. A good way to represent aleatoric 
uncertainty is to design an appropriate loss function with an uncertainty variable. In the case of data-
dependent aleatoric uncertainty, one can train the model to increase its uncertainty when it is 
incorrect due to noisy or missing data, and in the case of task-depedent aleatoric uncertainty, one 
can optimize for the best uncertainty parameter for each task [431]. Meanwhile, there are various 
methods for modeling epistemic uncertainty, outlined below. 

In classification tasks, confidence calibration is the problem of using classifier scores to predict class 
membership probabilities that match the true membership likelihoods. These membership 
probabilities can be used to assess the uncertainty associated with assigning the example to each of 
the classes. Guo et al. [432] observed that contemporary neural networks are poorly calibrated and 
provided a simple recommendation for calibration: temperature scaling, a single parameter special 
case of Platt scaling [433]. In addition to confidence calibration, there is early work from 
Chryssolouris et al. [434] that described a method for obtaining confidence intervals with the 
assumption of normally distributed error for the neural network. More recently, Hendrycks and 
Gimpel discovered that incorrect or out-of-distribution examples usually have lower maximum 
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softmax probabilities than correctly classified examples, allowing for effective detection of 
misclassified examples [435]. Liang et al. used temperature scaling and small perturbations to 
further separate the softmax scores of correctly classified examples and the scores of out-of-
distribution examples, allowing for more effective detection [436]. This approach outperformed the 
baseline approaches by a large margin, establishing a new state-of-the-art performance. 

An alternative approach for obtaining principled uncertainty estimates from deep learning models is 
to use Bayesian neural networks. Deep learning models are usually trained to obtain the most likely 
parameters given the data. However, choosing the single most likely set of parameters ignores the 
uncertainty about which set of parameters (among the possible models that explain the given 
dataset) should be used. This sometimes leads to uncertainty in predictions when the chosen likely 
parameters produce high-confidence but incorrect results. On the other hand, the parameters of 
Bayesian neural networks are modeled as full probability distributions. This Bayesian approach 
comes with a whole host of benefits, including better calibrated confidence estimates [437] and more 
robustness to adversarial and out-of-distribution examples [438]. Unfortunately, modeling the full 
posterior distribution for the model’s parameters given the data is usually computationally intractable. 
One popular method for circumventing this high computational cost is called test-time dropout [439], 
where an approximate posterior distribution is obtained using variational inference. Gal and 
Ghahramani showed that a stack of fully connected layers with dropout between the layers is 
equivalent to approximate inference in a Gaussian process model [439]. The authors interpret 
dropout as a variational inference method and apply their method to convolutional neural networks. 
This is simple to implement and preserves the possibility of obtaining cheap samples from the 
approximate posterior distribution. Operationally, obtaining model uncertainty for a given case 
becomes as straightforward as leaving dropout turned on and predicting multiple times. The spread 
of the different predictions is a reasonable proxy for model uncertainty. This technique has been 
successfully applied in an automated system for detecting diabetic retinopathy [440], where 
uncertainty-informed referrals improved diagnostic performance and allowed the model to meet the 
National Health Service recommended levels of sensitivity and specificity. The authors also found 
that entropy performs comparably to the spread obtained via test-time dropout for identifying 
uncertain cases, and therefore it can be used instead for automated referrals. 

Several other techniques have been proposed for effectively estimating predictive uncertainty as 
uncertainty quantification for neural networks continues to be an active research area. Recently, 
McClure and Kriegeskorte observed that test-time sampling improved calibration of the probabilistic 
predictions, sampling weights led to more robust uncertainty estimates than sampling units, and 
spike-and-slab sampling is superior to Gaussian dropconnect and Bernoulli dropout [441]. Krueger 
et al. introduced Bayesian hypernetworks [442] as another framework for approximate Bayesian 
inference in deep learning, where an invertible generative hypernetwork maps isotropic Gaussian 
noise to parameters of the primary network allowing for computationally cheap sampling and efficient 
estimation of the posterior. Meanwhile, Lakshminarayanan et al. proposed using deep ensembles, 
which are traditionally used for boosting predictive performance, on standard (non-Bayesian) neural 
networks to obtain well-calibrated uncertainty estimates that are comparable to those obtained by 
Bayesian neural networks [443]. In cases where model uncertainty is known to be caused by a 
difference in training and testing distributions, domain adaptation based techniques can help mitigate 
the problem [218]. 

Despite the success and popularity of deep learning, some deep learning models can be surprisingly 
brittle. Researchers are actively working on modifications to deep learning frameworks to enable 
them to handle probability and embrace uncertainty. Most notably, Bayesian modeling and deep 
learning are being integrated with renewed enthusiasm. As a result, several opportunities for 
innovation arise: understanding the causes of model uncertainty can lead to novel optimization and 



regularization techniques, assessing the utility of uncertainty estimation techniques on various model 
architectures and structures can be very useful to practitioners, and extending Bayesian deep 
learning to unsupervised settings can be a significant breakthrough [444]. Unfortunately, uncertainty 
quantification techniques are underutilized in the computational biology communities and largely 
ignored in the current deep learning for biomedicine literature. Thus, the practical value of 
uncertainty quantification in biomedical domains is yet to be appreciated. 

Interpretation 
As deep learning models achieve state-of-the-art performance in a variety of domains, there is a 
growing need to make the models more interpretable. Interpretability matters for two main reasons. 
First, a model that achieves breakthrough performance may have identified patterns in the data that 
practitioners in the field would like to understand. However, this would not be possible if the model is 
a black box. Second, interpretability is important for trust. If a model is making medical diagnoses, it 
is important to ensure the model is making decisions for reliable reasons and is not focusing on an 
artifact of the data. A motivating example of this can be found in Ba and Caruana [445], where a 
model trained to predict the likelihood of death from pneumonia assigned lower risk to patients with 
asthma, but only because such patients were treated as higher priority by the hospital. In the context 
of deep learning, understanding the basis of a model’s output is particularly important as deep 
learning models are unusually susceptible to adversarial examples [446] and can output confidence 
scores over 99.99% for samples that resemble pure noise. 

As the concept of interpretability is quite broad, many methods described as improving the 
interpretability of deep learning models take disparate and often complementary approaches. 

Assigning example-specific importance scores 
Several approaches ascribe importance on an example-specific basis to the parts of the input that 
are responsible for a particular output. These can be broadly divided into perturbation-based 
approaches and backpropagation-based approaches. 

Perturbation-based approaches change parts of the input and observe the impact on the output of 
the network. Alipanahi et al. [201] and Zhou & Troyanskaya [209] scored genomic sequences by 
introducing virtual mutations at individual positions in the sequence and quantifying the change in 
the output. Umarov et al. [222] used a similar strategy, but with sliding windows where the sequence 
within each sliding window was substituted with a random sequence. Kelley et al. [227]inserted 
known protein-binding motifs into the centers of sequences and assessed the change in predicted 
accessibility. Ribeiro et al. [447] introduced LIME, which constructs a linear model to locally 
approximate the output of the network on perturbed versions of the input and assigns importance 
scores accordingly. For analyzing images, Zeiler and Fergus [448] applied constant-value masks to 
different input patches. More recently, marginalizing over the plausible values of an input has been 
suggested as a way to more accurately estimate contributions [449]. 

A common drawback to perturbation-based approaches is computational efficiency: each perturbed 
version of an input requires a separate forward propagation through the network to compute the 
output. As noted by Shrikumar et al. [219], such methods may also underestimate the impact of 
features that have saturated their contribution to the output, as can happen when multiple redundant 
features are present. To reduce the computational overhead of perturbation-based approaches, 
Fong and Vedaldi [450] solve an optimization problem using gradient descent to discover a minimal 
subset of inputs to perturb in order to decrease the predicted probability of a selected class. Their 
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method converges in many fewer iterations but requires the perturbation to have a differentiable 
form. 

Backpropagation-based methods, in which the signal from a target output neuron is propagated 
backwards to the input layer, are another way to interpret deep networks that sidestep inefficiencies 
of the perturbastion-basd methods. A classic example of this is calculating the gradients of the 
output with respect to the input [451] to compute a “saliency map”. Bach et al. [452] proposed a 
strategy called Layerwise Relevance Propagation, which was shown to be equivalent to the element-
wise product of the gradient and input [219,453]. Networks with Rectified Linear Units (ReLUs) 
create nonlinearities that must be addressed. Several variants exist for handling this [448,454]. 
Backpropagation-based methods are a highly active area of research. Researchers are still actively 
identifying weaknesses [455], and new methods are being developed to address 
them [219,456,457]. Lundberg and Lee [458] noted that several importance scoring methods 
including integrated gradients and LIME could all be considered approximations to Shapely 
values [459], which have a long history in game theory for assigning contributions to players in 
cooperative games. 

Matching or exaggerating the hidden representation 
Another approach to understanding the network’s predictions is to find artificial inputs that produce 
similar hidden representations to a chosen example. This can elucidate the features that the network 
uses for prediction and drop the features that the network is insensitive to. In the context of natural 
images, Mahendran and Vedaldi [460] introduced the “inversion” visualization, which uses gradient 
descent and backpropagation to reconstruct the input from its hidden representation. The method 
required placing a prior on the input to favor results that resemble natural images. For genomic 
sequence, Finnegan and Song [461] used a Markov chain Monte Carlo algorithm to find the 
maximum-entropy distribution of inputs that produced a similar hidden representation to the chosen 
input. 

A related idea is “caricaturization”, where an initial image is altered to exaggerate patterns that the 
network searches for [462]. This is done by maximizing the response of neurons that are active in 
the network, subject to some regularizing constraints. Mordvintsev et al. [463] leveraged 
caricaturization to generate aesthetically pleasing images using neural networks. 

Activation maximization 
Activation maximization can reveal patterns detected by an individual neuron in the network by 
generating images which maximally activate that neuron, subject to some regularizing constraints. 
This technique was first introduced in Ehran et al. [464] and applied in subsequent 
work [451,462,463,465]. Lanchantin et al. [204] applied class-based activation maximization to 
genomic sequence data. One drawback of this approach is that neural networks often learn highly 
distributed representations where several neurons cooperatively describe a pattern of interest. Thus, 
visualizing patterns learned by individual neurons may not always be informative. 

RNN-specific approaches 
Several interpretation methods are specifically tailored to recurrent neural network architectures. The 
most common form of interpretability provided by RNNs is through attention mechanisms, which 
have been used in diverse problems such as image captioning and machine translation to select 
portions of the input to focus on generating a particular output [466,467]. Deming et al. [468]applied 
the attention mechanism to models trained on genomic sequence. Attention mechanisms provide 

Deleted:	"
Deleted:	".

Deleted:	network's

Deleted:	"
Deleted:	"

Deleted:	"
Deleted:	",

Deleted:	,,



insight into the model’s decision-making process by revealing which portions of the input are used by 
different outputs. Singh et al. used a hierarchy of attention layers to locate important genome 
positions and signals for predicting gene expression from histone modifications [183]. In the clinical 
domain, Choi et al. [469] leveraged attention mechanisms to highlight which aspects of a patient’s 
medical history were most relevant for making diagnoses. Choi et al. [470] later extended this work 
to take into account the structure of disease ontologies and found that the concepts represented by 
the model aligned with medical knowledge. Note that interpretation strategies that rely on an 
attention mechanism do not provide insight into the logic used by the attention layer. 

Visualizing the activation patterns of the hidden state of a recurrent neural network can also be 
instructive. Early work by Ghosh and Karamcheti [471] used cluster analysis to study hidden states 
of comparatively small networks trained to recognize strings from a finite state machine. More 
recently, Karpathy et al. [472] showed the existence of individual cells in LSTMs that kept track of 
quotes and brackets in character-level language models. To facilitate such analyses, 
LSTMVis [473] allows interactive exploration of the hidden state of LSTMs on different inputs. 

Another strategy, adopted by Lanchatin et al. [204] looks at how the output of a recurrent neural 
network changes as longer and longer subsequences are supplied as input to the network, where 
the subsequences begin with just the first position and end with the entire sequence. In a binary 
classification task, this can identify those positions which are responsible for flipping the output of the 
network from negative to positive. If the RNN is bidirectional, the same process can be repeated on 
the reverse sequence. As noted by the authors, this approach was less effective at identifying motifs 
compared to the gradient-based backpropagation approach of Simonyan et al. [451], illustrating the 
need for more sophisticated strategies to assign importance scores in recurrent neural networks. 

Murdoch and Szlam [474] showed that the output of an LSTM can be decomposed into a product of 
factors, where each factor can be interpreted as the contribution at a particular timestep. The 
contribution scores were then used to identify key phrases from a model trained for sentiment 
analysis and obtained superior results compared to scores derived via a gradient-based approach. 

Latent space manipulation 
Interpretation of embedded or latent space features learned through generative unsupervised 
models can reveal underlying patterns otherwise masked in the original input. Embedded feature 
interpretation has been emphasized mostly in image and text based applications [102,475], but 
applications to genomic and biomedical domains are increasing. 

For example, Way and Greene trained a variational autoencoder (VAE) on gene expression from 
The Cancer Genome Atlas (TCGA) [476] and use latent space arithmetic to rapidly isolate and 
interpret gene expression features descriptive of high grade serous ovarian cancer subtypes [477]. 
The most differentiating VAE features were representative of biological processes that are known to 
distinguish the subtypes. Latent space arithmetic with features derived using other compression 
algorithms were not as informative in this context [478]. Embedding discrete chemical structures with 
autoencoders and interpreting the learned continuous representations with latent space arithmetic 
has also facilitated predicting drug-like compounds [398]. Furthermore, embedding biomedical text 
into lower dimensional latent spaces have improved name entity recognition in a variety of tasks 
including annotating clinical abbreviations, genes, cell lines, and drug names [75–78]. 

Other approaches have used interpolation through latent space embeddings learned by GANs to 
interpret unobserved intermediate states. For example, Osokin et al. trained GANs on two-channel 
fluorescent microscopy images to interpret intermediate states of protein localization in yeast 
cells [479]. Goldsborough et al. trained a GAN on fluorescent microscopy images and used latent 
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space interpolation and arithmetic to reveal underlying responses to small molecule perturbations in 
cell lines [480]. 

Miscellaneous approaches 
It can often be informative to understand how the training data affects model learning. Toward this 
end, Koh and Liang [481] used influence functions, a technique from robust statistics, to trace a 
model’s predictions back through the learning algorithm to identify the datapoints in the training set 
that had the most impact on a given prediction. A more free-form approach to interpretability is to 
visualize the activation patterns of the network on individual inputs and on subsets of the data. 
ActiVis and CNNvis [482,483] are two frameworks that enable interactive visualization and 
exploration of large-scale deep learning models. An orthogonal strategy is to use a knowledge 
distillation approach to replace a deep learning model with a more interpretable model that achieves 
comparable performance. Towards this end, Che et al. [484] used gradient boosted trees to learn 
interpretable healthcare features from trained deep models. 

Finally, it is sometimes possible to train the model to provide justifications for its predictions. Lei et 
al. [485] used a generator to identify “rationales”, which are short and coherent pieces of the input 
text that produce similar results to the whole input when passed through an encoder. The authors 
applied their approach to a sentiment analysis task and obtained substantially superior results 
compared to an attention-based method. 

Future outlook 
While deep learning lags behind most Bayesian models in terms of interpretability, the interpretability 
of deep learning is comparable to or exceeds that of many other widely-used machine learning 
methods such as random forests or SVMs. While it is possible to obtain importance scores for 
different inputs in a random forest, the same is true for deep learning. Similarly, SVMs trained with a 
nonlinear kernel are not easily interpretable because the use of the kernel means that one does not 
obtain an explicit weight matrix. Finally, it is worth noting that some simple machine learning 
methods are less interpretable in practice than one might expect. A linear model trained on heavily 
engineered features might be difficult to interpret as the input features themselves are difficult to 
interpret. Similarly, a decision tree with many nodes and branches may also be difficult for a human 
to make sense of. 

There are several directions that might benefit the development of interpretability techniques. The 
first is the introduction of gold standard benchmarks that different interpretability approaches could 
be compared against, similar in spirit to how the ImageNet [45] and CIFAR [486] datasets spurred 
the development of deep learning for computer vision. It would also be helpful if the community 
placed more emphasis on domains outside of computer vision. Computer vision is often used as the 
example application of interpretability methods, but it is not the domain with the most pressing need. 
Finally, closer integration of interpretability approaches with popular deep learning frameworks would 
make it easier for practitioners to apply and experiment with different approaches to understanding 
their deep learning models. 

Data limitations 
A lack of large-scale, high-quality, correctly labeled training data has impacted deep learning in 
nearly all applications we have discussed. The challenges of training complex, high-parameter 
neural networks from few examples are obvious, but uncertainty in the labels of those examples can 
be just as problematic. In genomics labeled data may be derived from an experimental assay with 
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known and unknown technical artifacts, biases, and error profiles. It is possible to weight training 
examples or construct Bayesian models to account for uncertainty or non-independence in the data, 
as described in the TF binding example above. As another example, Park et al. [487]estimated 
shared non-biological signal between datasets to correct for non-independence related to assay 
platform or other factors in a Bayesian integration of many datasets. However, such techniques are 
rarely placed front and center in any description of methods and may be easily overlooked. 

For some types of data, especially images, it is straightforward to augment training datasets by 
splitting a single labeled example into multiple examples. For example, an image can easily be 
rotated, flipped, or translated and retain its label [42]. 3D MRI and 4D fMRI (with time as a 
dimension) data can be decomposed into sets of 2D images [488]. This can greatly expand the 
number of training examples but artificially treats such derived images as independent instances and 
sacrifices the structure inherent in the data. CellCnn trains a model to recognize rare cell populations 
in single-cell data by creating training instances that consist of subsets of cells that are randomly 
sampled with replacement from the full dataset [297]. 

Simulated or semi-synthetic training data has been employed in multiple biomedical domains, 
though many of these ideas are not specific to deep learning. Training and evaluating on simulated 
data, for instance, generating synthetic TF binding sites with position weight matrices [207] or RNA-
seq reads for predicting mRNA transcript boundaries [489], is a standard practice in bioinformatics. 
This strategy can help benchmark algorithms when the available gold standard dataset is imperfect, 
but it should be paired with an evaluation on real data, as in the prior examples [207,489]. In rare 
cases, models trained on simulated data have been successfully applied directly to real data [489]. 

Data can be simulated to create negative examples when only positive training instances are 
available. DANN [34] adopts this approach to predict the pathogenicity of genetic variants using 
semi-synthetic training data from Combined Annotation-Dependent Depletion (CADD) [490]. Though 
our emphasis here is on the training strategy, it should be noted that logistic regression 
outperformed DANN when distinguishing known pathogenic mutations from likely benign variants in 
real data. Similarly, a somatic mutation caller has been trained by injecting mutations into real 
sequencing datasets [342]. This method detected mutations in other semi-synthetic datasets but was 
not validated on real data. 

In settings where the experimental observations are biased toward positive instances, such as MHC 
protein and peptide ligand binding affinity [270], or the negative instances vastly outnumber the 
positives, such as high-throughput chemical screening [395], training datasets have been 
augmented by adding additional instances and assuming they are negative. There is some evidence 
that this can improve performance [395], but in other cases it was only beneficial when the real 
training datasets were extremely small [270]. Overall, training with simulated and semi-simulated 
data is a valuable idea for overcoming limited sample sizes but one that requires more rigorous 
evaluation on real ground-truth datasets before we can recommend it for widespread use. There is a 
risk that a model will easily discriminate synthetic examples but not generalize to real data. 

Multimodal, multi-task, and transfer learning, discussed in detail below, can also combat data 
limitations to some degree. There are also emerging network architectures, such as Diet Networks 
for high-dimensional SNP data [491]. These use multiple networks to drastically reduce the number 
of free parameters by first flipping the problem and training a network to predict parameters 
(weights) for each input (SNP) to learn a feature embedding. This embedding (e.g. from principal 
component analysis, per class histograms, or a Word2vec [102] generalization) can be learned 
directly from input data or take advantage of other datasets or domain knowledge. Additionally, in 
this task the features are the examples, an important advantage when it is typical to have 500 
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thousand or more SNPs and only a few thousand patients. Finally, this embedding is of a much 
lower dimension, allowing for a large reduction in the number of free parameters. In the example 
given, the number of free parameters was reduced from 30 million to 50 thousand, a factor of 600. 

Hardware limitations and scaling 
Efficiently scaling deep learning is challenging, and there is a high computational cost (e.g. time, 
memory, and energy) associated with training neural networks and using them to make predictions. 
This is one of the reasons why neural networks have only recently found widespread use [492]. 

Many have sought to curb these costs, with methods ranging from the very applied (e.g. reduced 
numerical precision [493–496]) to the exotic and theoretic ( e.g. training small networks to mimic 
large networks and ensembles [445,497]). The largest gains in efficiency have come from 
computation with GPUs [492,498–502], which excel at the matrix and vector operations so central to 
deep learning. The massively parallel nature of GPUs allows additional optimizations, such as 
accelerated mini-batch gradient descent [499,500,503,504]. However, GPUs also have limited 
memory, making networks of useful size and complexity difficult to implement on a single GPU or 
machine [66,498]. This restriction has sometimes forced computational biologists to use 
workarounds or limit the size of an analysis. Chen et al. [181] inferred the expression level of all 
genes with a single neural network, but due to memory restrictions they randomly partitioned genes 
into two separately analyzed halves. In other cases, researchers limited the size of their neural 
network [28] or the total number of training instances [398]. Some have also chosen to use standard 
central processing unit (CPU) implementations rather than sacrifice network size or 
performance [505]. 

While steady improvements in GPU hardware may alleviate this issue, it is unclear whether 
advances will occur quickly enough to keep pace with the growing biological datasets and 
increasingly complex neural networks. Much has been done to minimize the memory requirements 
of neural networks [445,493–496,506,507], but there is also growing interest in specialized 
hardware, such as field-programmable gate arrays (FPGAs) [502,508] and application-specific 
integrated circuits (ASICs) [509]. Less software is available for such highly specialized 
hardware [508]. But specialized hardware promises improvements in deep learning at reduced time, 
energy, and memory [502]. Specialized hardware may be a difficult investment for those not solely 
interested in deep learning, but for those with a deep learning focus these solutions may become 
popular. 

Distributed computing is a general solution to intense computational requirements and has enabled 
many large-scale deep learning efforts. Some types of distributed computation [510,511] are not 
suitable for deep learning [512], but much progress has been made. There now exist a number of 
algorithms [495,512,513], tools [514–516], and high-level libraries [517,518] for deep learning in a 
distributed environment, and it is possible to train very complex networks with limited 
infrastructure [519]. Besides handling very large networks, distributed or parallelized approaches 
offer other advantages, such as improved ensembling [520] or accelerated hyperparameter 
optimization [521,522]. 

Cloud computing, which has already seen wide adoption in genomics [523], could facilitate easier 
sharing of the large datasets common to biology [524,525], and may be key to scaling deep learning. 
Cloud computing affords researchers flexibility, and enables the use of specialized hardware 
(e.g. FPGAs, ASICs, GPUs) without major investment. As such, it could be easier to address the 
different challenges associated with the multitudinous layers and architectures available [526]. 
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Though many are reluctant to store sensitive data (e.g. patient electronic health records) in the 
cloud, secure, regulation-compliant cloud services do exist [527]. 

Data, code, and model sharing 
A robust culture of data, code, and model sharing would speed advances in this domain. The cultural 
barriers to data sharing in particular are perhaps best captured by the use of the term “research 
parasite” to describe scientists who use data from other researchers [528]. A field that honors only 
discoveries and not the hard work of generating useful data will have difficulty encouraging scientists 
to share their hard-won data. It’s precisely those data that would help to power deep learning in the 
domain. Efforts are underway to recognize those who promote an ecosystem of rigorous sharing and 
analysis [529]. 

The sharing of high-quality, labeled datasets will be especially valuable. In addition, researchers who 
invest time to preprocess datasets to be suitable for deep learning can make the preprocessing code 
(e.g. Basset [227] and variationanalysis [340]) and cleaned data (e.g. MoleculeNet [407]) publicly 
available to catalyze further research. However, there are complex privacy and legal issues involved 
in sharing patient data that cannot be ignored. Solving these issues will require increased 
understanding of privacy risks and standards specifying acceptable levels. In some domains high-
quality training data has been generated privately, i.e. high-throughput chemical screening data at 
pharmaceutical companies. One perspective is that there is little expectation or incentive for this 
private data to be shared. However, data are not inherently valuable. Instead, the insights that we 
glean from them are where the value lies. Private companies may establish a competitive advantage 
by releasing data sufficient for improved methods to be developed. Recently, Ramsundar et al. did 
this with an open source platform DeepChem, where they released four privately generated 
datasets [530]. 

Code sharing and open source licensing is essential for continued progress in this domain. We 
strongly advocate following established best practices for sharing source code, archiving code in 
repositories that generate digital object identifiers, and open licensing [531] regardless of the 
minimal requirements, or lack thereof, set by journals, conferences, or preprint servers. In addition, it 
is important for authors to share not only code for their core models but also scripts and code used 
for data cleaning (see above) and hyperparameter optimization. These improve reproducibility and 
serve as documentation of the detailed decisions that impact model performance but may not be 
exhaustively captured in a manuscript’s methods text. 

Because many deep learning models are often built using one of several popular software 
frameworks, it is also possible to directly share trained predictive models. The availability of pre-
trained models can accelerate research, with image classifiers as an apt example. A pre-trained 
neural network can be quickly fine-tuned on new data and used in transfer learning, as discussed 
below. Taking this idea to the extreme, genomic data has been artificially encoded as images in 
order to benefit from pre-trained image classifiers [338]. “Model zoos”—collections of pre-trained 
models—are not yet common in biomedical domains but have started to appear in genomics 
applications [293,532]. However, it is important to note that sharing models trained on individual data 
requires great care because deep learning models can be attacked to identify examples used in 
training. One possible solution to protect individual samples includes training models under 
differential privacy [152], which has been used in the biomedical domain [155]. We discussed this 
issue as well as recent techniques to mitigate these concerns in the patient categorization section. 

DeepChem [403,407,409] and DragoNN [532] exemplify the benefits of sharing pre-trained models 
and code under an open source license. DeepChem, which targets drug discovery and quantum 
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chemistry, has actively encouraged and received community contributions of learning algorithms and 
benchmarking datasets. As a consequence, it now supports a large suite of machine learning 
approaches, both deep learning and competing strategies, that can be run on diverse test cases. 
This realistic, continual evaluation will play a critical role in assessing which techniques are most 
promising for chemical screening and drug discovery. Like formal, organized challenges such as the 
ENCODE-DREAM in vivo Transcription Factor Binding Site Prediction Challenge [213], DeepChem 
provides a forum for the fair, critical evaluations that are not always conducted in individual 
methodological papers, which can be biased toward favoring a new proposed algorithm. Likewise 
DragoNN (Deep RegulAtory GenOmic Neural Networks) offers not only code and a model zoo but 
also a detailed tutorial and partner package for simulating training data. These resources, especially 
the ability to simulate datasets that are sufficiently complex to demonstrate the challenges of training 
neural networks but small enough to train quickly on a CPU, are important for training students and 
attracting machine learning researchers to problems in genomics and healthcare. 

Multimodal, multi-task, and transfer learning 
The fact that biomedical datasets often contain a limited number of instances or labels can cause 
poor performance of deep learning algorithms. These models are particularly prone to overfitting due 
to their high representational power. However, transfer learning techniques, also known as domain 
adaptation, enable transfer of extracted patterns between different datasets and even domains. This 
approach consists of training a model for the base task and subsequently reusing the trained model 
for the target problem. The first step allows a model to take advantage of a larger amount of data 
and/or labels to extract better feature representations. Transferring learned features in deep neural 
networks improves performance compared to randomly initialized features even when pre-training 
and target sets are dissimilar. However, transferability of features decreases as the distance 
between the base task and target task increases [533]. 

In image analysis, previous examples of deep transfer learning applications proved large-scale 
natural image sets [45] to be useful for pre-training models that serve as generic feature extractors 
for various types of biological images [14,283,534,535]. More recently, deep learning models 
predicted protein sub-cellular localization for proteins not originally present in a training set [536]. 
Moreover, learned features performed reasonably well even when applied to images obtained using 
different fluorescent labels, imaging techniques, and different cell types [537]. However, there are no 
established theoretical guarantees for feature transferability between distant domains such as 
natural images and various modalities of biological imaging. Because learned patterns are 
represented in deep neural networks in a layer-wise hierarchical fashion, this issue is usually 
addressed by fixing an empirically chosen number of layers that preserve generic characteristics of 
both training and target datasets. The model is then fine-tuned by re-training top layers on the 
specific dataset in order to re-learn domain-specific high level concepts (e.g. fine-tuning for radiology 
image classification [57]). Fine-tuning on specific biological datasets enables more focused 
predictions. 

In genomics, the Basset package [227] for predicting chromatin accessibility was shown to rapidly 
learn and accurately predict on new data by leveraging a model pre-trained on available public data. 
To simulate this scenario, authors put aside 15 of 164 cell type datasets and trained the Basset 
model on the remaining 149 datasets. Then, they fine-tuned the model with one training pass of 
each of the remaining datasets and achieved results close to the model trained on all 164 datasets 
together. In another example, Min et al. [228] demonstrated how training on the experimentally-
validated FANTOM5 permissive enhancer dataset followed by fine-tuning on ENCODE enhancer 
datasets improved cell type-specific predictions, outperforming state-of-the-art results. In drug 
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design, general RNN models trained to generate molecules from the ChEMBL database have been 
fine-tuned to produce drug-like compounds for specific targets [420,423]. 

Related to transfer learning, multimodal learning assumes simultaneous learning from various types 
of inputs, such as images and text. It can capture features that describe common concepts across 
input modalities. Generative graphical models like RBMs, deep Boltzmann machines, and DBNs, 
demonstrate successful extraction of more informative features for one modality (images or video) 
when jointly learned with other modalities (audio or text) [538]. Deep graphical models such as 
DBNs are well-suited for multimodal learning tasks because they learn a joint probability distribution 
from inputs. They can be pre-trained in an unsupervised fashion on large unlabeled data and then 
fine-tuned on a smaller number of labeled examples. When labels are available, convolutional neural 
networks are ubiquitously used because they can be trained end-to-end with backpropagation and 
demonstrate state-of-the-art performance in many discriminative tasks [14]. 

Jha et al. [190] showed that integrated training delivered better performance than individual 
networks. They compared a number of feed-forward architectures trained on RNA-seq data with and 
without an additional set of CLIP-seq, knockdown, and over-expression based input features. The 
integrative deep model generalized well for combined data, offering a large performance 
improvement for alternative splicing event estimation. Chaudhary et al. [539] trained a deep 
autoencoder model jointly on RNA-seq, miRNA-seq, and methylation data from TCGA to predict 
survival subgroups of hepatocellular carcinoma patients. This multimodal approach that treated 
different omic data types as different modalities outperformed both traditional methods (principal 
component analysis) and single-omic models. Interestingly, multi-omic model performance did not 
improve when combined with clinical information, suggesting that the model was able to capture 
redundant contributions of clinical features through their correlated genomic features. Chen et 
al. [176] used deep belief networks to learn phosphorylation states of a common set of signaling 
proteins in primary cultured bronchial cells collected from rats and humans treated with distinct 
stimuli. By interpreting species as different modalities representing similar high-level concepts, they 
showed that DBNs were able to capture cross-species representation of signaling mechanisms in 
response to a common stimuli. Another application used DBNs for joint unsupervised feature 
learning from cancer datasets containing gene expression, DNA methylation, and miRNA expression 
data [184]. This approach allowed for the capture of intrinsic relationships in different modalities and 
for better clustering performance over conventional k-means. 

Multimodal learning with CNNs is usually implemented as a collection of individual networks in which 
each learns representations from single data type. These individual representations are further 
concatenated before or within fully-connected layers. FIDDLE [540] is an example of a multimodal 
CNN that represents an ensemble of individual networks that take NET-seq, MNase-seq, ChIP-seq, 
RNA-seq, and raw DNA sequence as input to predict transcription start sites. The combined model 
radically improves performance over separately trained datatype-specific networks, suggesting that it 
learns the synergistic relationship between datasets. 

Multi-task learning is an approach related to transfer learning. In a multi-task learning framework, a 
model learns a number of tasks simultaneously such that features are shared across them. 
DeepSEA [209] implemented multi-task joint learning of diverse chromatin factors from raw DNA 
sequence. This allowed a sequence feature that was effective in recognizing binding of a specific TF 
to be simultaneously used by another predictor for a physically interacting TF. Similarly, 
TFImpute [191] learned information shared across transcription factors and cell lines to predict cell-
specific TF binding for TF-cell line combinations. Yoon et al. [101] demonstrated that predicting the 
primary cancer site from cancer pathology reports together with its laterality substantially improved 
the performance for the latter task, indicating that multi-task learning can effectively leverage the 
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commonality between two tasks using a shared representation. Many studies employed multi-task 
learning to predict chemical bioactivity [387,391] and drug toxicity [392,541]. Kearnes et 
al. [385]systematically compared single-task and multi-task models for ADMET properties and found 
that multi-task learning generally improved performance. Smaller datasets tended to benefit more 
than larger datasets. 

Multi-task learning is complementary to multimodal and transfer learning. All three techniques can be 
used together in the same model. For example, Zhang et al. [534] combined deep model-based 
transfer and multi-task learning for cross-domain image annotation. One could imagine extending 
that approach to multimodal inputs as well. A common characteristic of these methods is better 
generalization of extracted features at various hierarchical levels of abstraction, which is attained by 
leveraging relationships between various inputs and task objectives. 

Despite demonstrated improvements, transfer learning approaches pose challenges. There are no 
theoretically sound principles for pre-training and fine-tuning. Best practice recommendations are 
heuristic and must account for additional hyper-parameters that depend on specific deep 
architectures, sizes of the pre-training and target datasets, and similarity of domains. However, 
similarity of datasets and domains in transfer learning and relatedness of tasks in multi-task learning 
is difficult to access. Most studies address these limitations by empirical evaluation of the model. 
Unfortunately, negative results are typically not reported. A deep CNN trained on natural images 
boosts performance in radiographic images [57]. However, due to differences in imaging domains, 
the target task required either re-training the initial model from scratch with special pre-processing or 
fine-tuning of the whole network on radiographs with heavy data augmentation to avoid overfitting. 
Exclusively fine-tuning top layers led to much lower validation accuracy (81.4 versus 99.5). Fine-
tuning the aforementioned Basset model with more than one pass resulted in overfitting [227]. 
DeepChem successfully improved results for low-data drug discovery with one-shot learning for 
related tasks. However, it clearly demonstrated the limitations of cross-task generalization across 
unrelated tasks in one-shot models, specifically nuclear receptor assays and patient adverse 
reactions [403]. 

In the medical domain, multimodal, multi-task and transfer learning strategies not only inherit most 
methodological issues from natural image, text, and audio domains, but also pose domain-specific 
challenges. There is a compelling need for the development of privacy-preserving transfer learning 
algorithms, such as Private Aggregation of Teacher Ensembles [158]. We suggest that these types 
of models deserve deeper investigation to establish sound theoretical guarantees and determine 
limits for the transferability of features between various closely related and distant learning tasks. 

Conclusions 
Deep learning-based methods now match or surpass the previous state of the art in a diverse array 
of tasks in patient and disease categorization, fundamental biological study, genomics, and 
treatment development. Returning to our central question: given this rapid progress, has deep 
learning transformed the study of human disease? Though the answer is highly dependent on the 
specific domain and problem being addressed, we conclude that deep learning has not yet realized 
its transformative potential or induced a strategic inflection point. Despite its dominance over 
competing machine learning approaches in many of the areas reviewed here and quantitative 
improvements in predictive performance, deep learning has not yet definitively “solved” these 
problems. 

As an analogy, consider recent progress in conversational speech recognition. Since 2009 there 
have been drastic performance improvements with error rates dropping from more than 20% to less 
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than 6% [542] and finally approaching or exceeding human performance in the past year [543,544]. 
The phenomenal improvements on benchmark datasets are undeniable, but greatly reducing the 
error rate on these benchmarks did not fundamentally transform the domain. Widespread adoption 
of conversational speech technologies will require solving the problem, i.e. methods that surpass 
human performance, and persuading users to adopt them [542]. We see parallels in healthcare, 
where achieving the full potential of deep learning will require outstanding predictive performance as 
well as acceptance and adoption by biologists and clinicians. These experts will rightfully demand 
rigorous evidence that deep learning has impacted their respective disciplines—elucidated new 
biological mechanisms and improved patient outcomes—to be convinced that the promises of deep 
learning are more substantive than those of previous generations of artificial intelligence. 

Some of the areas we have discussed are closer to surpassing this lofty bar than others, generally 
those that are more similar to the non-biomedical tasks that are now monopolized by deep learning. 
In medical imaging, diabetic retinopathy [49], diabetic macular edema [49], tuberculosis [58], and 
skin lesion [4] classifiers are highly accurate and comparable to clinician performance. 

In other domains, perfect accuracy will not be required because deep learning will primarily prioritize 
experiments and assist discovery. For example, in chemical screening for drug discovery, a deep 
learning system that successfully identifies dozens or hundreds of target-specific, active small 
molecules from a massive search space would have immense practical value even if its overall 
precision is modest. In medical imaging, deep learning can point an expert to the most challenging 
cases that require manual review [58], though the risk of false negatives must be addressed. In 
protein structure prediction, errors in individual residue-residue contacts can be tolerated when using 
the contacts jointly for 3D structure modeling. Improved contact map predictions [28] have led to 
notable improvements in fold and 3D structure prediction for some of the most challenging proteins, 
such as membrane proteins [250]. 

Conversely, the most challenging tasks may be those in which predictions are used directly for 
downstream modeling or decision-making, especially in the clinic. As an example, errors in 
sequence variant calling will be amplified if they are used directly for GWAS. In addition, the 
stochasticity and complexity of biological systems implies that for some problems, for instance 
predicting gene regulation in disease, perfect accuracy will be unattainable. 

We are witnessing deep learning models achieving human-level performance across a number of 
biomedical domains. However, machine learning algorithms, including deep neural networks, are 
also prone to mistakes that humans are much less likely to make, such as misclassification of 
adversarial examples [545,546], a reminder that these algorithms do not understand the semantics 
of the objects presented. It may be impossible to guarantee that a model is not susceptible to 
adversarial examples, but work in this area is continuing [547,548]. Cooperation between human 
experts and deep learning algorithms addresses many of these challenges and can achieve better 
performance than either individually [64]. For sample and patient classification tasks, we expect 
deep learning methods to augment clinicians and biomedical researchers. 

We are optimistic about the future of deep learning in biology and medicine. It is by no means 
inevitable that deep learning will revolutionize these domains, but given how rapidly the field is 
evolving, we are confident that its full potential in biomedicine has not been explored. We have 
highlighted numerous challenges beyond improving training and predictive accuracy, such as 
preserving patient privacy and interpreting models. Ongoing research has begun to address these 
problems and shown that they are not insurmountable. Deep learning offers the flexibility to model 
data in its most natural form, for example, longer DNA sequences instead of k-mers for transcription 
factor binding prediction and molecular graphs instead of pre-computed bit vectors for drug 
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discovery. These flexible input feature representations have spurred creative modeling approaches 
that would be infeasible with other machine learning techniques. Unsupervised methods are 
currently less-developed than their supervised counterparts, but they may have the most potential 
because of how expensive and time-consuming it is to label large amounts of biomedical data. If 
future deep learning algorithms can summarize very large collections of input data into interpretable 
models that spur scientists to ask questions that they did not know how to ask, it will be clear that 
deep learning has transformed biology and medicine. 

Methods 

Continuous collaborative manuscript drafting 
We recognized that deep learning in precision medicine is a rapidly developing area. Hence, diverse 
expertise was required to provide a forward-looking perspective. Accordingly, we collaboratively 
wrote this review in the open, enabling anyone with expertise to contribute. We wrote the manuscript 
in markdown and tracked changes using git. Contributions were handled through GitHub, with 
individuals submitting “pull requests” to suggest additions to the manuscript. 

To facilitate citation, we defined a markdown citation syntax. We supported citations to the following 
identifier types (in order of preference): DOIs, PubMed Central IDs, PubMed IDs, arXiv IDs, and 
URLs. References were automatically generated from citation metadata by querying APIs to 
generate Citation Style Language (CSL) JSON items for each reference. Pandoc and pandoc-
citeproc converted the markdown to HTML and PDF, while rendering the formatted citations and 
references. In total, referenced works consisted of 369 DOIs, 6 PubMed Central records, 129 arXiv 
manuscripts, and 48 URLs (webpages as well as manuscripts lacking standardized identifiers). 

We implemented continuous analysis so the manuscript was automatically regenerated whenever 
the source changed [147]. We configured Travis CI—a continuous integration service—to fetch new 
citation metadata and rebuild the manuscript for every commit. Accordingly, formatting or citation 
errors in pull requests would cause the Travis CI build to fail, automating quality control. In addition, 
the build process renders templated variables, such as the reference counts mentioned above, to 
automate the updating of dynamic content. When contributions were merged into the master branch, 
Travis CI deployed the built manuscript by committing back to the GitHub repository. As a result, the 
latest manuscript version is always available at https://greenelab.github.io/deep-review. To ensure a 
consistent software environment, we defined a versioned conda environment of the software 
dependencies. 

In addition, we instructed the Travis CI deployment script to perform blockchain 
timestamping [549,550]. Using OpenTimestamps, we submitted hashes for the manuscript and the 
source git commit for timestamping in the Bitcoin blockchain [551]. These timestamps attest that a 
given version of this manuscript (and its history) existed at a given point in time. The ability to 
irrefutably prove manuscript existence at a past time could be important to establish scientific 
precedence and enforce an immutable record of authorship. 

Author contributions 
We created an open repository on the GitHub version control platform (greenelab/deep-review) [552]. 
Here, we engaged with numerous authors from papers within and outside of the area. The 
manuscript was drafted via GitHub commits by 36 individuals who met the ICMJE standards of 
authorship. These were individuals who contributed to the review of the literature; drafted the 
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manuscript or provided substantial critical revisions; approved the final manuscript draft; and agreed 
to be accountable in all aspects of the work. Individuals who did not contribute in all of these ways, 
but who did participate, are acknowledged below. We grouped authors into the following four classes 
of approximately equal contributions and randomly ordered authors within each contribution class. 
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Neural networks are most widely associated with supervised machine learning, where the goal is to 
accurately predict one or more labels associated with each data point. However, deep learning 
algorithms can also be used in an exploratory, "unsupervised" mode, where the goal is to 
summarize, explain, or identify interesting patterns in a data set. 
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Transcription factors and RNA-binding proteins are key components in gene regulation and higher-
level biological processes. TFs are regulatory proteins that bind to certain genomic loci and control 
the rate of mRNA production. While high-throughput sequencing techniques such as chromatin 
immunoprecipitation and massively parallel DNA sequencing (ChIP-seq) have been able to 
accurately identify targets for TFs, these experiments are both time consuming and expensive. Thus, 
there is a need to computationally predict binding sites and understand binding specificities de 
novo from sequence data. In this section we focus on TFs, with the understanding that deep learning 
methods for TFs are similar to those for RNA-binding proteins, though RNA-specific models do 
exist []. 

ChIP-seq and related technologies are able to identify highly likely binding sites for a certain TF, and 
databases such as ENCODE [] have made freely available ChIP-seq data for hundreds of different 
TFs across many laboratories. In order to computationally predict transcription factor binding sites 
(TFBSs) on a DNA sequence, researchers initially used consensus sequences and position weight 
matrices to match against a test sequence []. Simple neural network classifiers were then proposed 
to differentiate positive and negative binding sites but did not show meaningful improvements over 
the weight matrix matching methods []. Later, support vector machines (SVMs) outperformed the 
generative methods by using k-mer features [,], but string kernel-based SVM systems are limited by 
their expensive computational cost, which is proportional to the number of training and testing 
sequences. 

With the advent of deep learning, Alipanahi et al. [] showed that convolutional neural network models 
could achieve state of the art results on the TFBS task and are scalable to a large number of 
genomic sequences. Lanchantin et al. [] introduced several new convolutional and recurrent neural 
network models that further improved TFBS predictive accuracy. Due to the motif-driven nature of 
the TFBS task, most architectures have been convolution-based []. While many models for TFBS 
prediction resemble computer vision and NLP tasks, it is important to note that DNA sequence tasks 
are fundamentally different. Thus the models should be adapted from traditional deep learning 
models in order to account for such differences. For example, motifs may appear in either strand of a 
DNA sequence, resulting in two different forms of the motif (forward and reverse complement) due to 
complementary base pairing. To handle this issue, specialized reverse complement convolutional 
models share parameters to find motifs in both directions []. 

Despite these advances, several challenges remain. First, because the inputs (ChIP-seq 
measurements) are continuous and most current algorithms are designed to produce binary outputs 
(whether or not there is TF binding at a particular site), false positives or false negatives can result 
depending on the threshold chosen by the algorithm. Second, most methods predict binding of TFs 
at sites in isolation, whereas in reality multiple TFs may compete for binding at a single site or act 
synergistically to co-occupy it. Fortunately, multi-task models are rapidly improving at simultaneous 
prediction of many TFs' binding at any given site []. Third, it is unclear exactly how to define a non-
binding or "negative" site in the training data because the number of positive binding sites of a 
particular TF is relatively small with respect to the total number of base-pairs in a genome (see 
Discussion). 

While deep learning-based models can automatically extract features for TFBS prediction at the 
sequence level, they often cannot predict binding patterns for cell types or conditions that have not 
been previously studied. One solution could be to introduce a multimodal model that, in addition to 
sequence data, incorporates cell-line specific features such as chromatin accessibility, DNA 
methylation, or gene expression. Without cell-specific features, another solution could be to use 
domain adaptation methods where the model trains on a source cell type and uses unsupervised 
feature extraction methods to predict on a target cell type. TFImpute [] predicts binding in new cell 



type-TF pairs, but the cell types must be in the training set for other TFs. This is a step in the right 
direction, but a more general domain transfer model across cell types would be more useful. 

Deep learning can also illustrate TF binding preferences. Lanchantin et al. [] and Shrikumar et 
al. [] developed tools to visualize TF motifs learned from TFBS classification tasks. Alipanahi et 
al. [] also introduced mutation maps, where they could easily mutate, add, or delete base pairs in a 
sequence and see how the model changed its prediction. Though time consuming to assay in a lab, 
this was easy to simulate with a computational model. As we learn to better visualize and analyze 
the hidden nodes within deep learning models, our understanding of TF binding motifs and dynamics 
will likely improve. 

Promoters, enhancers, and related epigenomic tasks 
Transcriptional control is undoubtedly a vital, early part of the regulation of gene expression. An 
abundance of sequence and associated functional data (e.g. ENCODE [] and ExAC []) exists across 
species. At the same time, studies of gene regulation have often focused on the protein (binding) 
rather than the promoter level [], perhaps due to the ill-defined nature of cis-regulatory elements 
(CREs). A promoter itself can be seen as an assemblage of "active" binding sites for transcription 
factors interspersed by less-characterized and perhaps functionally silent spacer regions. However, 
the sequence signals that control the start and stop of transcription and translation are still not well 
understood, compounded by incomplete understanding of alternative transcripts and the context for 
these alternatives. Sequence similarity is poor even between functionally correlated genes. While 
homologs might be studied for insight, they may not exist or may be just as poorly characterized. 
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While prior (non-deep learning) approaches have made steady improvements on promoter 
prediction, there is little consensus on the best approach and performance is poor. Typically 
algorithms will recognize only half of all promoters, with an accompanying high false positive rate []. 
Methods with better sensitivity generally do so at the cost of poorer specificity. Conventional 
identification of enhancers has leaned heavily on simple conservation or laborious experimental 
techniques, with only moderate sensitivity and specificity. For example, while chromatin accessibility 
has often been used for identifying enhancers, this also "recognizes" a wide variety of other 
functional elements, like promoters, silencers, and repressors. 

The complex nature of CREs and our lack of understanding makes them a natural candidate for 
deep learning approaches. Indeed, neural networks were used for promoter recognition as early as 
1996, albeit with mixed results []. Since then, there has been much work in applying deep learning to 
this area, although little in the way of comparative studies or formal benchmarks. We therefore focus 
on a few recent important studies to outline the state of the art and extant problems. 
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on DNA accessibility datasets, getting a marked improvement on previous methods, albeit still with a 
high false positive rate. The multi-task architecture resembles DeepSEA [], which predicted open 
chromatin regions and histone modifications in addition to TF binding. As noted above, predicting 
DNA accessibility conflates enhancers with other functional sites. Basset also featured a useful 
interpretability approach, introducing known protein binding motifs into sequences and measuring 
the change in predicted accessibility. 



Umarov et al. [] demonstrated the use of CNNs in recognizing promoter sequences, outperforming 
conventional methods (sensitivity and specificity exceeding 90%). While some results were achieved 
over bacterial promoters (which are considerably simpler in structure), roughly similar performance 
was found for human promoters. This work also included a simple method for model interpretation, 
randomly substituting bases in a recognized promoter region, then checking for a change in 
recognition (see Discussion). 

Xu et al. [] applied CNNs to the detection of  
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, achieving incremental improvements in specificity and sensitivity over a previous SVM-based 
approach, and much better performance for cell-specific enhancers. A massive improvement in 
speed was also achieved. Additionally, they compared the performance of different CNN 
architectures, finding that while layers for batch normalization improved performance, deeper 
architectures decreased performance 
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Singh et al.  
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[] approached the problem of predicting enhancer-promoter interactions from solely the sequence 
and location of putative enhancers and promoters in a particular cell type. Performance was 
comparative to state-of-the-art conventional techniques that used the whole gamut of full functional 
genomic and non-sequence data. 

Given the conflation between different CREs, the study of Li et al. [] is particularly interesting. They 
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 could be easily be distinguished, as could active and inactive elements. Perhaps unsurprisingly, it 
was difficult to distinguish 
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In summary, deep learning is a promising approach for identifying CREs, able to interrogate 
sequence features that are complex and ill-understood, already offering marked improvements on 
the prior state of the art. However, neural network architectures for this task need to be 
systematically compared. The challenges in predicting TF binding -- such as the lack of large gold 
standard datasets, model interpretation, and defining negative examples -- are pertinent to CRE 
identification as well. Furthermore, the quality and meaning of training data needs to be closely 
considered, given that a "promoter" or "enhancer" may only be putative or dependent on the 



experimental method or context of identification. Otherwise we risk building detectors not for CREs 
but putative CREs. Most deep learning studies in this area currently predict the 1D location of 
enhancers, but modeling 3D chromatin conformations, enhancer-promoter interactions [], and 
enhancer-target gene interactions will be critical for understanding transcriptional regulation. 
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Evaluation 
There are unique challenges to evaluating 
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As a result, classification of genomic regions based on their biochemical activity results in highly 
imbalanced classification. Class imbalance also arises in other problems we review, such as virtual 
screening for drug discovery. What are appropriate evaluation metrics that account for the label 
imbalance? The classification labels are formulated based on continuous value experimental signals. 
Practitioners must determine an appropriate procedure for formulating binary classification labels 
based on these signals. In addition, the experimental signals are only partially reproducible across 
experimental replicates. An appropriate upper bound for classification performance must account for 
the experimental reproducibility. 

Evaluation metrics for imbalanced classification 
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