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Notes (December 21, 2017)

1. This document is not finalized and will likely be subject to change. Suggestions for
improvements are cordially received via email.

2. Each network should be trained with data for a specific combination of image content
(e.g ., nuclei, microtubules) and image corruption (camera noise, pixel size, microscope
PSF, etc.). Hence, applying trained networks to images that are very dissimilar to the
training data could lead to unexpected results. The pretrained networks provided via
Fiji and Knime are meant to showcase our method on the accompanying example data.

3. Software for generating training data and training of care networks will be released
soon. This will enable all users to employ care on their own image data.
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Supplementary Videos

Supplementary Video 1. Challenges in time-lapse imaging of flatworm Schmidtea mediter-
ranea. Image stacks of RedDot1-labeled, anesthetized specimen were acquired every 2 min
with a Spinning disk confocal microscope (NA = 1.05), at high and low SNR (illumination)
conditions (10% laser, 30ms exposure per plane vs 0.5% laser, 10ms per plane). Whereas in
the high-SNR case the specimen shows illumination induced twitching, the image quality in the
low-SNR case is insufficient for further analysis. Network restoration enables us to recover high-
SNR images from images acquired at low-SNR conditions without twitching of the specimen,
thus providing a practical framework for live-cell imaging of Schmidtea mediterranea.

Supplementary Video 2. Restoration results of low-SNR acquisitions of Schmidtea mediter-
ranea and comparison to ground-truth. Shown are a 3D rendering of the results on a multi-tiled
acquisition (8192× 3072× 100 pixels) and the comparison with ground truth.

Supplementary Video 3. Restoration of low SNR volumetric time-lapses of developing
Tribolium castaneum embryos (EFA::nGFP labeled nuclei). Acquisition was done on a Zeiss
LSM 710 NLO Multiphoton Laser Scanning Microscope with a time-step of 8 min, and stack-
size of a single time-point 760×760×100 pixels. Shown are maximum-intensity projection and
single slices of the raw stacks, the network prediction and the high-SNR ground-truth.

Supplementary Video 4. Joint surface projection and denoising of developing Drosophila
melanogaster wing epithelia. 3D image stacks of the developing wing of a membrane labeled
(Ecad::GFP) fly pupa were acquired with a spinning disk confocal (63×, NA = 1.3) microscope.
We show the projected epithelial surface obtained by a conventional method (PreMosa [1]), the
restoration network, and the projected ground-truth. We applied a random-forest based cell
segmentation pipeline and show segmentation/tracking results, demonstrating vastly improved
accuracy for the restoration when compared to the conventionally processed raw stacks.

Supplementary Video 5. Isotropic restoration of anisotropic time-lapse acquisitions
of hisGFP-tagged developing Drosophila melanogaster embryos. We used the original, pre-
processed data set of [2], acquired with a light-sheet microscope (NA = 1.1) with 5-fold axially
undersampled resolution (lateral/axial pixel size: 0.39µm/1.96µm). The video shows different
axial (xz) regions of a single time-point from both the original (input) stacks and the isotropic
restoration.

Supplementary Video 6. Isotropic restoration of anisotropic dual-color acquisitions of
developing Danio rerio retina. The data was acquired with a Spinning disk confocal micro-
scope (Olympus 60×,NA = 1.1) and exhibits a 10-fold axial anisotropy (lateral/axial pixel
size: 0.2µm/2.0µm); labeled structures are nuclei (DRAQ5, magenta) and nuclear envelope
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(GFP+LAB2B, green). The video shows a rendering of the dual-color input stack and its
isotropic reconstruction.

Supplementary Video 7. Enhancement of diffraction-limited structures in widefield images
of rat INS-1 (beta) cells. The video shows time-lapses of several INS-1 cells, acquired with the
widefield mode of a DeltaVision OMX microscope (63×, NA = 1.43). Labeled are secretory
granules (pEG-hIns-SNAP, magenta) and microtubules (SiR-tubulin, green). Next to the time-
lapse of the widefield images we show the output of the reconstruction networks.

Supplementary Video 8. Enhancement of diffraction-limited widefield images of GFP-
labeled microtubules in HeLa cells and comparison with SRRF (super-resolution radial fluctu-
ations [3]). Images were acquired with a Zeiss Elyra PS.1 microscope in TIRF mode (100×,
NA = 1.46). The video shows the widefield input sequence, the network restoration and the
corresponding SRRF images. Note that the time-resolution of the SRRF image sequence is 20
times less then the network restoration, as 20 times more images have to be processed for the
same restoration quality.

Supplementary Video 9. Visualization of network predictions by sampling from the
predicted distribution. The video shows for two examples (Surface projection of fly wing tissue,
and microtubule structure restoration in INS-1 cells) that drawing samples from the per-pixel
predicted distribution is beneficial for identifying challenging image regions. For each example,
we show successively the raw input, the per-pixel mean of the predicted distribution and random
samples from the per-pixel distributions.
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Supplementary Figures
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Supplementary Figure 1: Restoration of low-SNR images of Schmidtea mediterranea (Pla-
naria). Spinning disk confocal acquisitions of a fixed worm (RedDot1 stained) at 3 different
low-SNR conditions (C1-C3) and a high-SNR condition (ground-truth, GT). Depicted are
insets of the input, the network reconstruction and the high-SNR ground-truth at different
positions and tissue depths (0− 50µm).
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Supplementary Figure 2: (a) Reconstructions for different SNR conditions (C1-C3, top
to bottom) at different tissue depths (0 − 50µm, left to right) and corresponding lineplots.
As SNR decreases with increasing depth, both the input and the reconstruction quality de-
creases.(b) Reconstruction accuracy measured on held out test set (comprising 22 volumetric
stacks for each condition). Shown are normalized root mean squared error (NRMSE, lower
is better) and structural similarity (SSIM, higher is better). We compare the error between
ground-truth vs. raw stacks, the network prediction and a strong denoising baseline (Non-
local-means with parameters tuned to the test set).
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Supplementary Figure 3: Restoration of low-SNR multi-tiled acquisitions of Schmidtea
mediterranea. (a) Comparison of restoration results with the input (low SNR) and ground-
truth. (b) Zoomed inset from region above.
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Supplementary Figure 4: Restoration of low-SNR images of Tribolium castaneum. Spin-
ning disk confocal acquisitions of a developing embryo (EFA::nGFP labeling) at 3 different
low-SNR conditions (C1-C3) and a high-SNR condition (GT). (a) Depicted are insets of the
input, the best Non-Local-means (NLM) denoising result, the network reconstruction and the
high-SNR ground-truth at different positions and tissue depth.(b) Reconstruction accuracy
measured on held out test set (comprising 6 volumetric stacks for each condition). Shown
are normalized root mean squared error (NRMSE, lower is better) and structural similarity
(SSIM, higher is better). Note, that the parameters of the NLM baseline were optimized on
the test-set, which would normally not be possible.
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Supplementary Figure 5: Segmentation comparison of care network restoration (Net-
work) vs. Non-Local-means denoised (NLM) images of Tribolium castaneum. (a) From left
to right: Max projections of fluorescence intensity, segment matching, and Jaccard color-
ing of individual nuclei. Jaccard coloring assigns maximum Jaccard score (see Eq. (2.4))
to each nucleus. The segment matching allows simultaneous depiction of unmatched nuclei
both from the segmentation as well as from ground-truth images. (b) SEG score [4] as a
function of threshold for network restoration and Non-Local-means denoised images. A score
of 1 corresponds to a perfect pixel-wise segmentation. The network and NLM restoration
segmentations have optimal SEG scores of 0.65 and 0.47 respectively. Note that the broader
peak for the network result is beneficial in the default situation when ground-truth is not
available and the user attempts to optimize segmentation quality via visual inspection.(c) A
schematic depicting the bipartite matching criterion for nuclei.
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Supplementary Figure 6: Network architecture used for low-SNR restoration (shown
for 3D inputs). We use an architecture based on [5], but predict a per-pixel distribution
(parameterized by mean and scale) resulting in a 2-channel output. The mean is calculated
as the sum of the input and the internal predictions (residual addition layer near the end).
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Supplementary Figure 7: Joint surface projection and denoising of developing Drosophila
melanogaster wing epithelia. Spinning disk confocal acquisitions of a developing embryo at
3 different low-SNR conditions (C1-C3) and a high-SNR condition (GT). (a) Depicted are
insets of the input, the network reconstruction and the high-SNR ground-truth at different
locations.(b) Reconstruction accuracy measured on held out test set (comprising 26 volu-
metric stacks for each condition). Shown are normalized root mean squared error (NRMSE,
lower is better) and structural similarity (SSIM, higher is better). We compare the error be-
tween ground-truth vs. projected raw stacks, the network prediction and a strong denoising
baseline (Non-local-means with parameters tuned to the test set).
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(a) From left to right (upper row): Surface projected input stack (obtained with Premosa [1]), the
network projection, and the surface projection ground-truth (attained at 6x higher exposure time,
again with Premosa). Bottom row shows the corresponding cell segmentation/tracking results after
applying a standard random-forest based pipeline [6, 7]). Cells that have no corresponding match in
the ground-truth are labeled black.
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(b) Segmentation error vs. ground-truth over time. Both Seg-Score [4] and fraction of correctly
matched cells is improved for the network reconstruction. Note that the simultaneous acquisition of
high exposure ground-truth and the subsequent photo-bleaching leads to impoverished segmentation
results for later time-points on input stacks, but not on the network restorations.

Supplementary Figure 8: Cell segmentation and tracking of a projected time-lapse of
developing Drosophila wing epithelia.

11



Convolution (1, 1)      (1024, 1024, 1)

Add      (1024, 1024, 1)

Lambda      (50, 1024, 1024, 1)

Multiply      (50, 1024, 1024, 1)

Convolution (3, 5, 5)      (50, 1024, 1024, 8)

Maxpooling (1, 4, 4)      (50, 256, 256, 8)

Input      (50, 1024, 1024, 1)

Convolution (3, 3)      (256, 256, 128)

Convolution (3, 3)      (256, 256, 128)

Maxpooling (2, 2)      (256, 256, 64)

Convolution (3, 3)      (128, 128, 128)

Upsampling (2, 2)      (256, 256, 128)

Convolution (3, 3)      (512, 512, 64)

Convolution (3, 3)      (512, 512, 32)

Lambda      (1024, 1024, 1)

Convolution (3, 3)      (1024, 1024, 32)

Upsampling (1, 4, 4)      (50, 256, 256, 8)

Convolution (3, 5, 5)      (50, 256, 256, 8)

Lambda      (50, 1024, 1024)

Permute      (1024, 1024, 50)

Concatenate      (512, 512, 128)

Convolution (3, 3)      (1024, 1024, 32)

Upsampling (2, 2)      (512, 512, 64)

Convolution (3, 3)      (1024, 1024, 32)

Convolution (1, 1)      (1024, 1024, 1)

Convolution (3, 5, 5)      (50, 64, 64, 8)

Convolution (3, 3)      (512, 512, 64)

Convolution (3, 3)      (128, 128, 256)

Maxpooling (1, 4, 4)      (50, 64, 64, 8)

Maxpooling (2, 2)      (128, 128, 128)

Convolution (5, 5, 5)      (50, 1024, 1024, 1)

Convolution (3, 3)      (256, 256, 64)

Convolution (3, 3)      (1024, 1024, 32)

Concatenate      (1024, 1024, 2)

Concatenate      (1024, 1024, 64)

Convolution (3, 3)      (512, 512, 64)

Upsampling (2, 2)      (1024, 1024, 32)

Maxpooling (2, 2)      (512, 512, 32)

Convolution (3, 5, 5)      (50, 256, 256, 8)

Convolution (3, 5, 5)      (50, 1024, 1024, 8)

Concatenate      (256, 256, 256)

Convolution (3, 3)      (256, 256, 128)

Upsampling (1, 4, 4)      (50, 1024, 1024, 8)

Supplementary Figure 9: Network architecture used for joint surface projection and
denoising. The first encoder-decoder part (until “Multiply”-layer) estimates the probability
of a certain pixel to belong to the surface, whereas the later parts restore and denoise the
projected signal.
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Supplementary Figure 10: Isotropic reconstruction of time-lapsed acquisitions of
Drosophila melanogaster taken from [2]. Selected (xz) views from the raw (yet already pre-
processed) acquisitions (5-fold under-sampled in z, top row) and the isotropic restoration
(bottom row). Note that the restoration clearly improves resolution in areas where nuclei are
densely packed.

13



Φ = 0.99Φ = 0.66

Φ = 0.97Φ = 0.72

input (max projection) network (max projection)

input network input network

input network input network

1

2

1 2

x
z

x
z

x
z

x
z

Fourier-SpectrumSignal

Supplementary Figure 11: Isotropic reconstruction of time-lapsed acquisitions of
Drosophila melanogaster taken from [2] (5-fold under-sampled in z). Axial resolution restora-
tion as quantified by analyzing the ratio Φ of axial vs. lateral spectral energy in Fourier space:
Φ = 0.66/0.72 (Input), Φ = 0.99/0.97 (Network). Note that the missing axial information
along the z-axis in Fourier-space is filled up by the restoration.
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Supplementary Figure 12: Comparison of 3D nuclei segmentation of bicubically up-
sampled raw (Bicubic, bottom) and isotropically reconstructed (Network, top) images of
Drosophila embryos. (a) From left to right: Fluorescence intensity, segment coloring of in-
dividual nuclei, and matched (gray) and unmatched (black/red) segments when compared to
manual ground-truth segmentation. The unmatched cells consist of poorly segmented regions
that have no ground-truth counterpart (black) or ground-truth segments that failed to be
segmented (red). Note how the black, undersegmented nuclei fuse along the vertical axis in
the raw segmentation, orthogonal to the detection plane. Isotropic restoration allows accu-
rate segmentations even in regions of the embryo where nuclei are densely packed along the
vertical axis. (b) Drosophila embryo with RFP-tagged histone imaged at 3 hrs. Dark vertical
band shows region of the embryo that was curated for use in the scoring of segmentations.
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Supplementary Figure 13: Segmentation error for isotropically restored (Network) and
bicubically upsampled (Bicubic) images of Drosophila embryos. Shown is the fraction of
unmatched nuclei (out of all 471 ground-truth nuclei) for varying levels of the threshold
t. The lowest error is 0.2% (Network, t = 0.8), and 1.7% (Bicubic, t = 0.95). Note the
wide region over which isotropically restored images produce a lower fraction of unmatched
nuclei relative to bicubically upsampled images. For a visual comparison of the optimal
segmentations see Supp. Fig. 12.
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Supplementary Figure 14: Nucleus (DRAQ5, magenta) and nuclear envelope
(GFP+LAB2B, green) labeled volumes of a developing Danio rerio retina. The volu-
metric stacks exhibit σ = 10.2 anisotropic z sampling. Different (xz) slices for different
stacks/positions are shown, for the input (top row in each sub-panel), the network recon-
struction when training a separate network for each channel (middle) and when training a
network that restores both channels simultaneously (bottom row). The reconstruction quality
of the multi-channel network is visibly superior compared to the single-channel case, showing
that cross-channel information is beneficial for restoration.
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Supplementary Figure 15: Network architecture used for isotropic reconstruction.
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Supplementary Figure 16: Enhancement of diffraction-limited structures in widefield
images. Secretory granules (pEG-hIns-SNAP) and microtubules (SiR-tubulin) in insulin-
secreting rat INS-1 cells. Shown are reconstruction results for 3 different cells, acquired
with DeltaVision OMX microscope in widefield mode. Input images (left columns), network
reconstructions (right columns).
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Supplementary Figure 17: Synthetically generated training data for secretory granules
and microtubules structures. We first generate the ground-truth images (Y) by simulating
granular regions (left) or tracing tubular bundles of different sizes (right) on pixel grids of size
128× 128 and pixel-size 0.08µm. We then simulate the microscopy image (X) by adding low
frequency perlin-noise resembling background fluorescence, convolving with the microscope
PSF, and adding Gaussian and Poisson camera noise.
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Supplementary Figure 18: Evaluating uncertainty of our network ensembles. Given an
interval around each predicted restored pixel value (with size based on ε), we count a success if
the true value is indeed contained in the interval. Furthermore, we compute the confidence of
the ensemble as the probability that the true value will fall into this interval. The predicted
per-pixel distributions are well-calibrated if the accuracy, i.e. the fraction of successfully
predicted pixels, is close to the average confidence. Furthermore, we compare confidence and
accuracy more granularly for subsets of pixels within a certain confidence range. For each of
these subsets, we plot average confidence vs. accuracy, which gives rise to a reliability diagram
(left column); note that we do this for intervals of various sizes as defined by ε. The network
ensemble is well-calibrated if the plotted curves are close to the identity function (dashed,
gray). Additionally, we measure the expected calibration error (ECE), which is essentially the
average (weighted) difference of a curve to the identity function. The middle column shows
the fraction of pixels that fall into each of the confidence ranges. The right column shows the
expected calibration error as a function of interval size ε for ensembles of sizes M = 1, . . . , 5.
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Supplementary Figure 19: Evaluating uncertainty of our network ensembles (continued
from Supp. Fig. 18).
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Tribolium image Planaria image

(a) Network ensemble for Tribolium

Tribolium image Planaria image

(b) Network ensemble for Planaria

Supplementary Figure 20: Two network ensembles applied to two input image stacks,
yielding four different restorations. From top to bottom, we show slices of the input, the
predicted restored image, the entropy of the ensemble, and the ensemble disagreement. We
applied each network ensemble to an in-distribution (ID) image (i.e., an image similar to
those the ensemble was trained on; first and last column) and an out-of-distribution (OD)
image (i.e., an image dissimilar to the training data; two middle columns). Disagreement
(last row) is often substantially higher when an ensemble is applied to an OD input image.
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Supplementary Figure 21: Fiji integration of an example denoising workflow. (a) is a
raw input image, loaded in Fiji. (b) the adequate plugin can be started from Fiji’s menu
Plugins . CSBDeep. (c) Fiji asks the user in how many tiles the input image should be
subdivided for processing (see Section 5 for details). (d) the started CSBDeep plugin shows
progress and status messages during execution of the network. (e) once terminated, the final
result is shown in a separate Fiji window.
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(a)

(b)

(c)

Supplementary Figure 22: Knime integration of an example denoising workflow.
(a) shows the overall structure of a CSBDeep Knime workflow. (b) shows the content
of the ‘Model Execution‘ node, containing the main computation. (c) finally compares the
input and result of our Tribolium denoising network in Knime’s image viewer.
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Supplementary Tables

Experiment Restoration Task Organism Biological structure Microscopy

Planaria Denoising Schmidtea mediterranea Whole worm Spinning-disk confocal
Tribolium Denoising Tribolium castaneum Whole embryo Confocal
Flywing Surface Projection Drosophila melanogaster Epithelium Spinning-disk confocal
Drosophila Isotropic Reconstruction Drosophila melanogaster Whole embryo Light-sheet microscopy
Retina Isotropic Reconstruction Danio rerio Nuclei, Nuclear envelope Spinning-disk confocal
Liver Isotropic Reconstruction Mus musculus Nuclei, Sinusoidal network Confocal
INS-1 cells Structural Enhancement Rattus norvegicus Secretory granules, Microtubules DeltaVision widefield mode
HeLa cells Structural Enhancement Homo sapiens Microtubules TIRF

Supplementary Table 1: Overview of experimental data sets.
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1 Image Restoration with Convolutional Neural Networks

Image restoration, in general, is the problem of reconstructing an (latent) image given a dis-
torted (corrupted) version of it. In the context of fluorescent microscopy, typical distortions
include the effects of camera and photon noise, the blur of the optical point-spread-function
(PSF), the resolution loss due to under-sampling, or the optical aberrations induced by the
heterogeneity of the tissue. The distorted, observed image x can be thought of being the result
of a function x = f(y) (the forward model) applied to the true (latent) image y. The problem
then is to recover y, given x. Typical image restoration tasks with their corresponding forward
models are:

• Denoising: f(yi) = P(xi) + η (with Poisson noise P and camera noise η)
• Deconvolution: f(y) = h⊗ x (with the PSF h)
• Upsampling: f(y) = Sαx (with subsampling factor α)

Although f is often easy to evaluate, the inverse y = f−1(x) is typically hard to compute,
and often it is not even uniquely defined (i.e. there are a multitude of potential latent images).
A classical approach to solve this problem to find the minimizer of a cost function E

ŷ = arg min
y
E(y|x), where E(y|x) = DataTermf (x, y) + RegularizationTerm(y)

consisting of a data term that encourages the restored image to adhere to the forward model
f , and a regularization term that favors solutions based on prior assumptions about the latent
image. Although this approach can work well in many cases, it has major problems. First, the
forward model (and thus the data term) is sometimes not fully accurate by neglecting to model
some sources of image corruption which are either unknown or hard to describe mathematically.
Second, and more important, the regularization term typically encodes rather weak assumptions
about the latent image, often simply favoring smooth images by penalizing strong differences of
neighboring pixels. Third, minimizing the cost function E is often computationally demanding,
resulting in long runtimes or the need for approximations to find solutions more quickly. In fact,
this issue exacerbates the first two problems since data and regularization terms are sometimes
modified to make minimizing E easier.

In this work, we take an alternative approach and directly learn a function g that computes
the restored image ŷ = g(x) ≈ f̄−1(x) for input image x, thereby effectively approximating
the inverse of the true forward model f̄ (which may be unknown). We do on the basis of a
sufficiently large set of pairs (x, y) of corrupted images x and their corresponding true images
y, and by selecting g as a convolutional neural network. Note that this general approach has
already been pursued by [8–10] in different and more specialized contexts.
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1.1 Convolutional Neural Networks

Deep learning [cf. 11, 12] is currently experiencing a renaissance in computer vision and ma-
chine learning. For problems involving images, convolutional neural networks (CNNs) have
demonstrated impressive results for many problems, such as image classification [e.g ., 13]. Fur-
thermore, CNNs have also been shown to work well for image restoration problems (see [9] for
a recent review).

Their main building blocks (called layers) are convolutions (with small filters, e.g . 3× 3× c
pixels for a 2D image with c channels) and non-linear activation functions (which are applied
per-pixel). While activation functions are often fixed, the convolutional filters are typically
learned. A CNN can compute complicated functions (of the local image content) by simply
interleaving convolutional layers and activation functions. Note that internal convolutional
layers of the CNN are also called feature layers, because they often represent certain structural
image features (e.g ., edges or corners).

On top of this, an encoder-decoder architecture is often employed, which has been found to
increase the modeling power of CNNs. To that end, internal feature layers are first compressed
in the encoder part by reducing their spatial resolution with pooling layers (typically by taking
the maximum in a local neighborhood), hoping that this will lead to better (more high-level)
features of the image. The decoder part of the network uses upsampling to successively enlarge
feature layers to eventually yield an output that is typically of the same resolution as the input.
However, using upsampling layers can lead to blurred CNN outputs that cannot delineate object
boundaries well anymore. Using high-resolution feature layers in the decoder part can remedy
this issue. One approach to do this, that we also adopt in this work, is to use so-called skip
connections that concatenate the feature layers from the encoder part with the upsampled
layers in the decoder part [5, 8].

Finally, it has often been shown advantageous (originally by [14]) to not directly learn the
output of interest (such as the restored image), but instead the residual g̃ to the input of the
network, i.e. g(x) = x+ g̃(x).

1.1.1 CNN architecture

Our CNN is based on U-Net [5], which is an encoder-decoder architecture with skip-connections.
In contrast to most CNNs for image restoration, we do not predict a single value per output
pixel, but instead a distribution (please see Section 3 for a detailed explanation). In particular,
we predict the location µ and scale σ of a Laplace probability density function p(z;µ, σ) =

exp(−|z − µ|/σ)/(2σ). Hence, our network output for every pixel i is

g(x)i = p
(
µ(x)i, σ(x)i

)
,

where µ(x) = x + µ̃(x) is defined via a residual term. Although our network produces two
distinct outputs µ(x) and σ(x), most layers are shared (e.g ., Supp. Fig. 6).
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Planaria Tribolium Flywing Retina INS-1 (tubules) INS-1 (granules) HeLa cells

Pooling layers 2 2 3 2 2 2 2
Filter size 3 3 3 5 5 5 5
Init. conv. feat. 32 32 32 32 32 32 32
Topology Supp. Fig. 6 Supp. Fig. 6 Supp. Fig. 9 Supp. Fig. 15 Supp. Fig. 6 Supp. Fig. 6 Supp. Fig. 6
No. of param. 996802 996802 1386347 923876 923010 923010 923010

Input size (16, 64, 64, 1) (16, 64, 64, 1) (50, 64, 64, 1) (128, 128, 2) (128, 128, 1) (128, 128, 1) (128, 128, 1)
Output size (16, 64, 64, 2) (16, 64, 64, 2) (64, 64, 2) (128, 128, 4) (128, 128, 2) (128, 128, 2) (128, 128, 2)
No. of images 17005 14725 16891 24121 5578 2728 5578
Batch size 16 16 16 64 32 32 32
No. of epochs 200 200 100 100 100 100 100
Learning rate 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
Training time 30h 06m 26h 12m 10h 17m 06h 15m 01h 23m 00h 39m 01h 23m

Table 1: Details for network architecture and training. The top part of the table provides de-
tails w.r.t. the encoder-decoder architecture. Specifically, the number of pooling/upsampling
layers (indicating the number of resolution levels), the size of the convolution filters in all
image dimensions, and the number of initial convolution filters, which is doubled after each
pooling layer, and halved after each upsampling layer. It also refers to the figure where the
network topology is shown and lists the total number of network parameters. The bottom
part pertains to learning details, first showing the input size of the training images and the
corresponding output size of the network; note that a network can be applied to different
image sizes after training. Further shown are the number of training images, batch size,
number of epochs, learning rate, and total training time on a single Nvidia 1080 GPU.

1.1.2 CNN training

A CNN is defined via the parameters θ of all its layers (here, mostly the convolution filters)
and we can use gθ ≡ g to make this dependence explicit. Given training data comprised of
T input-output image pairs {(xt, yt)}Tt=1, the parameters are typically chosen by minimizing a
loss function L(θ) that assigns a cost to each prediction gθ(x

t) based on the knowledge that
yt is the correct output. The loss function L(θ) is typically minimized via stochastic gradient
descent. Stochastic means that the parameters are repeatedly updated based only on random
subsets of the training data, called batches. Furthermore, an epoch denotes the partitioning of
the training into batches and processing all of them. The gradient-based parameter updates
are guided by a step size, called the learning rate.

In contrast to common CNNs for image restoration, we learn the parameters of our network
by minimizing a loss function that averages the per-pixel negative log-likelihood of the Laplace
distributions (again, see Section 3 for details). We choose Adam [15], a common stochastic
gradient-based descent method, to minimize the loss.
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2 Restoration Experiments / Online Methods

2.1 Overview

For each of the described experiments, our method consists of the following steps:

1. Generation of training data that reflects both the biological structures and the restoration
task under consideration.

2. Training a neural network (or ensemble of networks) on this training data.
3. Applying the learned model on unseen data of the same kind.

In particular, each care network is trained for a specific combination of image content (e.g.,
nuclei, microtubules) and image corruption (camera noise, pixel size, microscope PSF, etc.).

2.2 Preliminaries

Before we describe our restoration experiments in details, we need to first address a few pre-
liminaries. First, please find the details of the used convolutional neural networks as well as
training specifics in Table 1.

Image normalization. For both training and prediction it is important to normalize the
input images to a common range, which is typically done by scaling the input to a given
minimum and maximum value. Microscopy images, however, often exhibit isolated pixels with
extremely dim and bright values that do not represent the actual image content (dead and hot
pixels of the camera). Hence, we use a simple percentile-based normalization instead, which we
define for an image u as

N(u; plow, phigh) =
u− perc(u, plow)

perc(u, phigh)− perc(u, plow)
, (2.1)

where perc(u, p) is the p-th percentile of all pixel values of u. We typically use values of
plow ∈ (1, 3) and phigh ∈ (99.5, 99.9).

Image quality assessment. Since the restored image ŷ predicted by our network and the
corresponding ground-truth image y typically differ considerably in the dynamic range of their
pixel values, we cannot simply use standard image quality metrics without normalizing the
images first. To that end, we first normalize the ground truth image y by using Eq. (2.1) with
plow = 0.1 and phigh = 99.9. Secondly, we use a transformation ϕ(ŷ) = αŷ + β that scales and
translates every pixel of the restored image based on parameters

α, β = arg min
α′,β′

MSE
(
N(y, 0.1, 99.9), α′ŷ + β′

)
with MSE(u, v) =

1

N

N∑
i=1

(ui − vi)2. (2.2)
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In other words, α, β are chosen such that the mean squared error (MSE) between ϕ(ŷ) and
N(y, 0.1, 99.9) is minimal. Note that α, β can be easily computed in closed-form.

Based on above definitions, we define the normalized root-mean-square error (NRMSE) be-
tween the ground-truth y and the restored image ŷ as follows:

NRMSE(y, ŷ) =
√

MSE
(
ϕ(ŷ),N(y, 0.1, 99.9)

)
. (2.3)

Furthermore, we apply the same normalizations to y and ŷ before we evaluate the structural
similarity index (SSIM) [16], which measures the perceived similarity between two images.

2.3 Image Restoration with Physically Acquired Training Data

2.3.1 Planaria (Denoising)

We first considered the problem of restoring volumetric images from low to very low signal-
to-noise ratio (SNR) acquisitions in the case of the flatworm Schmidtea mediterranea, that is
exceptionally sensitive to even moderate amounts of laser light (Supp. Vid. 1).

To generate the training data, we imaged fixed samples of nucleus-labeled (RedDot1 ) Schmidtea
mediterranea (at different developmental stages) under high SNR conditions using high laser
power and camera exposure time. As it is common nomenclature in many fields, we refer to
the high quality, high SNR acquisitions as ground-truth (GT) data. This is justified since they
do indeed represent the desired quality of our results. Next we imaged the same samples at 3

different levels of reduced laser power and/or reduced exposure times (C1–C3, cf. Table 2):

Condition Exposure (ms) Laser-power (mW)

GT 30 2.31
C1 20 0.12
C2 10 0.12
C3 10 0.05

Table 2: Experimental conditions for Schmidtea mediterranea acquisitions.

We found it crucial that corresponding image stacks are well aligned for all imaging condi-
tions. We thus interleaved the different imaging (laser power) conditions during plane-by-plane
acquisition, thus ensuring properly registered input and ground-truth stacks in all cases. In
total, we acquired 96 stacks of average size 1024× 1024× 400, resulting in ∼ 80 GB of imaged
training data. From the so produced well-aligned pairs of high/low SNR volumes, we extracted
on the order of ∼ 17000 randomly positioned sub-volume pairs (xi, yi) of size 64×64×16 voxels,
which were subsequently used for training and validation of a care network. As network ar-
chitecture we used a residual version of a 3D-U-Net type topology (Supp. Fig. 6, [5]), modified
to predict the parameters of a Laplace distribution (whose mean we use as final prediction, see
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Section 3 for details). The parameters of the training (e.g . batch-size, learning rate etc.) can
be found in Table 1.

After training we applied the network to 22 previously unseen volumes of Schmidtea mediter-
ranea images for each of the 3 different conditions. We consistently observed that the recon-
structed image data was of very high quality, even if the SNR of the input data to be recon-
structed was very low, e.g . being acquired with a 60-fold reduced light-dosage (cf. Main Fig-
ure 1 c, Supp. Figs. 1 to 3 and Supp. Vid. 2). For the reconstruction error between predic-
tion and previously unseen ground-truth we used the NRMSE and SSIM defined before and
compared it to results obtained by a strong baseline denoising method (Non-local-means, see
Main Figure 1 d and Supp. Fig. 2). To ensure the strongest baseline results possible, we tuned
the parameters of Non-local-means (σ, and search-size and -windows) to the test set, thus giv-
ing us an upper bound of its performance. In reality, this would of course not be possible (one
would have to guess the right parameters), thus the improvement of care over that baseline
are likely to be higher in practice.

NRMSE SSIM

Condition Input NLM Network Input NLM Network

C0 0.083837 0.051305 0.03768 0.211759 0.542508 0.707738
C1 0.088184 0.062856 0.039419 0.170711 0.402244 0.708026
C2 0.091028 0.08295 0.047804 0.144146 0.221972 0.609718

Table 3: Restoration accuracy for Schmidtea mediterranea for the 3 different conditions
C1–C3. Shown are NRMSE (lower is better) and SSIM (higher is better) for the input, the
network restoration and the Non-local-means (NLM) denoising baseline.

Prediction time for a volume of size 1024× 1024× 100 was less than 20 seconds on a single
Nvidia Titan X GPU, which allowed for processing of a volumetric 2 hour time-lapse recording
in approximately 10 minutes.

2.3.2 Tribolium (Denoising)

As a second example, we considered live-cell imaging of developing Tribolium castaneum (red
flour beetle) embryos. Again, we used 3 different low-SNR illumination/exposure condition
and a corresponding high-SNR ground-truth condition (Table 4). We interleaved all conditions
during acquisition, thus ensuring that all images were well aligned.
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Condition Laser-power (%)

GT 20
C1 0.1
C2 0.2
C3 0.5

Table 4: Experimental conditions for T. castaneum acquisitions.

In total, we collected 26 training stacks for each condition, acquired from different samples at
different developmental stages. The stack size was ∼ 700×700×50 for each condition, totaling
in 14 GB of training data. For testing, we used 6 different volumes per condition, again acquired
at different developmental stages. Image reconstruction performs well even on extremely noisy
input data with up to 70-fold reduced light-dosage when compared to typical imaging protocols
(cf. Table 4, Supp. Fig. 4, and Supp. Vid. 3). As a baseline denoising method, we again used
Non-local-means denoising tuned on the test set.

NRMSE SSIM

Condition Input NLM Network Input NLM Network

C0 0.095561 0.051896 0.033009 0.170476 0.463562 0.882782
C1 0.089105 0.038485 0.027509 0.22931 0.715711 0.906698
C2 0.076288 0.03259 0.023556 0.366174 0.843744 0.922166

Table 5: Restoration accuracy for Tribolium castaneum for the 3 different conditions C1–C3.
Shown are NRMSE (lower is better) and SSIM (higher is better) for the input, the network
restoration and the Non-local-means denoising baseline.

Segmentation We next exemplify how reconstructed images can benefit subsequent image
analysis and downstream data interpretation tasks. To that end we investigated a simple
thresholding-based workflow to segment nuclei in image stacks of Tribolium embryos. We
perform segmentation based on both network-restored images and images denoised with a
strong baseline and compare the accuracy of the resulting segmentation against ground-truth
manually curated by domain experts.

Tribolium images contain a roughly planar sheet of spherical nuclei from the embryo’s out-
ermost cell layer. The details of sample preparation and image acquisition are described in
Section 4.2. The Tribolium embryos were imaged at four different laser powers as described in
Table 4. We use the highest quality images (GT) for generating the segmentation ground-truth,
and attempt to segment nuclei in denoised versions of the lowest quality image (C1).

Tribolium stacks are pre-processed uniformly for both high intensity acquisitions used in the
ground-truth as well as noisy, low-SNR acquisitions used in the trial segmentations. To that
end, we first upscale the physically undersampled dimension of each image by a factor of 1.5 to
restore isotropic voxel dimensions. We then use the percentile-based normalization N(u; 3, 99)
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as defined in Eq. (2.1) for each image u. Third, we apply non-local means (NLM) denoising
[17] (with σ = 1.0) to the high-SNR image used for ground-truth generation, as well as to the
low-SNR image used as a control in the trial segmentation.

To create the segmentation ground-truth, we first use ilastik [18] to train a pixel-wise random
forest (RF) classifier to distinguish nuclei and background pixels in the high-SNR image, and
perform an initial segmentation after applying Gaussian blur with σ = 1. We curate this
initial segmentation using a combination of segmentation tools from SciPy [19], the 3D volume
rendering software spimagine1, and manual, pixel-wise corrections.

We compare the segmentability of nuclei in network-restored images (denoted as Network)
with non-local means denoised images (denoted as NLM ) using the following simple segmen-
tation pipeline:

1. Threshold the intensities across a range of values ∈ [0, 1]

2. Label connected components of pixels above the threshold as individual nuclei
3. Compare and score the proposed segmentations against the curated ground-truth

To compare the quality of the proposed segmentations, we match nuclei in the threshold-
based segmentation and ground-truth images and compute the standard segmentation score
SEG [4] between all valid nuclei2. We then try a range of threshold values (see Supp. Fig. 5 b)
to maximize SEG for both Network and NLM images. Network and NLM images had optimal
SEG scores of 0.65 and 0.47 respectively. The optimal segmentations are compared visually in
Supp. Fig. 5 a. Here we introduce an additional visual representation of segmentation quality
by coloring nuclei with a brightness proportional to their maximal Jaccard score,

J(i) = max
j∈GT

|Ai ∩Bj|
|Ai ∪Bj|

, (2.4)

where i, j are the indices of nuclei in the proposed segmentation and ground-truth respectively,
and Ai, Bj are their associated pixel sets. Note the overall higher quality of individual nuclei
segmentations of Network as represented by the Jaccard-colored images in the rightmost panel
of Supp. Fig. 5 a as well as their smoother shapes with fewer holes and less rough edges.

2.3.3 Flywing (Joint Surface Projection and Denoising)

Surface projections, e.g . max-projections, are often used to look at biological image data. Here
we wish to jointly project and denoise acquired stacks of a developing epithelium of the fruit
fly Drosophila melanogaster [20–22].

To train a content-aware image reconstruction and projection model we acquired pairs of
high and low SNR image stacks for several conditions (see Table 6). For each condition, we
acquired 180 different 3D stacks (of size ∼ 700× 700× 50), totaling 35 GB of training data.

1https://github.com/maweigert/spimagine
2Visible nuclei with more than half of the volume outside of the image boundary were not included.
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Condition Exposure (ms) Laser-power (%)

GT 240 20
C1 120 2
C2 120 3
C3 120 5

Table 6: Experimental conditions for flywing acquisitions.

As prediction target we used the surface projected 2D ground-truth signal obtained via
PreMosa [1].

Again we extracted ∼ 17000 random 3D patches of size 64 × 64 × 50 from input stacks
and the corresponding patches of size 64 × 64 from the ground-truth 2D projection. For the
composite task of joint projection and denoising, we designed a respective network architecture
that consists of two parts: (i) an image restoration part, similar to the architecture used before,
and (ii) an additional projection subnetwork that specializes on content-aware data projection
(Supp. Figure 9).

To quantify the error we used the same error metrics as before and computed them on a held
out test set (comprising 26 volumes). As baseline we chose again fine-tuned Non-local-means
denoising on the PreMosa projections of the input.

NRMSE SSIM

Condition Input PreMosa+NLM Network Input PreMosa+NLM Network

C0 0.141633 0.116893 0.079895 0.092568 0.256161 0.569576
C1 0.107947 0.074497 0.069053 0.356259 0.566829 0.623217
C2 0.123525 0.088274 0.073256 0.235876 0.462033 0.613001

Table 7: Restoration accuracy for surface projection of developing fly wing of Drosophila
melanogaster for the 3 different conditions C1–C3. Shown are NRMSE (lower is better)
and SSIM (higher is better) for the input, the network restoration and the Non-local-means
denoising baseline.

Segmentation and Tracking To further investigate the restoration quality, we compare the
cell segmentation and tracking accuracy based on the raw low-SNR input images against that
of the restored images from our care network. The high-SNR PreMosa-projected images serve
as the ground truth in this analysis.

First, the Trainable Weka Segmentation Fiji plugin [6] is used for binary segmentation
of membrane and background regions. For each set of images we generate training data by
manually labeling 30 cells (membrane contour and corresponding non-membrane region inside).
We train a random forest classifier with 200 trees and 2 random features per node. The features
used for training are: Gaussian blur, Hessian, Anisotropic diffusion, Lipschitz, Sobel filter,
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Difference of Gaussians, Bilateral and Kuwahara. The trained classifier yields probability maps
indicating the likelihood of a pixel to be a part of a cell membrane.

We continue processing these probability maps with Tissue Analyzer [7], a tool for tracking
and segmentation of cells in 2D epithelia. Here, the probability maps are skeletonized, refined,
segmented and tracked. This yields images with color-coded cell identities. Note that the
segmentation of the ground-truth images is manually curated to correct all visible inconsisten-
cies and thus provide a good baseline. Since segmentation and tracking errors are often hard
to identify, the segmentation ground-truth is actually not completely error-free, although it is
significantly more accurate than the uncorrected version.

Our test data set is a time-lapse where rather strong photo-bleaching occurs, hence images
of later time-points exhibit much worse image quality than earlier ones. Consequently, we also
expect segmentation quality to decrease over time, which we quantify with the SEG score. For
each frame we compute the SEG score based on the raw and restored images with respect to the
ground-truth (see Supp. Fig. 8). The score of the network-based segmentation (gt/network)
decreases substantially more slowly than the one based on the raw input image (gt/input),
indicating that the network restoration can meaningfully improve the signal quality for further
analysis.

We provide an additional visual representation of the data to support this idea. Based on the
SEG score we re-color the cell identity maps such that the matched segments have the same color
across all images and the segments without a match are colored black. This helps to visually
evaluate the segmentation and tracking quality by estimating the abundance of unmatched
(black) segments (Supp. Fig. 8). Overall, when using our care-based reconstruction, we find
that imaging with 6–10 less exposure time (without changing laser power) has no serious effects
on the quality of segmentation and tracking. This potentially allow us to image 6–10 times
faster, thus increasing temporal resolution by the same factor.

2.4 Image Restoration with Semi-synthetic Training Data

The main reasons for anisotropy in microscopy data are (i) the inherent axial elongation of the
blur-inducing optical point spread function (PSF) of most microscopes, and (ii) the often re-
duced axial sampling due to considerations regarding image acquisition-time and photo-toxicity.
As this anisotropy is intrinsic to acquisitions on most microscopy setups3, the strategy for train-
ing data generation we used before cannot be readily applied (as isotropic ground-truth cannot
be acquired). To generate semi-synthetic training data in this case, we exploit the fact that
cellular and sub-cellular structures in most biological samples are present in diverse orienta-
tions, and that the mentioned physical process leading to image anisotropy is well understood
and can be modeled in in-silico.

Specifically, we proceeded as follows: For a given anisotropic volume g, the PSF of the micro-
scope h and the axial up-sampling factor σ, we first compute for each volume g a corresponding

3Notable exceptions are isotropic multi-view light-sheet microscopy [23] or 4π-confocal microscopy [24]

38



volume p that is laterally (i) blurred by a rotated version of the point spread function h and
(ii) down-sampled by σ. This process takes high resolution lateral slices (xy) and computa-
tionally applies the same distortions usually introduced by a microscope in axial slices (xz and
yz). The result are image pairs containing the same structures, but exhibiting once lateral res-
olution and once axial (poor) resolution. Next, we sample these pairs of real and synthetically
generated image pairs and use those smaller samples to train a network to restore isotropic
resolution (Main Figure 3 a). The penultimate step is to apply the resulting neural network
model on all lateral slices (xz/yz) of raw image volumes. The isotropically reconstructed signal
is finally computed by taking the average of the two corresponding voxel intensities retrieved
from two network predictions for reconstructed xz and yz slices.

2.4.1 Drosophila (Restoration of Anisotropic Volumes)

Here we considered live imaging of developing histone-labeled Drosophila melanogaster embryos
imaged using a light-sheet microscope [2]. Note that this data set was already processed [2],
but still exhibited an anisotropic PSF (4x) and axial sub-sampling (5x) that translated into a
combined 4–6 fold decrease in axial resolution (Main Figure 3 b). We followed the training data
strategy explained before, using a theoretical PSF for the given microscope parameters and the
given sub-sampling rate. Training was performed on patches of size 128× 128 pixels, sampled
from 15 equally spaced time-points during development (between embryo cellularization and
germband retraction). The final number of use patches was ∼ 10000. The network architecture
and used training parameters are shown in Supp. Fig. 15 and Table 1. Main Figure 3 b
shows that the network prediction appear isotropic and the distinctive pattern of crowded
nuclei can be clearly seen. To quantify the quality of this image restoration, we computed the
spectral energy of the signal in the Fourier-domain (Supp. Fig. 11) along the axial and lateral
dimension and found that the network restored previously absent frequencies along the axial
dimension without altering the spectral components along the lateral dimensions. Specifically,
we calculated the spectral isotropy ratio Φ of the axial vs lateral spectral energy and found that
the restored volume achieved higher spectral isotropy ratio Φ = 0.99 than the raw volumes
Φ = 0.66 (Supp. Fig. 11).

Segmentation In addition to visual and spectral inspections, we evaluated our network-
based isotropic restoration for improving the accuracy of nuclei segmentation. To that end,
we compare the accuracy of the network-based segmentation against that based on images
upsampled with bicubic interpolation.

Note that the Drosophila images were used were from a developing embryo during the 14th

mitotic cycle – roughly three hours after egg laying – just before the onset of gastrulation. The
alignment of the embryo with the microscope’s detectors defines the relationship between the
embryo’s body axes and the x, y, and z dimensions of the image. The undersampled spatial
dimension orthogonal to the detection plane is assigned to the z image axis and corresponds
to the dorsal-ventral body axis of the embryo. The (x, y, z) size of a single voxel in our initial
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anisotropic image is (0.40, 0.40, 2.0) µm, and after applying the network the full pixel size of the
image is (528, 1352, 536). We crop the image along the anterior-posterior axis, y, taking slices
[600, 800), and then again in the middle of the bilaterally-symmetric left-right axis, x ∈ [0, 270),
giving us a region containing approximately 470 nuclei (see Supp. Fig. 12 b).

We used ilastik [18] to create ground-truth nuclei segmentations, training a two-class pixel-
wise classifier to separate nuclei from background using all features with kernel width σ ≥ 2,
and performing initial segmentations after applying Gaussian blur with σ = 1. We curated this
initial segmentation with a variety of segmentation tools including SciPy [19], spimagine, and
manual, pixel-wise corrections.

We compare the segmentability of network-restored images (Network) with bicubically up-
sampled fluorescence intensity images (Bicubic) using the following simple segmentation pipeline:
First, for both Network and Bicubic images we train a pixel-wise random forest (RF) classifier
using ilastik with all available 3D features and all kernel widths σ ≥ 2. This is done once using
Network images as training data and a second time using the corresponding Bicubic images.4

To ensure a fair comparison, we use the same set of approx. 2000 labeled pixels to train each
classifier. Then, for both Network and Bicubic images we:

1. Use the appropriate pre-trained RF to generate a probability map of the image
2. Threshold the probability map across a range of values
3. Label connected components of pixels above the threshold as individual nuclei
4. Score the proposed segmentation against manually generated ground truth

To compare the quality of the proposed segmentations, we match nuclei in the threshold-
based segmentation and ground-truth images and compute the fraction of unmatched nuclei as
a measure of segmentation error (denoted by ERROR, see Eq. (2.5) below). The matching is
created from the proposed segmentation and ground-truth as follows:

1. Build a directed, bipartite graph between nuclei in the proposed segmentation and the
ground-truth with an edge from segment A to segment B if (and only if) more than 50%
of the voxel volume of A falls within the volume of B. Note that this is the same matching
criterion as used in the SEG segmentation score.

2. Identify A and B as a matching pair if (and only if) A points to B and B points to A.
3. Compute the fraction of unmatched nuclei as

ERROR =
UnmatchedSeg + UnmatchedGt

GT
, (2.5)

where UnmatchedSeg denotes the number of nuclei in the proposed segmentation with
no match in the ground-truth, UnmatchedGt denotes the number of nuclei in the
ground-truth with no match in the proposed segmentation, and GT denotes the number
of nuclei in the ground-truth.

4Note that the RF used in the creation of the ground-truth is separate from the ones used for generating the
Network and Bicubic trial segmentations. No data from either the Network or Bicubic test images was included
in training the RFs used in the test segmentations.
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We then search over a range of threshold values (see Supp. Fig. 13) to minimize this error
measure for both Network and Bicubic images, and the optimal segmentations are compared
visually in Supp. Fig. 12 a. The network-restored images produce more accurate segmentations
at every threshold level, and have a better optimal ERROR value of 0.21% as compared to
1.7% obtained with Bicubic images. Additionally, when considering correctly matched nuclei,
Network produces visually more accurate shapes, with fewer holes and smoother less ragged
boundaries. Finally, note the tendency of Bicubic segmentation to make mistakes by fusing
nuclei in the vertical direction along the axis of upsampling despite the efforts to separate these
nuclei via the pixel-wise random forest classifier.

2.4.2 Retina (Restoration of Anisotropic Volumes)

Here we apply care to multi-channel acquisitions of the developing retina of Danio rerio (ze-
brafish) embryos (see Main Figure 3 c). This system is an important model of vertebrate organ
formation, displaying diverse phenomena of cell migration and coordinated morphological tissue
changes [25, 26]. The analysis of cell specific migration patterns relies on the correct tracking
and segmentation of individual cells, both directly affected by the attainable volumetric resolu-
tion. The study of spatial neuron reorganization during optical cup formation, for example, is
currently only possible for sparsely labeled subsets of cells [27]. Since the anisotropy is a prime
cause for automated segmentation methods to fail, our method is an important step towards
solving such issues and will help to analyze ubiquitously labeled tissues.

For generating training data we acquired 5 volumes of the developing optical cup using a
multi-color labeling of nuclei (DRAQ5) and the nuclear envelope (GFP-tagged LAB2B). To
test whether reconstruction was possible even for generously spaced z stacks (a large σ), we
chose stacks with an axially under-sampling factor of σ = 10.2. We extracted lateral patches
as before and applied the corresponding PSF and subsampling model, yet always keeping the
information of both image channels. In total we used ∼ 25000 patches of size 128× 128. The
network architecture is shown in Supp. Fig. 15.

After training, the network learned to jointly predict both channels (see Main Figure 3 c,
Supp. Fig. 14 and Supp. Vid. 6). An interesting observation is, that areas in which one channel
showed a higher level of distortion, both channels where recovered similarly well. This means
that the network leveraged on learned correlations between the channels and uses this cross-
channel prior during image reconstruction (see Supp. Fig. 14).

2.4.3 Liver (Restoration of Anisotropic Volumes)

Here we used volumetric images of mouse liver tissue (see Main Figure 3 d). On a tissue
level, the liver consists mainly of protein-producing hepatocytes that exchange molecules with
complex three dimensional tubular networks5 which are responsible for transport of blood into,
and bile out of the organ [28]. Imaging and analyzing this organ and its complex structure,

5These tubular networks are the sinusoidal network and the bile canaliculus.
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however, poses two main challenges: (i) The sheer size of the tissue (∼ 1mm3) requires very
fast, tiled imaging, and (ii) building size- and shape-preserving models of structures contained
in the tissue require isotropic image resolution. This is particularly true for tubular structures
bearing small radii, e.g . the bile canaliculi.

As before, we acquired 8 stacks of mouse liver using a multi-color labeling of nuclei (DAPI)
and the sinusoidal network (FLK-1). Again we chose a rather large axially under-sampling
factor of σ = 8. Stack-sizes were ∼ 750 × 750 × 50 and we extracted ∼ 15000 patches of size
128× 128 from the given body of data.

We found that our method, due to it operating on 2D slices, works best for 3D or 2D
structures (nuclei, membranes, sheets) and less well for 1D structures, which poses a limitation
to certain biological structures. Further, it might be less effective for genuinely anisotropic
biological tissues, such as strongly stratified layers of cells with a fixed, global elongation of
membranes along one dimension.

2.5 Image Restoration with Synthetic Training Data

We finally consider the case, when neither real biological ground-truth nor the real image
degradation process is experimentally accessible, but a synthetic generative model of both the
structures and the image degradation process is available. This is true, for example, when
using conventional widefield microscopy to image biological structures that are smaller than
the diffraction limit but whose physical properties are well known, such as microtubules. Its
main idea is to synthetically create ground-truth images that are realistic representations of the
structures to be examined, and create synthetically degraded microscopy images via simulation
of the imaging process. Since the creation of realistic ground-truth structures is a complex task
in its own right [29–31], this training regime works best in cases when a simulation pipeline is
already available or when the structures to be synthesized are not too complex.

2.5.1 INS-1 cells (Structural enhancement beyond the diffraction limit)

To test this approach we first considered the dynamics of insulin secretory granules (SG) and
filamentous microtubule-networks (MTs) in insulin-secreting beta-cells (INS-1). The role of
MTs in insulin SG exocytosis has been heavily debated recently [32] and high resolution live-
cell imaging is crucial for understanding the function of the MT network therein. Due to its
resolution limit, widefield imaging only allows for restricted insights into this process. Live-cell
super-resolution imaging (e.g . SIM), on the other hand, requires high laser power resulting in
quick photo-bleaching of the fluorescent signal.

Synthetic tubulin: For creating artificial images of a single microtubule structure, we first
simulate two-dimensional trajectories {xn}n∈N on a pixel grid, with randomly changing ori-
entation and given maximal curvature κmax, mimicking the physical stiffness properties of
microtubules (e.g. having a non vanishing persistence length). To render the computation con-
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ceptually easier, we will describe a point in the Euclidian plane as given by a complex number
xn ∈ C and regard its real and imaginary parts as the corresponding coordinates in R2. For
that we first generate a random walk on the curvatures κn ∈ C:

κn = exp (2πi · clipκmax
[κ0 +Wn(dκ)]), Wn(dκ) ∼

n∑
i

N (0, dκ)

which we successively sum up to yield velocities and finally the trajectory itself:

vn = v0 exp (2πi ·
n∑
i=0

κi) xn = x0 +
n∑
i=0

vi

Many of these single tubules trajectories are then rasterized on a pixel-grid of given pixel-
size to yield the final, ground-truth image (Supp. Fig. 17). To synthetically generate the
corresponding widefield image, we simulate auto-fluorescence by adding low-frequency perlin
noise, blur the result with the PSF of the microscope (we use the theoretical PSF for the
respective NA) and add Poisson and Gaussian noise, mimicking camera noise (Supp. Fig. 17).

Synthetic granula: To simulate ground-truth of granular objects, we use clipped perlin noise
and whose intensity we vary randomly. The corresponding widefield images are simulated like
for tubulin (Supp. Fig. 17).

In total, we created ∼ 8000 synthetic patch-pairs of size 128 × 128. We finally trained
a network to invert this degradation process and applied it on the original widefield images
(Supp. Fig. 15). As can be seen in Main Figure 4 b and Supp. Fig. 16, this approach allows
to restore the tubular signal that are in line with the expected structures, as inferred from the
deconvolved result.

2.5.2 HeLa cells (Structural enhancement beyond the diffraction limit)

Here we aim to validate the accuracy of our approach against super-resolution imagery of
microtubules. For that, we used a dataset of widefield images of GFP-tagged microtubules,
with the corresponding super-resolution images reconstructed via SRRF (super-resolution radial
fluctuations [3]). We created training data as described (while adapting the experimental
parameters, such as pixel size and PSF), in total ∼ 5000 synthetic patch-pairs of size 128 ×
128. We then compared our reconstruction with the output of SRRF. As can be seen in
Main Figure 4 c, both super-resolution results and the network reconstruction were able to
recover relevant microtubule structures that are indistinguishable in the raw images. It is
worth noting, however, that the input of SRRF consisted of 200 consecutive frames of widefield
images (not shown), whereas our result is based on a single image obtained from averaging
5− 10 widefield frames.
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3 Reliability of Image Restoration

It is crucial in science to be able to trust made observations and acquired experimental data.
If the reliability of data cannot be established, subsequently drawn conclusions are obviously
prone to error. However, the reality of modern microscopy is that image quality often has to
be intentionally compromised to be able to capture biological phenomena (as illustrated by the
design-space tetrahedron mentioned in the main paper).

Hence, restoring images from incomplete and corrupted observations is important. However,
such restored images will not be perfect, and it would be very desirable to provide scientists
with a measure of uncertainty. While this has also been the case in the past, very few methods
do actually report uncertainty of their results. One reason for this may be that previous
methods often made rather weak assumptions about the restored data and thus – while limiting
their effectiveness – exhibited failure cases that could more easily be noticed and corrected by
scientists.

We believe this is becoming increasingly infeasible with the advent of more powerful data-
adaptive methods, such as those used here based on neural networks6. These methods learn
very effectively how to adapt to the data, thereby making stronger assumptions about the
restored images. While this is the reason for their improved restoration quality, it also poses
the risk to produce mistakes that look very realistic and cannot be easily detected by the
scientist. Although this issue is not restricted to biological images, it is often more important
here than in the fields of computer vision and machine learning, where most of these powerful
data-adaptive methods are being developed. It can be argued that the bulk of computer vision
research is currently driven by standardized benchmarks, where many researchers compete
to improve results for an agreed-upon problem on the exact same set of test images. The
evaluation protocols for these benchmarks typically do not take prediction uncertainty into
account, thereby providing no direct incentives for researchers to develop methods that quantify
their own limitations. Nevertheless, there has been some work on assessing the reliability and
uncertainty of neural networks, which we adopt and extend in this work.

We are mainly interested in two issues, which we will subsequently discuss in more detail in
Sections 3.1 and 3.2, respectively:

1. First, we want to have a measure of uncertainty for every pixel in the image. To that
end, we employ models that predict a probability density function for every pixel, instead
of just a scalar value, as is common. We empirically validate that our uncertainties are
well-calibrated. Apart from being important to the scientist to draw conclusions, the
per-pixel distributions of the restored image may be useful in subsequent tasks, such as
segmentation or tracking.

2. Second, we want to identify (parts of) images where the results of our trained models
may not be trustworthy. This can occur on challenging (e.g ., low signal-to-noise ratio)

6We use the terms model and (convolutional neural) network interchangeably in this section.
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input images or when a model is applied to an image that is very different compared to
the data it was trained on.

We end with a self-contained discussion and validation of the two aforementioned issues in
the context of our learned models in Section 3.3. A reader not interested in (technical) details
may directly skip to this section.

3.1 Modeling Uncertainty

There can be many sources of uncertainty in practical applications. However, for the purpose
of modeling, we think it is useful to distinguish between aleatoric and epistemic uncertainty
[cf. 33].

Aleatoric uncertainty refers to intrinsic uncertainties that are inevitable. For example, even
if the sample under the microscope does not change, the microscope’s camera will never capture
the exact same image twice due to the inherently random process of collecting photons. The
uncertainty of this noisy observation process cannot be reduced for a given acquisition config-
uration (e.g ., laser power and exposure time). Hence, instead of a single value, we can predict
a distribution that captures this intrinsic uncertainty.

Epistemic uncertainty, on the other hand, refers to sources of uncertainty that could be re-
duced if additional information or observations were available. Concretely, we want to capture
the uncertainty of choosing an image restoration model (specified through its parameters). Intu-
itively, there is high model uncertainty if only little training data is available. This uncertainty
can be decreased by collecting additional data.

3.1.1 Aleatoric uncertainty

Let use first consider a typical scenario for image regression with a convolutional neural network
(CNN), represented as a function gθ with model parameters θ. The predicted output image
ŷ = gθ(x) is obtained from input x. Based on training data comprised of input-output images
{(xt, yt)}Tt=1, the model parameters are chosen by minimizing a loss functions L(θ) based on a
per-pixel distance function. A common choice is the mean squared error (MSE)

Lmse(θ) =
1

T

1

N

T∑
t=1

N∑
i=1

(
yti − gθ(xt)i

)2
, (3.1)

where N denotes the total number of pixels of an image.
It is well-known that training a model to minimize a squared error can be interpreted as

maximizing the likelihood of a Gaussian distribution [e.g ., 34, 35]. Here, minimizing Eq. (3.1)
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is equivalent to maximizing the likelihood

Lhomoscedastic
gauss (θ) =

T∏
t=1

N∏
i=1

pgauss
(
yti ; gθ(x

t)i, σ
)

with (3.2)

pgauss(z;µ, σ) =
1√

2πσ2
exp

(
−(z − µ)2

2σ2

)
(3.3)

of a fully-factorized probabilistic graphical model [cf. 36] where gθ(x) specifies the per-pixel
location parameters (i.e., means) of univariate Gaussian distributions pgauss with shared scale
parameter (i.e., standard deviation) σ. Learning θ by minimizing Eq. (3.1) is indeed equivalent
to maximizing Eq. (3.2):

arg max
θ

Lhomoscedastic
gauss (θ) = arg min

θ
− logLhomoscedastic

gauss (θ) (3.4)

= arg min
θ

T∑
t=1

N∑
i=1

(
yti − gθ(xt)i

)2

2σ2
+ log

√
2πσ2 (3.5)

= arg min
θ

Lmse(θ) (3.6)

Since σ is constant and not learned, it does not play a role and can be dropped from the
objective function. We could improve on this by also learning σ, but it is crucial to understand
that a shared scale parameter σ assumes the same amount of noise or uncertainty for every
image pixel (referred to as homoscedastic in statistics). However, a more realistic and flexible
approach is to use a different σ for every pixel (called heteroscedastic), allowing the model to
express a tailored uncertainty for every pixel.

Nix and Weigend [34] already proposed over two decades ago to learn a neural network that
predicts pixel-adaptive scale parameters σθ(x), which has recently been adopted in the context
of deep learning [33, 37, 38]. We follow this here and learn CNNs that predict both location
µθ(x)i and scale σθ(x)i parameters7 for every pixel with i = 1, . . . , N . Instead of pgauss, we
choose a Laplace distribution

plaplace(z;µ, σ) =
1

2σ
exp

(
−|z − µ|

σ

)
, (3.7)

which we empirically found to work much better for our image restoration applications8. Hence,
the output of our CNNs

gθ(x)i = plaplace
(
µθ(x)i, σθ(x)i

)
(3.8)

7We ensure σθ(x)i > 0 by using a softplus activation function in the respective layer of the CNN.
8In principle, we could use any parametric (normalized) probability density function here, given the technical

condition that it should be easy to compute and differentiate. For example, Bishop [35] proposed to use a mixture
of densities to model multi-modal outputs.
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is now a Laplace distribution for every pixel i. We learn the model parameters θ by minimizing
the loss function

Llaplace(θ) =
1

T

1

N

T∑
t=1

N∑
i=1

|yti − µθ(xt)i|
σθ(xt)i

+ log σθ(x
t)i, (3.9)

which is equivalent to maximizing the likelihood function

Lheteroscedasticlaplace (θ) =
T∏
t=1

N∏
i=1

plaplace
(
yti ;µθ(x

t)i, σθ(x
t)i
)
. (3.10)

Equation (3.9) is related to the commonly used mean absolute error (MAE) loss, but with
the crucial difference that we learn per-pixel scale parameters σθ(x), which have already been
interpreted by Kendall and Gal [33] as weights that can attenuate the cost of making a mistake in
the location parameters µθ(x). For each pixel individually, the model can essentially interpolate
between two extremes to minimize Eq. (3.9): (1) ideally, accurate output prediction µθ(x)i → yi

with low uncertainty, i.e. small σθ(x)i → 0, and (2) high uncertainty, i.e. large σθ(x)i � 0 if
an accurate output prediction is not possible, i.e. |yi − µθ(x)i| � 0. If σθ(x)i is large, then the
cost of predicting an incorrect value µθ(x)i is diminished, which comes at a greater expense for
a large value of σθ(x)i. On the other hand, the cost for σθ(x)i can be reduced by making it
small, which leads to an amplification of a mistake in µθ(x)i.

Predicting scale σθ(x) in addition to location µθ(x) parameters and training the model with
the loss function from Eq. (3.9) are minor changes for typical CNN regression models and can
easily be implemented. Please note that we do not need ground truth labels for the scale values
σθ(x), which allows to train on existing datasets.

After a model has been trained, we can apply it to new images to obtain per-pixel Laplace
distributions gθ(x)i according to Eq. (3.8). However, most applications expect a restored image,
i.e. a single value ŷi per pixel instead of an entire distribution. To that end, we use Bayesian
decision theory [cf. 39] to compute point estimates from each distribution gθ(x)i. Since many
common image quality metrics (e.g ., RMSE9 and PSNR10) are based on squared errors, we
compute each pixel of the restored image via aminimum mean squared error (MMSE) estimator,
i.e. as the expected value of the corresponding Laplace distribution, which is simply its location
parameter:

ŷi = E
[
gθ(x)i

]
= µθ(x)i. (3.11)

By predicting each pixel of the restored image according to Eq. (3.11), we find that we can
achieve similar results in terms of MSE as compared to a model that was specifically trained
with an MSE loss (Eq. (3.1)). In other words, we do not suffer a substantial decrease in MSE
performance by predicting a distribution instead of directly a scalar value.

9Root-mean-square deviation:
√
MSE

10Peak signal-to-noise ratio: 20 · log10(MAXy)− 10 · log10(MSE)
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3.1.2 Epistemic uncertainty of model parameters

As discussed above, we model aleatoric uncertainty by predicting a probability distribution
for every pixel of the restored image, instead of just a scalar value. However, we select our
CNN model by choosing a single parameter vector θ that (approximately) minimizes Eq. (3.9),
hence we do not model any uncertainty of the model parameters θ. This is less of a problem
when training data is abundant (and we assume that Eq. (3.9) can be minimized accurately),
resulting in low epistemic uncertainty that may be disregarded. On the other hand, modeling
the uncertainty of model parameters can be crucial when little data is available.

To that end, a Bayesian approach uses a distribution over model parameters, which has also
been done in the context of neural networks [40, 41]. Unfortunately, making predictions with
a Bayesian approach is often difficult and slow, since predictive inference needs to compute
expectations over the distribution of parameters. In practice, these expectations are typically
approximated by drawing samples from the distribution or with variational inference [cf. 42],
which uses distributional approximations. Although recent work has proposed more efficient
approximate inference methods in the context of deep learning [43, 44] based on extensions
of Dropout [45], we do not use them here. Despite being much more practical than earlier
Bayesian neural networks, they require changes to the model architecture and the selection of
additional hyper-parameters.

Instead, we follow the non-Bayesian approach of Lakshminarayanan et al . [37] and simply
use an ensemble of models to capture some of the epistemic uncertainty with respect to the
parameters of the model. To that end, we independently train11 M identical models on the
same data that only differ12 through their learned parameters θm. The per-pixel output of our
CNN model is now a Laplace mixture density (see Fig. 1 for an example)

gΘ(x)i =
1

M

M∑
m=1

plaplace
(
µθm(x)i, σθm(x)i

)
(3.12)

with Θ = {θm}Mm=1, which captures both aleatoric and epistemic uncertainty. In contrast to [37],
we do not approximate the ensemble prediction of Eq. (3.12) with a simpler density function
for ease of use.

We still use an MMSE estimator to predict each pixel of the restored image, but replace
Eq. (3.11) with the expected value of the ensemble mixture, which is also easy to compute as
the average of the location parameters of the ensemble members:

ŷi = E
[
gΘ(x)i

]
=

1

M

M∑
m=1

µθm(x)i. (3.13)

In our experiments with available ground-truth for comparison, we find that the image
restoration quality obtained from an ensemble is on average typically only slightly better than

11In contrast to [37], we do not use adversarial training [46].
12Due to random parameter initialization and stochastic gradient-based optimization.
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that of the best member of the ensemble. Hence, it may not be crucial to model epistemic
uncertainty, which may be due to a sufficient amount of training data available to us. As
a result, just using a single model with M = 1 is typically good enough to achieve high-
quality restoration results. However, we find that using an ensemble is very useful to identify
problematic image regions. We will discuss this in Section 3.2.

3.1.3 Validation and visualization

We just discussed above how we address the issue of uncertainty, i.e. we train an ensemble of
independent models gΘ(x) that together yield for each pixel a probability distribution in form
of a mixture model (Eq. (3.12)). Furthermore, we obtain the restored image ŷ via Eq. (3.13)
by computing the per-pixel expected values of the mixture distributions.

A quantitative evaluation of an image restoration method is typically done by assessing the
quality of the restored image, for example by simply computing the MSE between the ground
truth value y and the predicted restored image ŷ. While we also do that (e.g ., Supp. Fig. 2), we
want to go beyond that and also validate that our predictive uncertainties are well-calibrated,
i.e. that the distributions gΘ(x)i are accurate.

One common measure that actually takes the whole distribution into account is the likelihood
function that we already introduced in Eq. (3.10) in the context of model training. Learning
the model parameters by maximizing the likelihood should yield a well-calibrated model. To
check this after training, we could then evaluate the likelihood13 of our model ensemble

L(Θ) =
V∏
s=1

N∏
i=1

1

M

M∑
m=1

plaplace
(
ysi ;µθm(xs)i, σθm(xs)i

)
(3.14)

based on a validation set of image pairs {(xs, ys)}Vs=1. While likelihoods are very useful to
do relative comparisons between several models, they do not provide an absolute calibration
measure that is easy to interpret. Also note that instead of the likelihood, the same discussion
applies to any other proper scoring rule [cf. 47].

To obtain an absolute measure of calibration, we take an alternative approach by adopting
and extending methods from the context of classification [cf. 48–51]. The main idea is that
the calibration of a classifier can be evaluated by comparing the probability assigned to the
predicted class (for a given input) with the frequency of success based on knowledge of the true
class for each input.

More concretely, let {(xs, ys)}Vs=1 denote a set of (validation) data in the context of clas-
sification, where each label ys ∈ C belongs to a finite set of discrete classes C = {c1, c2, . . .}.
Consider a classifier φ(z;x) that assigns a (normalized) probability mass φ(z = c;x) to each
class c ∈ C for an input x. As is typical, the class is predicted as ŷ = arg maxc φ(z = c;x) with
the associated probability r̂s = φ(z = ŷ;x).

13Log-likelihood computed in practice, i.e. the logarithm of Eq. (3.14).
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ŷi − ε ŷi ŷi + ε

g Θ
(x

) i

Figure 1: Example of a mixture of Laplace probability distributions gΘ(x)i (black, solid),
obtained as the average of M = 5 individual probability densities gθm(x)i (gray, dashed).
Further shown are the expected value ŷi = E

[
gΘ(x)i

]
of the mixture (black, dashed) and the

area under the mixture distribution for the interval [ŷi − ε, ŷi + ε] (blue, shaded).

We can now denote the accuracy 1
V

∑V
s=1 1[ys = ŷs] as the fraction of cases where the

classifier successfully predicted the correct class14, and refer to confidence 1
V

∑V
s=1 r̂

s as the
average of the probabilities associated with each of the predicted classes. Hence, accuracy and
confidence should be similar if the classifier is well-calibrated.

Furthermore, we can compare confidence and accuracy more granularly for subsets of data
with different average confidences. To that end, all samples xs are first put into different groups
based on an ordered partition of their associated prediction probabilities r̂s, for example with
K = 10 groups and thresholds τ = [0.0, 0.1, . . . , 0.9, 1.0] with group k being all samples with
r̂s ∈ (τk, τk+1]. Accuracy and confidence are then computed separately for the samples of each
group and can be plotted against each other (cf. Supp. Figs. 18 and 19), which is called a
reliability diagram [48, 49]; the classifier is well-calibrated if the resulting curve is close to the
identity function. Furthermore, we can define an expected calibration error (ECE) [50], as the
(weighted) average of the absolute differences between accuracy and confidence for each group.

Unfortunately, the discussion from above cannot directly be applied to our models that
predict continuous probability density functions. We now discuss how we adapt the concepts
of accuracy and confidence to make them work for continuous probability distributions in the
context of pixel-wise regression.

To make the following exposition more readable, let us assume without loss of generality
that we only have one large N -pixel validation input image x and its corresponding ground
truth y, instead of many smaller validation samples as used above. Given a model ensemble
parameterized by Θ, let qi = gΘ(x)i denote the predicted mixture density (Eq. (3.12)) and ŷi
the restored image (Eq. (3.13)) for pixel i.

141[P ] denotes the Iversion bracket that is 1 if P is true and 0 if P is false.
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Accuracy as defined above cannot be used, since a pixel ŷi of the restored image will never
exactly match the ground truth yi, i.e. ŷi 6= yi for all i = 1, . . . , N . But we can modify the
definition of success to those cases where yi ∈ Aεi falls into an interval Aεi = [ŷi − ε, ŷi + ε]

around ŷi with ε > 0. Based on this, we can define the associated probability mass15 for such
an event (shown as shaded region in Fig. 1) as

r̂εi = P
(
Yi ∈ Aεi

)
=

∫ ŷi+ε

ŷi−ε
qi(z) dz, (3.15)

where Yi ∼ qi denotes the random variable associated with pixel i of the restored image. With
these adaptations, we can now formally define accuracy and confidence for our regression model
as

accuracy(S, ε) =
1

|S|
∑
i∈S

1
[
yi ∈ Aεi

]
=

1

|S|
∑
i∈S

1
[
yi ∈ [ŷi − ε, ŷi + ε]

]
(3.16)

confidence(S, ε) =
1

|S|
∑
i∈S

r̂εi =
1

|S|
∑
i∈S

∫ ŷi+ε

ŷi−ε
qi(z) dz, (3.17)

where S ⊆ G denotes a subset of all pixel indices G = {1, . . . , N} and ε > 0 determines the
size of the interval around each ŷi. To obtain a reliability diagram with K groups, we first need
to specify bin edges (thresholds) τk with τk < τk+1, and extremal points τ1 = 0, τK+1 = 1. For
k = 1, . . . , K we then plot confidence(Sεk, ε) against accuracy(Sεk, ε) with Sεk =

{
i ∈ G : r̂εi ∈

(τk, τk+1]
}
denoting the pixel indices for group k. We additionally find it informative to plot

confidence(Sεk, ε) versus the fraction of pixels |Sεk|/N that belong to group k, which is essentially
a (normalized) histogram of r̂ε. Finally, the expected calibration error (ECE) is obtained as
the weighted average of the absolute differences of accuracy and confidence

ECE(ε) =
K∑
k=1

|Sεk|
N
|accuracy(Sεk, ε)− confidence(Sεk, ε)|, (3.18)

where the weights are simply the fractions of pixels that belong to each group.
Note that our adaptations cause accuracy and confidence, and thus also expected calibration

error (Eq. (3.18)) and reliability diagrams, to depend on the size of interval Aεi as defined by ε.
We will evaluate ECE and reliability diagrams for several values of ε, since our models should
be calibrated regardless of the size of Aεi .

Visualization. A calibration diagram, as described above, is one way to visually inspect if
the predictive uncertainty of our model is on average well-calibrated. However, we now want
to discuss how to display per-pixel results from our models. Of course, one can simply look at
the restored image ŷ, as is possible with any other restoration approach. Instead, we want to

15Eq. (3.15) can be computed in closed-form based on the cumulative distribution functions of the individual
ensemble members. Alternatively, numerical approximations are feasible since all distributions are univariate.
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focus on specific ways to visualize the predictive uncertainty, since directly showing an entire
probability distribution per pixel is infeasible.

One approach is to display r̂ε according to Eq. (3.15), where each pixel r̂εi = confidence({i}, ε)
denotes the model’s confidence that the correct value will be inside the interval Aεi . Of course,
one may choose any other interval depending on the application. In the main paper, we have
for a lineplot also shown per-pixel (confidence) intervals where r̂εi is fixed (e.g ., at 90%) and
the interval is depicted that contains this probability mass.

A standard measure of uncertainty is entropy, which we can also compute in our case (cf. Sec-
tion 3.2.1) for gΘ(x)i of Eq. (3.12). However, we believe that looking at the per-pixel en-
tropy as an image does not convey an intuitive understanding of the predictive uncertainty
(cf. Supp. Fig. 20). Instead, we draw samples from our model to obtain possible instances of
restored images, which is typically easy due to drawing each pixel independently from a mixture
of “nice” distributions (such as Laplace distributions in our case). Importantly, we propose to
arrange several samples of restored images as a movie to get an intuitive sense of the per-pixel
variability (and thus uncertainty) of our model prediction (see Supp. Vid. 9).

3.2 Identifying Problematic Image Regions

When sufficient training data is available, there may be little reason to model epistemic uncer-
tainty to achieve good results on average. However, epistemic uncertainty can help to identify
problematic image regions that were under-represented or missing in the training data, where
the prediction of the trained CNNs may not be trustworthy as a consequence.

As discussed in Section 3.1.2, we capture epistemic uncertainty by using an ensemble of iden-
tical and independently trained CNNs. This is feasible because training neural networks is not
globally optimal, i.e. learned model parameters typically vary due to random initialization and
stochastic gradient-based optimization methods. As a result, the predictions of the individual
ensemble members are typically slightly different in most regions, but can be very different in
some regions. We want to identify these latter problematic regions, which should be treated
with caution. We typically found these to be especially challenging image regions (e.g ., with
low signal-to-noise ratio), or when we applied trained CNNs to so-called out-of-distribution
images, i.e. images that are not sampled from the same distribution as the training data.

We identify problematic image regions by measuring the disagreement of the network ensem-
ble, which we explain below. Note that strong disagreement does indicate cause for concern,
but the reverse is not necessarily true since all networks could simply make the same or similar
mistakes.

3.2.1 Ensemble disagreement

Please note that the discussion in the remainder of this section applies to mixture ensembles
of arbitrary distributions, not just Laplace mixture densities (Eq. (3.12)) as we use in this
work. We first need to select a measure to compare probability distributions. The most
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common choice is the Kullback-Leibler-divergence (KL-divergence), which we also use here. To
quantify the per-pixel disagreement between an ensemble of models, we compute the average
KL-divergence between the individual model distributions and the distribution of the mixture
model. Note that [37] already used ensemble disagreement like this, but only for qualitative
comparisons in the context of image classification.

The KL-divergence between two distributions p(z) and q(z) is defined as

DKL(p‖q) =

∫
p(z) log

p(z)

q(z)
dz =

[
−
∫
p(z) log q(z) dz︸ ︷︷ ︸
H(p, q)

]
−
[
−
∫
p(z) log p(z) dz︸ ︷︷ ︸
H(p)

]
(3.19)

with H(p, q) being the cross-entropy between p and q, and H(p) the entropy of p. With that,
we can now define a disagreement score as described above as

D(x)i =
1

M

M∑
m=1

DKL
(
gθm(x)i‖gΘ(x)i

)
(3.20)

with gθ(x)i and gΘ(x)i as defined in Eqs. (3.8) and (3.12), respectively. For better understand-
ing, we can reformulate Eq. (3.20) as

D(x)i =
1

M

M∑
m=1

H
(
gθm(x)i, gΘ(x)i

)
−H

(
gθm(x)i

)
(3.21)

= H

(
1
M

∑M

m=1
gθm(x)i︸ ︷︷ ︸

gΘ(x)i

, gΘ(x)i

)
− 1

M

M∑
m=1

H
(
gθm(x)i

)
(3.22)

= H
(
gΘ(x)i

)
− 1

M

M∑
m=1

H
(
gθm(x)i

)
(3.23)

to see that it corresponds to the difference between the ensemble entropy and the average
entropy of the individual ensemble members.

In the context of image classification, [37] has shown that ensemble entropy is higher on
out-of-distribution (OD) samples as compared to in-distribution (ID) samples (i.e. from the
same distribution as the training data). However, this is not transferable to our scenario
where the entropy is very dependent on the actual image content. Concretely, our models
are typically much more confident in their predictions on “background” regions16, i.e. exhibit
lower entropy, as compared to “foreground” pixels17. This means the ensemble entropy on a
background pixel of an OD image is typically lower than the entropy of a foreground pixel of
an ID image (see Supp. Fig. 20). Instead of just using ensemble entropy, the advantage of the
disagreement score as defined in Eq. (3.20) is that it has a normalizing effect due to subtracting
the average entropy of the individual ensemble members (Eq. (3.23)). It is thus much less

16I.e., predicted pixels ŷi ≈ 0, where the minimal intensity value is 0.
17I.e., predicted pixels ŷi � 0, where the minimal intensity value is 0.
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sensitive to the intrinsic predictive uncertainty. Note that this property is likely also beneficial
for classification problems, especially with unbalanced class distributions, where the predictive
entropies of different classes may vary strongly.

Bounds. We just discussed the normalizing effect of the disagreement score as compared
to just using the entropy of the ensemble. In fact, we can show that Eq. (3.20) is bounded
from above. Note that it is naturally bounded from below by zero, since it is an average
of non-negative KL-divergences. To make the following derivation more readable, we denote
the predictive distribution for pixel i of a single model (Eq. (3.8)) as qim = gθm(x)i and the
distribution of an ensemble (Eq. (3.12)) as qi = gΘ(x)i. From Eqs. (3.8), (3.12) and (3.19)
follows that

DKL(qim‖qi) =

∫
qim(z) log

qim(z)
1
M

∑M
m′=1 q

i
m′(z)

dz (3.24)

= logM +

∫
qim(z)

[
log qim(z)− log

∑M

m′=1
qim′(z)

]
︸ ︷︷ ︸

≤0

dz (3.25)

≤ logM, (3.26)

since all qim are non-negative density functions and the logarithm is monotonic, i.e.

log qim(z) ≤ log
[
qim(z) +

∑M

m′=1
m′ 6=m

qim′(z)
]

= log
∑M

m′=1
qim′(z). (3.27)

Therefore, the disagreement score from Eq. (3.20) is bounded from above and below:

0 ≤ D(x)i =
1

M

∑M

m=1
DKL

(
qim‖qi

)
≤ logM. (3.28)

Note that D(x)i = 0 if all distributions qim are identical, and D(x)i = logM if there is no
intersection between the support of all qim, i.e. ∀m,m′ with m 6= m′ : supp(qim)∩ supp(qim′) = ∅.

Based on Eq. (3.20) and its bound from above, we define a normalized disagreement score

D̂(x)i =
1

logM
D(x)i =

1

M logM

M∑
m=1

DKL
(
gθm(x)i‖gΘ(x)i

)
, (3.29)

which is bounded from above by one, independent of the size of the ensemble, i.e. 0 ≤ D̂(x)i ≤
1 for all M ≥ 2. We show normalized disagreement scores in Supp. Fig. 20. Note that
Eq. (3.29) generally applies to ensembles of arbitrary sizes and member distributions (discrete
and continuous).

Computational considerations. Obtaining the disagreement score of Eq. (3.20) requires to
compute KL-divergences between each ensemble member qim and the ensemble mixture distri-
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bution qi = 1
M

∑
m q

i
m. This can be challenging in many cases18, since closed-form expressions

are generally not available for DKL(qim‖qi). As an alternative, we use Eq. (3.23) to evaluate
disagreement, which needs the entropies of the ensemble mixture H(qi) and each ensemble
member distribution H(qim). Unfortunately, computing entropies of mixture models is also not
easy. Instead of computing bounds on the mixture entropy [e.g ., 52], we decided to numerically
approximate H(qi), which is possible for univariate distributions. However, since we have to do
this for every pixel of an image (which can be millions), we wrote an efficient GPU-based im-
plementation. Note that the entropy H(qim) of each ensemble member is often easy to compute
(as for the Laplace distribution in our case), because “nice” distributions with known expres-
sions for common properties (such as entropy and KL-divergence) are typically chosen for the
individual ensemble members.

3.3 Discussion and Empirical Validation

As explained in Section 3.1, our approach to modeling uncertainty is that we use an ensemble of
independently trained convolutional neural networks that each predict a probability distribution
gθ(x)i for every pixel i based on input image x. The predictions from all networks are combined
as a mixture of probability distributions to yield the final prediction gΘ(x) of the ensemble.
To obtain the restored image ŷ, we compute the per-pixel expected value of each mixture
distribution, i.e. ŷi = E

[
gΘ(x)i

]
. In particular, we use ensembles comprised of M = 5 networks

that are trained via maximum likelihood to predict a separate Laplace distribution for every
pixel, overall yielding a mixture of Laplace distributions (cf. Fig. 1).

While we evaluate the quality of the restored image ŷ with common measures (NRMSE19

and SSIM [16]), we here also validate that the per-pixel distributions gΘ(x) are accurate, i.e.
well-calibrated. To that end, given a set of validation data20 where the ground-truth is known,
for every pixel we first compute the probability that its value will fall into an interval of a certain
size around ŷi (denoted as confidence, illustrated as shaded region in Fig. 1). If the true value
is indeed contained in the interval, we can count this as a success. The per-pixel distributions
are well-calibrated if the accuracy, i.e. the fraction of successfully predicted pixels, is close to
the average confidence. Furthermore, we compare confidence and accuracy more granularly
for subsets of pixels within a certain confidence range. For each of these subsets, we can
then plot average confidence vs . accuracy, which gives rise to the reliability diagrams shown in
Supp. Figs. 18 and 19. The network ensemble is well-calibrated if the plotted curve is close
to the identity function. Additionally, we measure the expected calibration error (ECE), which
is essentially the average (weighted) difference of the plotted curve to the identity function.

18To avoid these computational issues, we may alternatively define disagreement as the average KL-divergence
between all pairs of ensemble members. While each comparison in terms of KL-divergence would then typically
be easy to compute, the amount of comparisons grows quadratically with the size of the ensemble. Furthermore,
such an alternative disagreement score would be unbounded, since the KL-divergence between any two ensemble
members could be infinite if their support does not overlap.

19Normalized root-mean-square error
20Sampled from the same distribution as the training data, but not been used for training the networks.
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Lastly, note that we validate calibration for intervals [ŷi − ε, ŷi + ε] of various sizes as defined
by ε.

To interpret the results, note that all images are normalized such that the bulk of all pixels
(approx. 95%) is between zero and one. Supp. Figs. 18 and 19 show that our network ensembles
exhibit low expected calibration error, in most cases below 3%. It is occasionally only larger for
the very small interval with ε = 0.01 (i.e. being roughly within ±1% of the dynamic intensity
range). When inspecting the reliability diagrams, we find that the confidence-accuracy curves
sometimes have a slight “S”-shape, we means that the predicted probabilities are slightly too high
for lower-confidence pixels and slightly too low for higher-confidence pixels. Only for ε = 0.01,
the ensemble trained for isotropic reconstruction of Danio rerio retinas exhibits rather strong
under-confidence. Supp. Figs. 18 and 19 also show that large calibration errors can be avoided
when using an ensemble (M > 1), as compared to just a single network (M = 1).

In addition to this quantitative evaluation, we want to qualitatively show predictive uncer-
tainty. A common way to measure the uncertainty of a distribution is via its entropy (see
Supp. Fig. 20 for an example). However, we believe that looking at the per-pixel entropies
as an image does not convey an intuitive understanding of uncertainty. Instead, we draw
samples from our model to obtain possible instances of restored images and arrange several
samples of restored images as a movie, which allows to quickly gauge per-pixel uncertainty (see
Supp. Vid. 9).

We now turn to the topic of identifying situations where the predictions of our network
ensembles may not be trustworthy. To that end, we compute the per-pixel disagreement of the
network ensemble21, which we normalize to take on values between zero (no disagreement at
all) and one (maximal disagreement). If there is high disagreement, it intuitively means that
not all individual network predictions can be correct (see Figure 5 in the main paper).

After training, we find that all of our ensembles exhibit reasonably low average disagreement
on in-distribution (ID) images, i.e. images that come from the same distribution as the data
they were trained on. However, when we apply a network ensemble to out-of-distribution (OD)
images, i.e. images that are not sampled from the distribution of training images, we often
find much higher disagreement. Hence, disagreement can sometimes identify when a network
ensemble is applied to (regions of) OD images. In these cases, the prediction of the ensemble can
be wrong because such data was likely not, or only rarely, seen during training. An example is
shown in Supp. Fig. 20, where we applied two separate network ensembles, trained for Planaria
(Schmidtea mediterranea) and Tribolium (Tribolium castaneum), respectively, to both an ID
and OD image.

21As average Kullback-Leibler divergence between each network distribution and the ensemble mixture.

56



4 Sample Preparation and Imaging Procedures

Please see Supp. Tab. 1 for an overview.

4.1 Planaria

Planaria (Schmidtea mediterranea) were cultured at 20° C in planarian water (1.6 mM NaCl,
1 mM CaCl2, 1 mM MgSO4, 0.1 mM MgCl2, 0.1 mM KCl, 1.2 mM NaHCO3) and fed with
organic bovine liver paste. To label planarian nuclei, S. mediterranea approximately 2-3 mm
in size and starved for 2 weeks were stained for 15 hours in planarian water supplemented with
2x RedDot1 (Biotium, Cat No.: 40060) and 1% (v/v) DMSO. For training data acquisition,
planaria were euthanized with 5% w/v N-Acetyl-L-cysteine (Sigma, Cat No. A7250) in PBS and
subsequently fixed in 4% w/v paraformaldehyde in PBS (Carl Roth GmbH, Cat No.: 0335.2).
For time lapse recordings RedDot1 stained planaria were anesthetized for 1 hr with 0.019%
w/v Linalool (Sigma, Cat No. L2602) prior mounting and this Linalool supplementation was
maintained throughout the course of the live imaging experiments. A 5 min incubation in
0.5% w/v pH neutralized N-Acetyl-L-cysteine was used to remove the animal’s mucus prior
mounting. For imaging, fixed or live animals were mounted in refractive index matched 1.5 %
agarose (50% w/v Iodixanol) to enhance signal quality at higher imaging depths as previously
described in [53]. The spinning disc confocal microscopy setup for imaging live planaria has
been described in detail in [53]. In brief, a 30x NA 1.05 silicon oil immersion objective mounted
on an Olympus IX83 stand was used. RedDot1 was excited with a 640 nm laser and a 685/40
bandpass filter was used for emission detection.

4.2 Tribolium

The EFA::nGFP transgenic line of Tribolium castaneum was used for imaging embryonic de-
velopment with labeled nuclei [54]. All imaging was done on the Zeiss 710 multiphoton laser
scanning microscope using the 25x multi immersion objective. The embryos were imaged ei-
ther under oil or water. The beetles were reared and embryo collection was done according to
standard protocols [55].

4.3 Flywing

Fruitfly datasets consist of in vivo images of the dorsal side of the Ecad::GFP labelled pupal
wing recorded with a fluorescent spinning disk microscope.

Flies were raised under 25° C at standard conditions. Along with the Ecad::GFP, some of
the samples carried an additional mutation in one of the PCP proteins, which didn’t affect the
expression of Ecad::GFP. Pupae were collected and prepared for imaging as described in [56].

Images were acquired with a spinning disk microscope equipped with a Zeiss AxioObserver
stand, Zeiss LCI Plan-Neofluar 63x, 1.3 NA Imm Corr objective, Zeiss AxioCam MR3 camera
(2x2 binning) and a Yokogawa CSU-X1 spinning disk unit. Raw images were acquired with 20−
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−40 ms exposure time and 0.37 mW laser power (measured at the sample plane). Groundtruth
images were acquired with 120ms exposure time and the same laser power settings.

4.4 Liver

Mice livers were fixed and cut into 100 µm slices. Cell nuclei were stained with DAPI, and the
sinusoidal networks with flk-1 antibody. The samples were imaged using a Zeiss 63x glycerol
immersion objective (1.3 NA) in an upright Zeiss LSM 780 NLO multiphoton laser-scanning
microscope equipped with Gallium arsenide phosphide detectors. DAPI was excited at 780 nm
by a Chameleon Ti-Sapphire 2-photon laser. Other dyes were excited by single photon using
488 (phalloidin), 561 (cd13) and 633 (flk-1) laser lines. We acquired 2x2 tile images with 10%
of overlap. Every z-tack took 25 minutes to be imaged (total time 1 hr 40 min).

C57BL/6JOlaHsd mice were purchased from Charles River Laboratory. Livers were fixed
through transcardial perfusion with 4% paraformaldehyde and post-fixed overnight at 4°C with
the same solution. Vibratome sections (thickness 100 µm) were stained with anti-CD13 (Novus,
cat NB100-64843, rat, 1/500), anti-flk1 (R&D system, cat AF644, goat, 1/200), phalloidin-488
(LIFE technologies, cat A12379, 1/150) and DAPI (LIFE technologies, cat D1306, 1 µg/ml).
Tissue slices were optically cleared by a modified version of SeeDB [57].

All procedures were performed in compliance with German animal welfare legislation and in
pathogen-free conditions in the animal facility of the MPI-CBG, Dresden, Germany. Protocols
were approved by the Institutional Animal Welfare Officer (Tierschutzbeauftragter) and all
necessary licenses were obtained from the regional Ethical Commission for Animal Experimen-
tation of Dresden, Germany (Tierversuchskommission, Landesdirektion Dresden).

4.5 Retina

Zebrafish imaging experiments were performed with a transgenic zebrafish line Tg(bactin:eGFP-
LAP2B) that labels the nuclear envelope. This transgenic line consists of a rat LAP2B gene
(Lamina-associated polypeptide 2 beta) tagged with GFP under a constitutive promoter. The
adult zebrafish were maintained and bred at 26°C. Embryos were raised in E3 medium at
28.5°C and treated with 0.2 mM 1-phenyl-2-thiourea (Sigma-Aldrich) around 8 h postfertiliza-
tion (hpf) onward to delay pigmentation. All animal work was performed in accordance with
European Union directive 2011/63/EU as well as the German Animal Welfare Act. 24 hpf
zebrafish embryos were fixed overnight in 4% paraformaldehyde (Sigma-Aldrich). They were
permeabilized with 0.25% trypsin and incubated with a far-red DNA stain (DRAQ5, Thermo
Fisher Scientific) for 2 days at 4°C. For imaging on Spinning disk confocal SD4 (Andor Revo-
lution WD Borealis Mosaic), the stained embryos were mounted into 0.6% agarose (E3 media)
in glass-bottom dishes (MatTek Corporation). The Spinning disk confocal SD4 is composed
by scanning head Yokogawa CSU-W1 (4000rpm) with two pinhole discs (50 µm and 25 µm)
(Andor Technology). Images were captured with an Olympus UPLSAPO 60x 1.3 SIL objective
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and Andor iXon 888 Ultra with fringe suppression. The microscope was operated through the
software Andor iQ version 3.4.1. A z stack around 70 µm thick was acquired with 1-µm steps.

4.6 Drosophila

All input stacks were provided by the authors of [2]. Details on sample preparation and imaging
can be found in Supplemental Notes of [2].

4.7 INS-1 cells

INS-1 cells were cultured and transiently transfected with pEG-hIns-SNAP as previously de-
scribed [32]. The cells were labeled with 1 µM SNAP-Cell 505-Star (NEB) and simultaneously
with 1 µM SiR-tubulin (Spirochrome) for 1 h. After washing cells were imaged with the
DeltaVision OMX (GE) with an Olympus Plan ApochromatN 60x oil objective with a numer-
ical aperture of 1.42 at 37°C and with 5% CO2. Time-lapse movies were acquired in wide-field
mode with 50 ms exposure-time and 10% fluorescence intensity for each channel resulting in a
final speed of 2 frames per second (fps). Deconvolution was done with the SoftWorkx software
package.

4.8 HeLa cells

For live-cell imaging of GFP-tagged microtubules, HeLa cells stably expressing H2B-mCherry/-
mEGFP-α-tubulin [58] were grown in DMEM containing 10% FBS, 100 U/ml penicillin and
100mg/ml streptomycin at 37° C with 5% CO2 in a humidified incubator. Before imaging cells
were seeded onto #1.5 glass bottom 35mm u-Dish (ibidi GmbH). Imaging was performed on a
Zeiss Elyra PS.1 inverted microscope at 37° C and 5% CO2 in TIRF mode with a 100x TIRF
objective (Plan-APOCHROMAT 100x /1.46 Oil, Zeiss) and additional 1.6x magnification with
488nm laser illumination at an on-sample intensity of < 10W/cm2. HeLa cells stably expressing
H2B-mCherry/mEGFP-α-tubulin were kindly provided by Buzz Baum, UCL.
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5 Deployment of Image Restoration Models

Our goal is to make our work accessible to as many people as possible. Since we aim at image
data restoration for life scientists, our strategy is to deploy our trained neural networks within
software packages that are commonly used for biological image and data analysis. Two very
popular, open source, and freely available platforms are Fiji [59] and Knime [60]. All net-
works for this publication where trained on a Linux workstation using Python scripts requiring
Keras [61] and a TensorFlow [62] backend. All scripts will be made available on GitHub. A set
of trained networks are saved and made publicly available for their integration and use from
within Fiji and Knime.

Frameworks for deep learning became very powerful in recent years. Still, the deployment
of trained networks poses multiple problems for which solutions are not yet readily available:
(i) Training and inference of neural networks usually needs to be performed on graphics hard-
ware (GPUs) in order to be sufficiently performant. Not every computer running Fiji or Knime

has a sufficiently powerful GPU available, (ii) most deep learning frameworks rely on CUDA
when utilizing GPU computations. CUDA only works on Nvidia GPUs, further reducing the
number of machines on which our networks can be efficiently deployed. Finally, (iii) even the
latest and most powerful deep learning frameworks do not support the Windows and/or MacOS
operating systems very well. For example, the installation of TensorFlow requires several man-
ual steps and can currently not easily be automated. Consequently, installing Fiji or Knime is
presently not enough to use our restoration pipelines specifically, or previously trained neural
networks generally.

We provide Fiji plugins and Knime workflows for four example applications: (i) 3D De-
noising of Tribolium castaneum embryos (Sections 2.3.2 and 4.2) and Schmidtea mediterranea
flatworms (Sections 2.3.1 and 4.1), (ii) Surface projection of developing wings of Drosophila
melanogaster (Sections 2.3.3 and 4.3), (iii) Isotropic reconstruction of Danio rerio retinas
(Sections 2.4.2 and 4.5), and (iv) Deconvolution of microtubules in INS-1 cells (Sections 2.5.1
and 4.7). In addition to the plugins and workflows, we provide example data, detailed in-
stallation instructions, as well as step-by-step tutorials on how to use our tools. Please visit
http://csbdeep.bioimagecomputing.com for gaining access to tutorials, data, and code.

In the following, we discuss the deployment of our networks with Fiji and Knime. Addi-
tionally, we show how the resulting software packages can be used.

5.1 Fiji Integration

Fiji is a very common platform for analyzing biological image data [63]. It is equipped with
plenty of easily accessible plugins that can be installed using the Fiji Updater. Our goal was
to develop plugins that enable to run trained network models on image data opened in Fiji.

There are two ways to use networks trained with Keras/TensorFlow from within Fiji, which
is itself written in Java. First we only used Keras functionality that can be stored as Tensor-

60

http://csbdeep.bioimagecomputing.com


Flow models, leaving us with the problem of running TensorFlow networks from within Java.
A Java-based deep learning framework, Deeplearning4j [64], is capable of running saved Ten-
sorFlow models. Unfortunately, not all functionality we needed was implemented at the time of
publication22, leaving us no choice than to use TensorFlow’s own Java API [65]. Also, Google’s
TensorFlow Java API is in an early development phase and does currently not follow their
own API stability guide. They do, however, cover our minimal requirements already, enabling
us to launch TensorFlow model from within Fiji. With collaborators we developed a library
to interact between TensorFlow and ImgLib2 [66], the basic library for image data in Fiji.
This library provides a functional, open, and reusable interface for plugins that intend to use
TensorFlow [67].

When one of our plugins is started for the first time, it downloads the appropriate network
model and stores it locally. In then maps the input image, which will be adequately normalized,
to the input tensor of the network. Depending on the size of the input image, the data is tiled
and processed in chunks to fit into the available (GPU) memory. The results of the respective
image tiles will then be reassembled into one big image or volume before being presented to
the user.

From within the Fiji Updater, our plugins can be installed by selecting the update site
called ‘CSBDeep’ (see also [68]). The installed plugins can then be found in the Fiji menu
under Plugins . CSBDeep (see also Supp. Fig. 21).

5.1.1 Extending the available functionality

Our examples fulfill the purpose of demonstrating the functionality of our general content-aware
image restoration approach. Still, the goal is to reconstruct diverse data for many potentially
very different research projects. Once a new network model is trained by using an altered
version of our training scripts, we foresee two ways to integrate this model into Fiji.

We offer a Fiji plugin called Generic Network. This plugin allows to process image data with
any given TensorFlow model. The model must be saved in TensorFlow’s SavedModelBundle for-
mat and before it can be started one has to make the mapping of image to input tensor explicit
within the plugin. Additionally, one can choose the desired image normalization parameters
and image tiling options. This generic model launcher enables the access to neural networks
from within Fiji for the entire community, strongly encouraging the creation of functionality
that utilizes deep learning.

In case a trained model turns out to be useful and of general enough interest to justify the
creation of a Fiji plugin in its own right, our ImageJ-TensorFlow bridge [67] and the open
source CSBDeep demo plugins can be taken as a basis and blueprint for others.

22Deeplearning4j turned out to be incompatible as it does not support upsampling and deconvolution layers,
which are necessary for all our network topologies.
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5.2 Knime Integration

In addition to Fiji, we also offer full Knime integration. For each example network available
in Fiji we created a Knime workflow similar to the one shown in Supp. Fig. 22.

We load and run our trained networks using the Knime Python extension, allowing to run
arbitrary Python scripts. After loading a raw image file from disk, the data is normalized
and prepared for the trained network. Then, in the node called ‘Model Execution’, the image
to be reconstructed is subdivided into tiles of adequate sizes, fed to the network, and finally
reassembled to the overall result (see Supp. Fig. 22).

The major drawback of this deployment strategy is that an adequate Python environment,
including a TensorFlow installation, has to be made available to Knime. In the future, Knime

will offer better TensorFlow support, using the TensorFlow Java API mentioned above.
We provide detailed instructions on how to install Knime and how our workflows can be

used in the CSBDeep wiki (https://github.com/mpicbg-csbd/CSBDeep/wiki). There, you can
also find example data.
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