2	Metabarcoding analysis on European coastal samples
3	reveals new molecular metazoan diversity
4	
5	David López-Escardó ¹ , Jordi Paps ² , Colomban de Vargas ^{3,4} , Ramon Massana ⁵ , Iñaki
6	Ruiz-Trillo ^{1,6,7*} , Javier del Campo ^{1,8*}
7	Supplementary Materials and Methods
8	Sampling, 454 sequencing and curation of the sequences
9	During the BioMarKs project (biomarks.eu), samples were collected in six European
10	coastal sites: the North Sea (Oslo, Norway), the English Channel (Roscoff, France),
11	the Bay of Biscay (Gijón, Spain), the Mediterranean Sea (Blanes, Spain, and Naples,
12	Italy) and the Black Sea (Varna, Bulgaria). Water column samples were taken with
13	Niskin bottles attached to a CTD rosette at surface and deep chlorophyll maximum
14	depths. Twenty liters of water per sample were pre-filtered through 20 μ m filters and
15	then sequentially filtered through $3\mu m$ and $0.8\mu m$ polycarbonate filters (diameter:
16	142mm) using a peristaltic pump. Filtration time did not surpass 30min to avoid RNA
17	degradation. For dissolved DNA, 20 liters of 0.2 μ m-filtered seawater was mixed with
18	400 ml of 0.5% CTAB (cetyltrimethylammonium bromide) (pH = 8) for 5 h and
19	filtered through 0.2 μ m polycarbonate membranes (142 mm). To collect the micro-
20	$(20-200 \ \mu m)$ and meso- $(200-2000 \ \mu m)$ planktonic fractions (micro/mesoplankton),
21	a plankton net of 20 μ m mesh size was towed for 5–15 min, and the large protists

22	collected were rinsed with 0.2 μm -filtered seawater, passed through a 2000 μm
23	metallic sieve and filtered with $12\mu m$ PC membranes (47 mm). Filters were flash
24	frozen and stored at -80°C. Sediment samples were taken with sediment cores and
25	small aliquots were frozen at -80°C (Table S1). The total number of samples
26	considered in this study was 137 (Table S2). Total DNA and RNA were extracted at
27	the same time from the same filter using the NucleoSpin RNA L kit (Macherey-
28	Nagel, Düren, Germany). After quantification with a Nanodrop ND-1000
29	spectrophotometer (NanoDrop Technologies Inc, Wilmington, DE, USA), the quality
30	was further checked on a 1.5% agarose gel. Contaminating DNA was removed from
31	RNA samples using the TurboDNA kit (Ambion, Carlsbad, CA, USA). Extracted
32	RNA was immediately reverse transcribed using the RT Superscript III random
33	primers kit (Invitrogen, Carlsbad, CA, USA). The universal primers
34	TAReuk454FWD1 (50-CCAGCASCYGCGGTAATTCC-30) and TAReukREV3
35	(50-ACTTTCGTTCTTGATYRA-30) were used to amplify the V4 region (~380 bp)
36	of the eukaryotic 18S rDNA (1). Primers were adapted for 454 following the
37	manufacturer's specifications. They had the configuration A-adapter-tag (7 or 8bp)-
38	forward primer and B-adapter-reverse primer. PCRs were performed as explained in
39	Logares et al. 2012 (2), where amplifications were done in a volume of solution of
40	25ml and consisted on a 1x MasterMix Phusion High-Fidelity DNA Polymerase
41	(Finnzymes, Espoo, Finland), 0.35 mM of each primer and 3% DMSO. 5ng of
42	template DNA/cDNA was added to each PCR sample. PCRs cycles started with a
43	denaturation step at 98°C for 30s, followed by 10 cycles of 10 s at 98 °C, 30s at 53 °C
44	and 30s at 72°C, and afterwards by 15 cycles of 10 s at 98 °C, 30s at 48°C and 30s at
45	72 °C. Amplicons were evaluated in a 1.5% agarose gel to check for successful
46	amplifications. Triplicate amplicons were pooled and purified using the NucleoSpin

47	Extract II (Macherey-Nagel). Purified amplicons were eluted in 30 ml of elution
48	buffer and quantified again using a Nanodrop ND-1000 spectrophotometer. The final
49	number of pooled amplicons for 454 tag- sequencing was approximately 5mg.
50	Amplicon sequencing was carried out on a 454 GS FLX Titanium system (454 Life
51	Sciences, Branford, CT, USA) installed at Genoscope
52	(http://ig.cea.fr/drf/ig/Pages/Genoscope.aspx, France). Pyroreads were inspected to
53	remove short reads, reads with low quality and chimeras, as described in Massana et

54 al. 2015 (3) (Table S2).

55 Taxonomic affiliation of the OTUs

56 OTUs were taxonomically filtered using several eukaryotic reference datasets in order 57 to discard non-metazoan sequences (4, 5). Afterwards, we used our own metazoan 58 reference dataset manually curated by phylogeny to annotate the metazoan sequences 59 (available at figshare https://dx.doi.org/10.6084/m9.figshare.3475007.v1). With the 60 exception of the supergroups Arthropoda, Chordata and Annelida, in which the 61 database was also phylogenetically curated at the subphylum level, the phylogenetic 62 tree built to determine the taxonomic affiliation only confirmed assignment at the 63 phylum level. OTUs were primarily assigned to a group when they had an e-value below 10-100 against a reference sequence. Additionally, OTUs with higher BLAST e-64 65 values and represented by more than 100 reads from three or more samples were also 66 considered if they were phylogenetically placed within metazoans by performing Maximum likelihood trees through RAxML 7.2.8 (6) . We ended with 372,934 67 68 representative metazoan reads and 1076 OTUs from 137 samples (Table S2), 103 69 distinct samples, 34 of them in duplicate (same RNA/DNA extraction but separate 70 PCR and sequencing reactions).

71 *Reproducibility of PCR and 454 sequencing*

72 In order to evaluate the reproducibility of the different replicates, we selected 73 duplicated samples from different templates (8 DNA, 9 RNA), different sampling 74 sites (2 Barcelona, 7 Naples and 8 Oslo), in which at least one of the duplicates 75 contain more than 100 metazoan reads (n=17). Each duplicate (same nucleic acid 76 template and separate PCR and 454 sequencing) was selected from our 34 duplicated 77 samples out of 137. We calculated the linear regressions by plotting OTU abundances 78 in each duplicate (3). The pyroread ratio between duplicates varied from 0.01 to 0.94. 79 We plotted the statistics of linear regression, R^2 coefficients and regression slopes, over the pyroread ratio between duplicates (Fig. S8). R² coefficients (Fig. S8) were 80 81 high (0.91 on average) and independent of pyrotag ratios. Thus, we confirmed that the 82 read distribution among different OTUs were found at similar relative abundances in 83 each duplicate. Slopes regression and pyroread ratio present a linear growth (R2 of 84 0.95; slope of 0.97), confirming that OTU abundances increased proportionally with 85 the number of pyrotags in the sample as described in Massana et al. 2015 (3).

86

Diversity and distribution analysis

The metazoan OTU table obtained was processed for community analysis using QIIME (7). Beta-diversity analyses including PCA and Jackknife clustering were performed with Unifrac (8). The OTU tree used as input for Unifrac was constructed after aligning the OTUs with Mothur (9). A subset of aligned sequences from our homemade database was used as a reference for Mothur input. Then, a maximum likelihood tree was generated with RAxML 7.2.8 and using GTRCATI as the evolutionary model. A hundred repeated runs on distinct starting trees were carried

- 94 out to select the tree with the best topology and 100 bootstrap replicates were
- 95 performed using the same evolutionary model.

96 Phylogenetic and diversity analysis of BioMarks V4 sequence tags belonging to a 97 novel metazoan group

- In order to phylogenetically place the short reads assigned to the novel metazoan
 group (MAME 1: MArine MEtazoan group 1), we performed a RAxML-EPA analys
- 99 group (MAME 1; MArine MEtazoan group 1), we performed a RAxML-EPA analysis
- 100 (10). First, we built a metazoan reference tree using the longest putative MAME 1
- 101 sequence (1878 bp) found by BLAST at NCBI nt nr database (*KC582969*), as a
- 102 unique MAME 1 representative. Metazoan 18S rRNA gene sequences were
- 103 downloaded from GenBank (Table S3) and aligned using a MAFFT 7 E-INS-i
- strategy (11). The resulting alignment was checked by eye with Geneious 8.0.4 (12),
- and the ambiguously aligned positions deleted, resulting in a total of 1472 nucleotide
- 106 positions. Bayesian inference analysis was conducted with MrBayes 3.2.6 (13) using
- 107 the GTR $+\mathbf{\Gamma}$ +invariant model of evolution running 6,000,000 generations. Maximum
- 108 likelihood trees were generated with RAxML 7.2.8, using GTRCATI as the
- 109 evolutionary model. To place the MAME 1 group within tunicates, an additional
- alignment was constructed with all tunicate sequences available and a phylogenetic
- 111 tree was inferred using the same strategy. Tunicate sequences were mostly taken from
- 112 Tsagkogeorga et al. 2009 (14) who had an alignment of 110 sequences (95 from
- tunicates) occupying 1746 nucleotide positions. All the alignments and trees are
- available at figshare (https://dx.doi.org/10.6084/m9.figshare.3475007.v1).
- 115 Next, we searched for MAME 1 like sequences in other metabarcoding studies. In
- particular, we downloaded 487 marine environmental 18S amplicon datasets from
- 117 NCBI's SRA (March 2016) using fastq-dump from SRA-toolkit with -R option,

118 which selects the high quality reads (SRA Handbook). We performed a BLAST 119 search over the SRA dataset using KC582969 as a query and an e-value cut-off of e-120 100, retrieving 3677 putative MAME 1 reads from 104 SRA runs. Before processing 121 them, we used PEAR (16) to merge all the Illumina pair-end reads retrieved. Next, we 122 used usearch v8.1.861 for quality filtering, dereplication, clustering (97%) and 123 chimera checking using SILVA SSU 119 (5) as a reference. We ended up with 14 124 putative MAME 1 OTUs representing 3597 reads. We also performed a BLAST 125 search (cut-off e value of e-10) against the Tara Oceans database (17), retrieving 58 126 putative MAME 1 OTUs representing 123,779 reads.

We aligned all the MAME 1 – like short-read OTUs retrieved in the previous step and 128 the ones from BioMarks with the representative sequences used for the metazoan and 129 tunicate reference trees using the MAFFT strategy described earlier. After discarding 130 sequences that did not align properly, we ended up with 69 MAME 1 OTUs (3 from 131 BioMarKs, 14 from SRA and 52 from TARA), as well as the NCBI sequences 132 KC582969 and HQ869055. Ambiguous positions were removed from the alignment 133 checked by eye with Geneious 8.0.4 (12). The metazoan alignment yielded 1514

134 nucleotide positions, while the tunicate-specific alignment generated 1707 positions.

135 Finally, we used RAxML-EPA to place the short reads in both the metazoan and the 136 tunicate-specific datasets.

137 After the OTU assignments, we built an OTU table with the 69 MAME 1 group

138 OTUs. We used QIIME to analyze their read abundance and distribution across

139 different geographical locations, depths and size fractions. The OTU table and all the

140 alignments and trees are available as supplementary information at figshare

141 (https://dx.doi.org/10.6084/m9.figshare.3475007.v1).

127

142Supplementary References

143	1.	Stoeck T, et al. (2010) Multiple marker parallel tag environmental DNA
144		sequencing reveals a highly complex eukaryotic community in marine anoxic
145		water. <i>Mol Ecol</i> 19(Suppl. 1):21–31.
146	2.	Logares R, et al. (2012) Diversity patterns and activity of uncultured marine
147		heterotrophic flagellates unveiled with pyrosequencing. ISME J 6(10):1823-
148		1833.
149	3.	Massana R, et al. (2015) Marine protist diversity in European coastal waters
150		and sediments as revealed by high-throughput sequencing. Environ Microbiol
151		17(10):4035–4049.
152	4.	Guillou L, et al. (2013) The Protist Ribosomal Reference database (PR2): A
153		catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated
154		taxonomy. Nucleic Acids Res 41(D1):597-604.
155	5.	Quast C, et al. (2013) The SILVA ribosomal RNA gene database project:
156		improved data processing and web-based tools. Nucleic Acids Res
157		41(D1):D590–D596.
158	6.	Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based
159		phylogenetic analyses with thousands of taxa and mixed models.
160		Bioinformatics 22(21):2688–2690.
161	7.	Caporaso JG, et al. (2010) QIIME allows analysis of high-throughput
162		community sequencing data. Nat Methods 7(5):335–336.
163	8.	Hamady M, Lozupone CA, Knight R (2010) Fast UniFrac: facilitating high-

164		throughput phylogenetic analyses of microbial communities including analysis
165		of pyrosequencing and PhyloChip data. ISME J 4(1):17–27.
166	9.	Schloss PD, et al. (2009) Introducing mothur: Open-source, platform-
167		independent, community-supported software for describing and comparing
168		microbial communities. Appl Environ Microbiol 75(23):7537–7541.
169	10.	Berger SA, Krompass D, Stamatakis A (2011) Performance, accuracy, and
170		Web server for evolutionary placement of short sequence reads under
171		maximum likelihood. Syst Biol 60(3):291–302.
172	11.	Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for
173		rapid multiple sequence alignment based on fast Fourier transform. Nucleic
174		Acids Res 30(14):3059–3066.
175	12.	Kearse M, et al. (2012) Geneious Basic: An integrated and extendable desktop
176		software platform for the organization and analysis of sequence data.
177		Bioinformatics 28(12):1647–1649.
178	13.	Ronquist F, et al. (2012) Mrbayes 3.2: Efficient bayesian phylogenetic
179		inference and model choice across a large model space. Syst Biol 61(3):539-
180		542.
181	14.	Tsagkogeorga G, et al. (2009) An updated 18S rRNA phylogeny of tnunicates
182		based on mixture and secondary structure models. BMC Evol Biol 16(9:187):1-
183		16.
184	15.	SRA Handbook Available at: https://www.ncbi.nlm.nih.gov/books/NBK47528/
185		[Accessed March 1, 2016].

186	16.	Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: A fast and accurate
187		Illumina Paired-End reAd mergeR. Bioinformatics 30(5):614-620.
188	17.	de Vargas C, et al. (2015) Eukaryotic plankton diversity in the sunlit ocean.
189		Science 348(6237):1261605–1261605.
190	18.	Paps J, Baguñà J, Riutort M (2009) Lophotrochozoa internal phylogeny: new
191		insights from an up-to-date analysis of nuclear ribosomal genes. Proc R Soc B
192		<i>Biol Sci</i> 276(1660):1245–1254.
193	19.	Paps J, Baguñà J, Riutort M (2009) Bilaterian phylogeny: A broad sampling of
194		13 nuclear genes provides a new lophotrochozoa phylogeny and supports a
195		paraphyletic basal acoelomorpha. Mol Biol Evol 26(10):2397–2406.
196	20.	Zhang Z-QQ (2013) Animal biodiversity: An update of classification and
197		diversity in 2013. Zootaxa 3703(1):5.
198	Supp	lementary Figure Legends and Tables

Fig. S1: BioMarKs sampling sites. Map indicating the sampling locations where the
 data were collected and the summary of the dataset characteristics. Map retrieved
 from Wikimedia Commons
 (https://commons.wikimedia.org/wiki/File:Blank_map_Europe_without_borders.png)

203 CC-BY-SA-4.0,3.0,2.5,2.0,1.0 (https://creativecommons.org/licenses/by-sa/4.0/).

Fig. S2: Box plot distribution of relative metazoan abundance compared with all
eukaryotes. Relative abundance of metazoans compared to all eukaryotes in (a)
different oxic pelagic fractions, (b) different sites and in (c) different depths. Note that
data is provided from just one sample in the anoxic sediments.

- Fig. S3: Jackknife clustering analysis of phylogenetic composition of the samples.
 The chart represents the relative abundance within metazoan phyla in each sample.
 Samples from extracellular DNA and the ones with less than 100 reads (DNA+RNA)
 were removed from the analysis.
- Fig. S4: Principal component analysis of the samples. Samples from extracellular
 DNA and the ones with less than 100 reads (DNA+RNA) were removed from this
 analysis. Analyses are shown for (a) size fraction, (b) depth and (c) site.

- 215 Fig. S5: MAME 1 phylogenetic position and ecological distribution. (a) Metazoan 18S rRNA phylogenetic tree placing the novel metazoan group MAME 1. The tree 216 was inferred using RaxML-EPA from the 18S rRNA gene sequence including 217 218 representatives from all metazoan groups. Metazoan super-group nomenclature is based on Paps et al. 2009a and b (18, 19). The nodal support values marked with a 219 dot correspond to maximum likelihood 100-replicate bootstrap support and Bayesian 220 221 posterior probabilities. (b) Worldwide distribution of MAME 1 group. World map 222 within BioMarks data or within public repositories. Dot size represents the number of 223 reads found shown on a log2 scale. Bar charts show the distribution of MAME 1 reads 224 by depth and fraction.
- Fig. S6: Read distribution of shared OTUs among water column and benthic
- environments. Each dot represents an OTU. Axes indicate whether reads belong tothe water column or the sediment. Colors indicate the taxonomy of the OTU.
- Fig. S7: Comparison of number of OTUs found, number of described metazoan
- species and number of 18S rRNA metazoan sequences in NCBI. (a) Total number
 of OTUs from 18S rRNA retrieved in our dataset (blue bars) compared to the number
- of described species for each metazoan phylum (20) (red bars). (b) Total number of
- 232 OTUs from 18S rRNA retrieved from Genbank (blue bars) compared to the number of
- 233 described species for each metazoan phylum (20) (red bars). The number of 18S
- rRNA sequences from NCBI was obtained from the following search for each
 phylum: "*txid33208[Organism:exp]* (18S OR SSU) NOT (*mitochondrial OR*
- 235 phytum: *ixia55208[Organism:exp]* (185 OK SSC
 236 *mitochondria*)". (B) MAME 1 distribution.
- 237 Fig. S8: Linear regression statistics of the read distribution between the
- duplicated samples analysed (n=17). The figure shows on the Y axis R² coefficients
 (blue dots) and slope values (read dots) plotted over the pyroread ratio between
- 240 duplicates (X axis).

241	Table S1.	Description	of the sam	pling sites.

242

Site	Coordinate s	Distance to coast (Km)	Max. Depth (m) ¹	Sampling date	DCM (m)	Temperature Surface (ºC)	Temperature DCM (ºC)	Temperature Sediment (ºC)	Salinity Surface (PSU)	Salinity Sediment (PSU)	Chla (µg/l)²	[NO₃ ⁻] Surface/ DCM (µg/l)	[PO ₄ ³⁻] Surface/ DCM (μg/l)	Total Phosphorus Surface/DCM (μg/l)
Blanes	41° 40' N 2° 48' E	1.0	20	2/2010	N/A	12.5	N/A	12.6	37.5	38.2	1.0	2 / N/A	7 / N/A	13 / N/A
Gijon	43° 40' N 5° 35' W	12.0	110	9/2010	40	20.2	14.0	12.0	35.7	36.6	7.0	2 / 26	3 / 4	10 / 12
Naples 2009	40° 48' N 14° 15' E	4.0	75	10/2010	23	22.8	22.4	14.6	37.7	37.9	1.4	16 / 0	1 / 1	22 /16
Naples 2010	40° 48' N 14° 15' E	4.0	76	5/2010	35	19.2	15.5	14.0	37.2	37.9	1.2	<2 / <2	4/3	14 / 8
Oslo 2009	59° 16' N 10° 43' E	1.5	100	09/2010	8	15.0	15.0	8.0	25.0	35.0	3.2	9 / 1	4/3	22 / 21
Oslo 2010	59° 16' N 10° 43' E	1.5	100	06/2010	9	15.0	12.5	6.0	22.0	35.0	1.9	<2 / <2	3/2	12 / 11
Roscoff	48° 46' N 3° 57' W	5.0	60	4/2010	N/D	9.9	N/D	9.9	34.9	34.9	0.5	87 / N/D	12 / N/D	29 / (N/D)
Varna	43°10' N 28° 50' E	40.0	400	5/2010	40	21.5	9.5	8.5	16.0	22.0	8.0	2/2	4/3	11 / 11

 $243 \qquad \text{Surface is considered as } < 5 \text{ m depth. N/A= not applicable, N/D= no data.}$

244 ¹ Maximum depth of the water column.

245 ² Maximum Chlorophyll a concentration in the water column measured with fluorometry (fluorometer attached to a CTD).

248		All	(any of a a			Mata			
-	All eukaryotes				Metazoans				
Description	Samples	Total reads	DNA reads	RNA reads	Samples	Total reads	DNA reads	RNA reads	
Site									
Blanes	11	94366	48813	45553	11	59626	35719	23907	
Gijon	4	50178	29116	21062	4	233	199	34	
Naples	46	600756	266549	334207	44	131168	70170	60998	
Oslo	44	406563	224876	181687	44	93635	60637	32998	
Roscoff	9	55567	41861	13706	9	17127	14731	2396	
Varna	25	250977	122751	132006	25	71145	39550	31595	
Size Fraction (µm)									
0-0.2 (eDNA)	8	44564	44564	n/a	8	7879	7879	n/a	
0.8-3	38	439410	208067	231343	38	37575	22981	14594	
3-20	36	394879	194915	199964	36	23570	15949	7621	
20-2000	33	379910	187405	192505	31	222149	127190	94959	
Depth									
Subsurface	63	624138	336875	287263	23	81761	46996	34765	
DCM	45	536884	262120	274764	62	134470	85545	48925	
Anoxic	7	101004	37328	63676	45	105932	63027	42905	
Sediments	24	216013	111294	104409	7	50771	25438	25333	
Template									
DNA	74	746245	n/a	n/a	72	220766	n/a	n/a	
RNA	65	728221	n/a	n/a	65	152168	n/a	n/a	
Total	n/a	1474466	746245	728221	n/a	3792934	220766	152168	

Table 326 Summary of samples including the total number of eukaryotic reads after quality control and the totalnumber 447 metazoan reads after all the filtering process and the OTU assignment.248

Table S3. Summary of the sequences from GenBank used to place new MAME 1
 group within metazoans in Figure 5. The summary includes the accession number of
 the 18S rRNA gene sequence, the specie that it belongs and its taxonomy.

Taxonomy	Specie	Accesion Number
Porifera	Leucosolenia sp.	AJ622898
	Oscarella carmela	EU702422
	Aphrocallistes beatrix	FM946127
	Petrosia sp.	DQ927321
Ctenophora	Mertensia ovum	AF293679
	Pleurobrachia bachei	AF293677
	Mnemiopsis leidyi	AF293700
Placozoa	Trichoplax sp.	Z22783
Cnidaria	Aurelia aurita	AY039208
	Coryne pusilla	Z86107
	Alcyonium gracillimum	Z92902
	Parazoanthus axinellae	U42453
	Nematostella vectensis	AF254382
	Actinia equina	AJ133552
	Anemonia sulcata	X53498
Acoelomorpha	Paratomella rubra	AF102892
	Nemertoderma westbladi	AF327726
Xenoturbellida	Xenoturbella bocki	AY291292
Hemichordata	Saccoglossus pusillus	AF236800
	Balanoglossus carnosus	D14359
	Glossobalanus minutus	AF119089
	Ptychodera flava	AF278681
Echinodermata	Endoxocrinus parrae	Z80951
	Antedon serrata	D14357
	Strongylocentrotus purpuratus	L28055
	Asthenosoma owstoni	Z37118
	Aquilonastra coronata	AB084566
	Astropecten latespinosus	AB084546
Cephalochordata	Branchiostoma floridae	M97571
Craniata	Urobatis jamaicensis	AY049861
	Mitsukurina owstoni	AY049840
Tunicata	Oikopleura sp.	AB013015
	Oikopleura labradoriensis	FM244869
	Ascidia sydneiensis	AF165819
	Ciona intestinalis	AB013017
	Clavelina meridionalis	FM244840
	Pyrostremma spinosum	HQ015379
	Thalia sp.	AB859895
	Salpidae sp.	HQ015377
	Halocynthia igaboja	AY903925

	Molgula occidentalis	FM244850
	Molgula provisionalis	L12434.2
MAME 1	Uncultured Eukaryote	KC582969
	Uncultured Eukaryote	HQ869055
Kinorhyncha	Pycnophyes kielensis	U67997
Priapullida	Halicryptus spinulosus	AF342790
	Priapulus caudatus	Z38009
Nematomorpha	Gordius albopunctatus	U88337
	Neochordodes occidentalis	AF421768
	Paragordius tricuspidatus	AF421771
Chaetognatha	Eukrohnia bathypelagica	DQ351896
	Parasagitta setosa	DQ351900
	Sagitta bipunctata	DQ351890
Nematoda	Enoplus brevis	U88336
	Desmodora ovigera	Y16913
	Catanema sp.	Y16912
Tardigrada	Milnesium tardigradum	U49909
Arthropoda	Colossendeis sp.	AF005440
	Pandinus imperator	AY210831
	Limulus polyphemus	L81949
	Lithobius obscurus	AF334271
	Orthoporus sp.	AY210829
	Heterothrips arisaemae	KC512970
	Ctenolepisma longicaudata	AY210811
	Triops longicaudatus	AF144219
	Orchesellides sinensis	KC236251
	Squilla empusa	L81946
Gnathostomulida	Haplognathia simplex	DQ079931
Bryozoa	Frondipora verrucosa	FJ409612
Gastrotricha	Paraturbanella teissieri	JF357661
Entoprocta	Barentsia benedeni	U36272
Cycliophora	Symbion pandora	AY218106
Micrognathozoa	Limnognathia maerski	AJ487046
Rotifera	Philodina roseola	AF154567
	Brachionus plicatilis	U49911
	Lecane bulla	AF154566
	Asplanchna sieboldi	AF092434
Platyhelminthes	Catenula sp.	AJ012532
	Stenostomum leucops	D85095
	Macrostomum hystricinum	AF051329
	Haplopharynx rostratus	AJ012511
	Pseudoceros tritriatus	AJ228794
	Thysanozoon brocchii	D85096

	Discocelis tigrina	U70078
	C C	D85097
	Notoplana australis	D65097
Nemertea	Amphiporus ochraceus	AY039668
	Cerebratulus lacteus	AY145368
	Lineus ruber	AY039672
Mollusca	Rhabdus rectius	AF120523
	Lima lima	AF120533
	Pteria hirundo	AF120532
	Nuculana minuta	DQ279938
	Yoldia myalis	AF207643
Brachiopoda	Glottidia palmeri	U12647
	Lingula anatina	X81631
	Phoronis australis	U36271
Annelida	Urechis caupo	AF342805
	Aspidosiphon misakie	AF119090
	Phascolosoma granula	X79874
	Dero digitata	DQ459984
	Acanthobdella peledin	AY040680
	Glossiphonia complana	AF099943
	Erpobdella octoculata	AF099949

253 **Table S4.** Summary of reads and OTUs obtained within all metazoan phyla in BioMarks data.

254 255

Metazoan Phyla	OTUs	Reads	Metazoan Phyla	OTUs	Reads
Porifera	13	262	Priapulida	2	117
Ctenophora	10	23,371	Kinorhyncha	3	2,291
Cnidaria	55	18,627	Nematoda	247	8,932
Acoelomorpha	31	3,069	Tardigrada	3	8
Gastrotricha	23	1,540	Arthropoda		
Gnathostomulida	1	33	Myriapoda	1	190
Rotifera	12	3,576	Hexapoda	3	12
Bryozoa	12	1,055	Crustacea	370	190,872
Phoronida	1	306	Chellicerata	7	575
Platyhelminthes	33	1,540	Chaetognatha	21	14,739
Nemertea	7	622	Xenoturbellida	1	15
Mollusca	53	9,907	Echinodermata	16	3,206
Annelida			Hemichordata	2	123
Polychaeta	97	34,693	Craniata	14	1,961
Clitellata	1	5	Tunicata	30	37,982
Sipuncula	3	681	MAME 1	3	1,860

256 Table S5. Summary of the 20 most abundant metazoan OTUs in the water column

257 258 taking into account the number of RNA reads.

Metazoan group	ΟΤυ	RNA reads	%ª within metaz.	% [♭] within group	CIM°	CIM BLAST % ID ^d	CIM taxonomy
Crustacea	6	10746	9.8%	22.0%	HM997070	100%	<i>Paracalanus parvus (</i> Calanoida, Copepod)
	2	7944	7.3%	16.3%	JX995318	100%	<i>Calanus helgolandicus (</i> Calanoida, Copepod <i>)</i>
	21	4834	4.4%	9.9%	JX995321	100%	Pseudocalanus elongatus (Calanoida, Copepod)
	11	3545	3.3%	7.3%	JX995298	100%	<i>Centropages typicus (</i> Calanoida, Copepod <i>)</i>
	15	3093	2.8%	6.3%	HM997062	100%	<i>Temora discaudata (</i> Calanoida, Copepod <i>)</i>
	84	2796	2.6%	5.7%	HM997079	98%	<i>Clausocalanus arcuicornis</i> (Calanoida, Copepod)
	224	2679	2.5%	5.5%	HM997079	99%	<i>Clausocalanus arcuicornis</i> (Calanoida, Copepod)
	22	2219	2.0%	4.5%	JF781540	98%	Oithona sp. (Cyclopoida, Copepod)
	8	1865	1.7%	3.8%	GU969179	100%	<i>Oithona Similis (</i> Cyclopoida, Copepod <i>)</i>
Total		39721	36.4%	81.2%			
Tunicata	4	21436	19.6%	56.6%	AB013014	100%	Oikopleura dioica (Appendicularian)
	39	1723	1.6%	4.6%	AY116613	100%	Oikopleura dioica (Appendicularian)
	169	1082	1.0%	2.9%	AB013012	100%	Doliolum nationalis (Doliolid)
Total		24241	22.2%	64.0%			
Ctenophora	7	12031	11.0%	83.5%	AF100944	100%	Pleurobrachia pileus (Typhlocoela)
	52	2108	1.9%	14.6%	AF293700	100%	Lampocteis cruentiventer (Cyclocoela)
Total		22387	12.9%	98.2%			
Chaetognatha	49	3736	3.4%	42.3%	DQ351879	99%	Krohnitta pacifica (Saggitoidea)
	80	3285	3.0%	37.2%	DQ351877	99%	Flaccisagitta enflata (Saggitoidea)
Total		7021	6.4%	79.5%			
Cnidaria	79	2114	1.9%	46.3%	AY039208	100%	Aurelia aurita (Scyphozoa)
	50	1887	1.7%	41.3%	DQ080014	100%	Lilyopsis rosea (Hydrozoa)
Total		4001	3.7%	87.6%			
Rotifera	116	2573	2.4%	86.9%	DQ297711	99%	Notommata cordonella (Ploimida)
MAME 1	102	1093	1.0%	65.1%	HQ869055*	95%	Uncultured eukaryote*

a. Percentage of RNA reads within the metazoans in the water column.b. Percentage of RNA reads within the correspondent in the water column.

c. Accession number of the Closest Identified Match.

d. BLAST identity.

* The Closest Identified Match match has a very low identity (less than 90%). It is indicated instead, the Closest Environmental Match (CEM).

265 Table S6. Summary of the 20 most abundant metazoan OTUs in the sediments taking into account

the number of RNA reads.

266 267

Metazoan group	ΟΤυ	RNA reads	%ª within metaz.	% ^b within group	CIM°	CIM BLAST % ID ^d	CIM taxonomy
Polychaeta	61	1823	5.2%	22.7%	EU340097	99%	Aurospio foodbancsia (Spionida)
	89	1742	5.0%	21.7%	JF903633	100%	Prosphaerosyllis magnoculata (Aciculata)
	88	1423	4.1%	17.7%	JN936464	92%	Paralysippe annectens (Scolecida)
	26	643	1.9%	8.0%	AF412798	99%	Parougia sp. (Aciculata)
	36	495	1.4%	6.2%	JN936464	92%	Paralysippe annectens (Scolecida)
	69	389	1.1%	4.8%	AY838852	100%	Ninoe nigripes (Aciculata)
	229	388	1.1%	4.8%	AY611455	100%	Polydora giardi (Scolecida)
Total		6903	19.8%	85.8%			
Crustacea	68	2900	8.3%	36.7%	AB076635	98%	Limnocythere sp. (Ostracoda)
	211	802	2.3%	10.2%	AB076621	89%	Kotoracythere inconspicua (Ostracoda)
	273	458	1.3%	5.8%	EU380309	97%	ltunella muelleri (Copepoda)
	216	458	1.3%	5.8%	AY627016	100%	Brayda sp. (Copepoda)
	76	399	1.2%	5.1%	AB076631	100%	Leptocythere lacertosa (Ostracoda)
	260	326	0.9%	4.1%	EU380293	97%	Paramphiascella fulvofasciata (Copepoda)
Total		5343	15.3%	67.6%			
Mollusca	18	5389	15.5%	82.9%	DQ279940	100%	Abra nitida (Bivalvia)
	67	847	2.4%	13.0%	EF489348	100%	Scaphander lignarius (Gastropoda)
Total		6236	17.9%	95.9%			
Platyhelminthes	74	1427	4.1%	48.3%	FJ715296	99%	<i>Microstomum papillosum</i> (Rhabditophora)
Echinodermata	51	1159	3.3%	92.8%	AJ011142	99%	<i>Amphiura chiajei</i> (Ophiurida)
Nematoda	176	624	1.8%	12.5%	AJ966473	94%	Anaplectus sp. (Chromadorea)
Sipuncula	340	500	1.4%	91.2%	AF519248	100%	Phascolion strombus (Golfingiida)
Cnidaria	50	337	1.0%	67.4%	DQ080014	100%	<i>Lilyopsis rosea</i> (Hydrozoa)

a. Percentage of RNA reads within the metazoans in the sediments.b. Percentage of RNA reads within the correspondent in the sediments.c. Accession number of the Closest Identified Match.d. BLAST identity.

Table S7. Summary of the OTUs, whose RNA reads from small fractions are suspected 272

to come from gametes.

273 274

Distribution	Metazoan group	ΟΤυ	Reads ^c within small fraction	% ^d within dataset	CIM	CIM BLAST % ID.	CIM taxonomy
Small and large fractions ^a	Ctenophora	7	11201	50.3%	AF100944	100%	Pleurobrachia pileus (Typhlocoela)
	Cnidaria	79	1589	7.1%	AY039208	100%	Aurelia aurita (Scyphozoa)
	Total		12790	57.5%			
Small exclusive ^b	Polychaeta	88	340	1.5%	JN936464	92%	Paralysippe annectens (Scolecida)
	Ctenophora	52	212	1.0%	KJ754158	100%	Mnemiopsis leidy (Cyclocoela)
	Ctenophora	579 8	104	0.5%	KJ754154	98%	<i>Pleurobrachia brunnea</i> (Typhlocoela)
	Ctenophora	715	77	0.4%	HG931678	96%	Beroe ovata (Cyclocoela)
	Polychaeta	19	70	0.3%	AY611452	88%	Hydroides novegica (Palpata)
	Total		803	3.6%			
TOTAL ^e			13593	3.2% ^e			

a. OTUs that are present in pico/nano and micro/meso fractions.

b. The 5 most abundant OTUs exclusive from the pico/nano fractions.
c. Number of RNA reads within the pico/nano fractions.
d. Percentage of RNA reads within the pico/nano fractions for metazoans.
e. Percentage of RNA reads within the pico/nano fractions for all eukaryotes.

Dataset specs

Templates

DNA **RNA**

Sample fractions

Picoplankton (0.8–3 μ m) Nanoplankton $(3-20 \mu m)$ Micro/mesoplakton (20-2,000 µm) Sediments (total)

Depth

Subsurface DCM Sediments

43°10' N 28° 50' E Varna 2010 (oxic and anoxic samples)

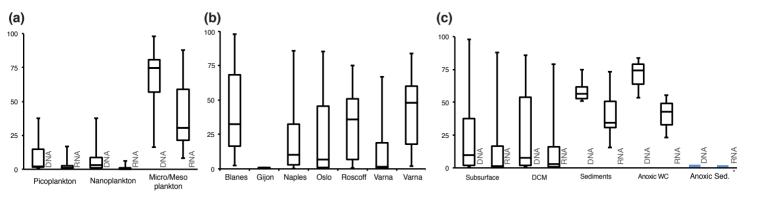
 Oslo 2009 & 2010 59° 16' N 10° 43' E

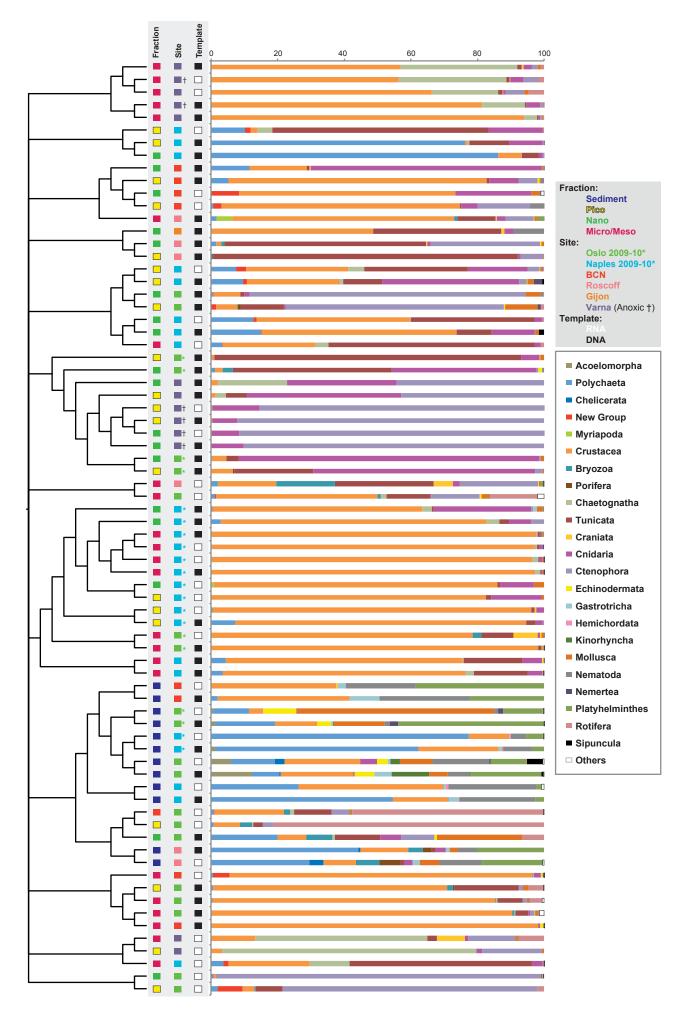
Ģ

48° 46' N 3° 57' W Roscoff

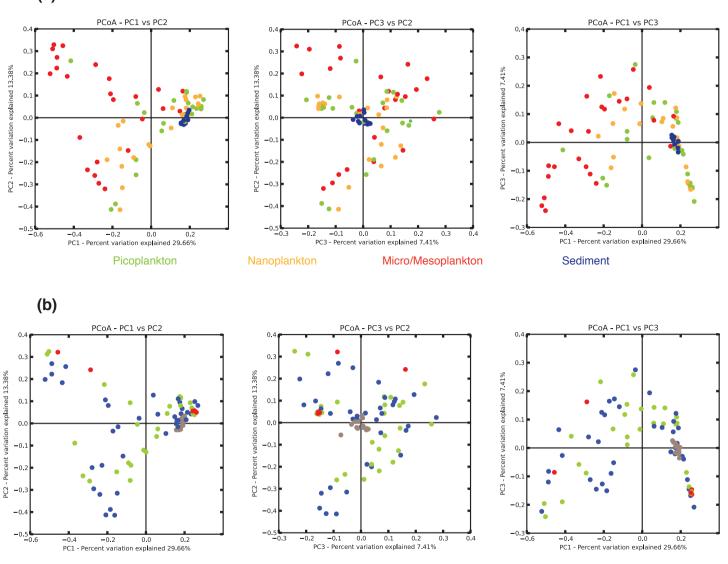
2010

S

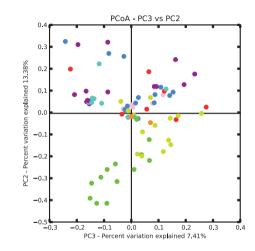

43° 40' N 5° 35' W


Gijon

2009

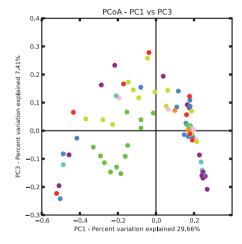

41° 40' N 2° 48' E Blanes 2009

Naples 2009 & 2010 40° 48' N 14° 15' E

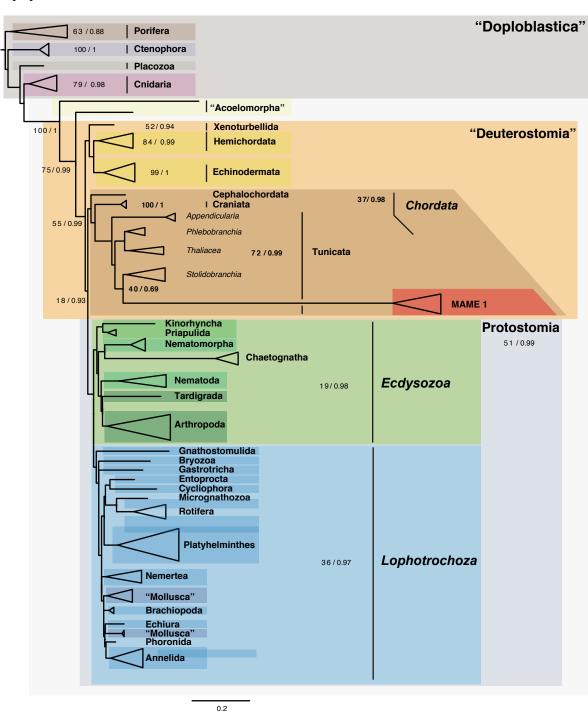


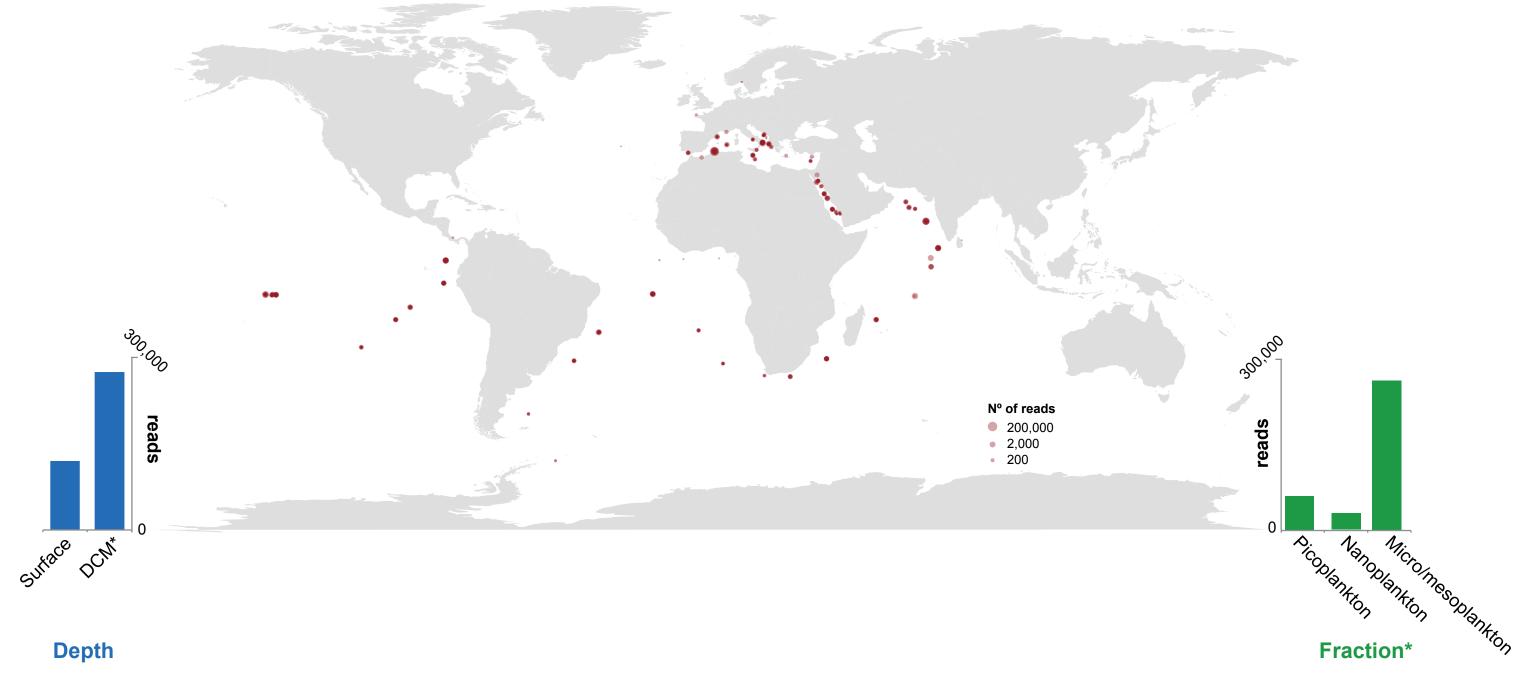
(a)

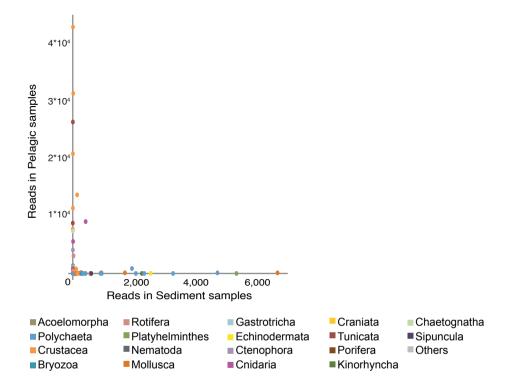
Subsurface


(c) PCoA - PC1 vs PC2 0.4 0. variation explained 13.38% 0.2 0.1 0.0 -0.3 Percent -0.2 PC2--0.3 -0.4 -0.5 -0.4 -0.2 0.0 0.2 PC1 - Percent variation explained 29.66%

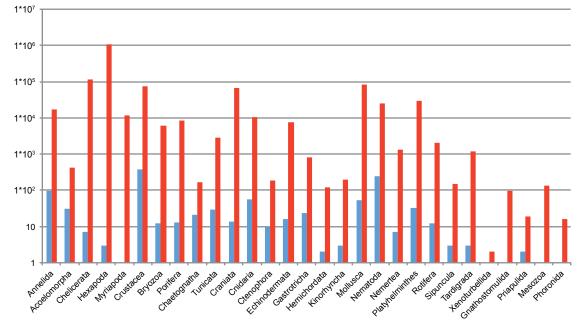
DCM


Anoxic

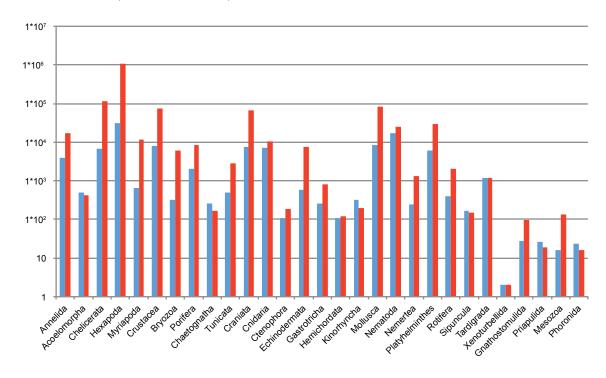

Sediment

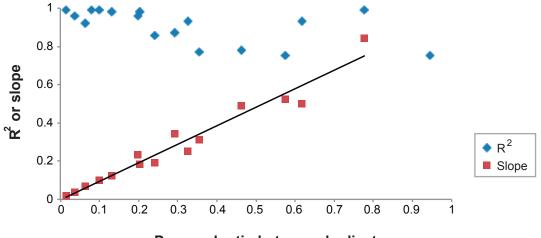

Blanes Gijon Naples_2009 Naples_2010 Oslo_2009 Oslo_2010 Roscoff Varna

(a)



(b)





(b)

■18S rRNA Sequences in NCBI ■N° of species described

Pyroread ratio between duplicates