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Text S1: Detailed Methods

1 Binomial Mixed Model

To detect differentially methylated sites, we model each potential target of DNA methylation one site at
a time. For each site, we consider the following binomial mixed model (BMM):

yi ∼ Bin(ri, πi), (1)

where ri is the total read count for ith individual; yi is the methylated read count for that individual,
constrained to be an integer value less than or equal to ri; and πi is an unknown parameter that represents
the true proportion of methylated reads for the individual at the site. We use a logit link to model πi as
a linear function of parameters:

logit(πi) = log(λi) = wT
i α + xiβ + gi + ei, (2)

g = c(g1, · · · , gn)T ∼ MVN(0, σ2h2K), (3)

e = c(e1, · · · , en)T ∼ MVN(0, σ2(1− h2)In×n), (4)

where logit denotes a logistic transformation logit(πi) = log( πi

1−πi
); λi = πi

1−πi
is the odds; wi is a c-vector

of covariates including an intercept and α is a c-vector of corresponding coefficients; xi is the predictor
of interest and β is its coefficient; g is an n-vector of genetic random effects that model correlation due
to population structure or individual relatedness; e is an n-vector of environmental residual errors that
model independent variation; K is a known n by n relatedness matrix that can be calculated based on a
pedigree or genotype data and that has been standardized to ensure tr(K)/n = 1 (this ensures that h2 lies
between 0 and 1, and can be interpreted as heritability, see [1]); I is an n by n identity matrix; σ2h2 is the
genetic variance component; σ2(1−h2) is the environmental variance component; h2 is the heritability of
the logit transformed methylation proportion (i.e. logit(π)); and MVN denotes the multivariate normal
distribution.

The binomial mixed model proposed here belongs to the generalized linear mixed model family [2].
Both g and e model over-dispersion, the increased variance in the data that is not explained by the
binomial model. However, they model different aspects of over-dispersion: e models the variation that
is due to independent environmental noise (a known problem in data sets based on sequencing reads),
while g models the variation that is explained by kinship or population structure. Effectively, our model
improves and generalizes the previous beta binomial model by introducing this extra g term to model
individual relatedness due to kinship, population structure, or stratification.

2 Inference Method Overview

We are interested in testing the null hypothesis H0 : β = 0. This requires obtaining the maximum
likelihood estimate β̂ from the model. Unlike its linear counter-part, obtaining the estimate of β from the
binomial mixed model is not a trivial task, as the joint likelihood consists of an n-dimensional integral that
cannot be solved analytically [2]. Previous frequentist approaches to address this problem include direct
numerical integration using Gauss-Hermite quadrature [3], or Laplace approximation that is applied to
the likelihood function [4] or the quasi-likelihood function [5–8]. However, both numerical integration and
analytic approximation do not scale well with the increasing dimension of the integral, which unfortunately
equals the sample size in our model. Even a second order Laplace approximation yields a biased estimate
and overly narrow confidence interval, especially when the uncertainty in the variance component estimate
is large [9–13]. Therefore, frequentist approaches for estimation and inference in the binomial mixed model
remain notoriously difficult and is still an active area of research [14].



2

In contrast to the frequentist methods, Markov chain Monte Carlo (MCMC)-based Bayesian ap-
proaches provide an appearing alternative [11]. Bayesian methods naturally account for the uncertainty
in the variance component estimates and can achieve arbitrary inference accuracy if the chain is allowed to
run long enough. Despite these attractive theoretical features, however, constructing an efficient MCMC
algorithm for practical problems is not easy. Previous MCMC approaches for generalized linear mixed
models either require a normal approximation to the likelihood function that diminishes its gains over the
frequentist methods [15,16], or use n-steps of Metropolis–Hastings algorithm to sample the n-dimensional
latent rate variables where efficient proposal distributions for all of them can be hard to construct [17,18].
To improve upon these previous approaches, a new MCMC algorithm [19–21] has been recently devel-
oped based on auxiliary variable representation of the binomial distribution [22]. By introducing latent
variables to replace the observed count data, the algorithm makes sampling and computation relatively
straightforward.

Therefore, we rely on this particular form of MCMC in the present study. Our main contribution
is to further develop an accurate approximation to the distribution of these latent variables, where the
approximation form is specifically designed to allow us to adapt recent mixed model innovations [23–26]
that substantially reduce the computational burden. By using a mean-normal mixture approximation
to the negative log gamma distribution, our approach reduces the per-MCMC iteration computational
complexity from O(n3) to O(n2), where n is the sample size. This modification allows the binomial mixed
model to be efficiently applied to hundreds of individuals and millions of methylation sites.

Although we use MCMC for posterior sampling, our primary goal is not to perform a Bayesian
analysis by producing Bayes factors for model comparison (although this is an interesting area to explore
in the future). Rather, our goal is to use MCMC as a convenient and accurate tool to obtain the
marginal likelihood of β that is otherwise infeasible or inaccurate to obtain under various frequentist
approaches. Under asymptotics, both the likelihood function and the marginal posterior distribution for
β will be approximately normal [27]. Since the likelihood function is simply the difference between the
posterior and the prior, once we have obtained the posterior mean and standard deviation of β and paired
these values to their prior counter-parts, we can easily obtain the approximate likelihood function and
compute the approximate maximum likelihood estimate β̂ and its standard error se(β̂) using the method
of moments. We can then construct approximate Wald test statistics and p values for hypothesis testing.

In the present study, we use flat priors for all nuisance parameters (α, σ2, h2), or p(α) ∝ 1, p(σ2) ∝ 1
and p(h2) ∝ 1. (Notice that a uniform distribution for σ2 on the log scale, or p(log(σ2)) ∝ 1, would make
the posterior distribution different from the likelihood.) For the parameter of interest, β, we could also
use a flat prior, in which case the posterior would be the likelihood. For computational stability reasons,
however, we use a relatively informative prior, β ∼ N(0, σ2

b ) instead. A relatively informative prior
restricts the sampling space when the likelihood is not informative, allowing efficient posterior sampling.
Since we rely on the difference betwen the posterior and the prior for approximate inference, the choice
of prior for β does not influence the eventual results. In the present study, we set σ2

b = 1.
Applications to real data confirm that this procedure produces well-calibrated p-values (Figure 1),

suggesting that a few dozen samples are large enough to ensure asymptotic behavior. Moreover, although
our approach is inherently stochastic – because the posterior mean and standard deviation of β may be
slightly different for different chains – we show that a thousand MCMC iterations per site is large enough
to produce stable estimates of the test statistics and p values (Figure S2).

3 The MACAU Algorithm

Below, we describe the MACAU algorithm, for Mixed model Association for Count data via data AUg-
mentation, in detail.
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3.1 Data Augmentation

To bypass the difficult likelihood function that results from the count nature of the data, we introduce
continuous auxiliary variables to replace yi. For ith individual, observing yi methylated reads out of
ri total reads is equivalent to observing a sequence of ri binary read indicators (yi1, · · · , yiri), where
yij = 1 indicates that the jth read is a methylated read and yij = 0 indicates otherwise. Obviously,
yi =

∑ri
j=1 yij . We can view each yij as a random variable generated from a logistic regression model

with mean log(λi). We further introduce a continuous latent variable uij [19, 20], often referred to as a
utility [22], such that

uij = log(λi) + ε1ij , ε1ij ∼ EV(0, 1), (5)

where EV(0, 1) denotes a standard type-1 extreme value distribution with density function e−xe−e
−x

.
Then

yij =

{
1, if uij > ε0ij ,

0, otherwise,
(6)

where ε0ij ∼ EV(0, 1). The above two equations come from the fact that the difference between two type-1
extreme value distributed random variables follows a logistic distribution, and a random variable that
follows a logistic distribution serves as a liability variable for a logistic regression [22].

The attractive feature of introducing this set of independently and identically distributed uij is that,
conditional on all uij , the posterior of (α, β, σ2, h2) no longer depends on the observed methylated
read indicator yij , hence removing the non-linearity constraint that comes with the binomial aspect of
our model. Applying the relationship between the EV distribution and the exponential distribution,

we have e−uij ∼ Exp(λi) and e−ε
0
ij ∼ Exp(1), where Exp denotes the exponential distribution. This

relationship allows us to easily sample uij conditional on λi and yij based on the convenient exponential
distribution rather than the more difficult EV distribution, as e−uij ∼ Exp(1 + λi) if yij = 1 and
e−uij ∼ Exp(1 + λi) + Exp(λi) if yij = 0.

An undesirable feature of the above approach, however, is that we have to work with a much larger
latent space of uij than the original n observations of yi. Effectively, we have to retain the data at the
individual read level. This drawback can be mitigated by combining all exponentiated negative latent
utilities together [21], by introducing a new latent variable

zi = − log(

ri∑
j=1

e−uij ) = log(λi) + εi, (7)

where εi = − log(
∑ri
j=1 e

−ε1ij ) follows a negative log gamma distribution, − log(Ga(ri, 1)); Ga denotes a
gamma distribution with the two parameters representing shape and rate, respectively. This is because a
gamma random variable is a summation of independent exponential random variables with a same rate
parameter.

Using the latent variable zi instead of uij reduces the size of the latent space back to the observed
space. Conditional on zi, we again do not need to use yi, allowing us to bypass the count feature of the
observed data in the algorithm.

3.2 Normal Mixture Approximation

To further circumvent the difficulty introduced by the non-normality of εi, we follow previous ideas
[20,21] to approximate the non-normal distribution by using a mixture of normals. Importantly, we take
advantage of recent innovations in efficient mixed model algorithms [23–26] by using a mean mixture of
normals where each normal distribution has a different mean but share the same variance.

Specifically, for every possible integer value of r, we identify a normal approximation in the form of∑kr
k=1 wrkN(mrk, s

2
r), to the negative log gamma distribution − log(Ga(r, 1)). Because the mean (−Ψ(r),
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where Ψ denotes a digamma function) and the variance (Ψ′(r), where Ψ′ denotes a trigamma function)
of the negative log gamma distribution is a function of r, to ensure approximation stability we work
on the standardized version of the negative log gamma distribution, by centering with the mean and
standardizing with the standard deviation. Then, we estimate the number of components kr, the weights
wrk, the means mrk and the variance s2r via the Nelder-Mead algorithm by minimizing the Kullback–
Leibler (KL) divergence between the two distributions. These parameter estimates ensure that the
KL divergence is smaller than 0.0005, so that the difference between the approximate and the exact
distributions are ignorable in practice. Because the negative log gamma distribution asymptotically
approximates a normal distribution, the approximation becomes easier for larger r. Therefore, we can
use increasingly smaller number of normal components for accurate approximation.

For small values of r (r ∈ [1, 5]), we provide detailed parameter values in Table S1. For median
values of r (r ∈ [6, 169]), we no longer need to store parameters for every r. Instead, we can interpolate
the weight, mean and variance estimates across the range of r using rational functions without loss of
accuracy. These functions are provided in the Table S2. For large values of r (r ∈ [170,∞), we use
a single normal distribution N(0,Ψ′(r)) for approximation. The mean normal mixture approximations
are accurate. Even in the most difficult case where r = 1, we only observe small difference between the
approximate and the exact distributions (Figure S3).

3.3 Detailed Sampling Steps and Efficient Computation

Now we are ready to describe the detailed MCMC algorithm. Here, with the normal mixture approxi-
mation, we have

zi = log(λi) + εi = wT
i α + xiβi + gi + ei + εi, εi ∼

kri∑
k=1

wrikN(mrik, s
2
ri). (8)

We introduce a vector of latent indicators γ = (γ1, · · · , γn), where each γi ∈ (1, · · · , kri) indicates which
normal component the corresponding εi is from. Conditional on zi and (α, β, gi, ei), we have

P (γi = k|zi,α, β, gi, ei) ∝ wrikΦ(zi − log(λi)−mrik, σ
2
ri), (9)

where k ∈ (1, · · · , kri) and Φ denotes the normal density function. Conditional on γ, we can integrate
out α, β, g, e and ε analytically to obtain the marginal distribution of σ2 and h2,

P (σ2, h2|z,γ) ∝ |H|− 1
2 |WTH−1W|− 1

2 |σ2
bx

TPwx + 1|− 1
2 e−

1
2 (z−mγ)

TPx(z−mγ), (10)

where z = (z1, · · · , zn)T , mγ = (mr1γ1 , · · · ,mrnγn)T , W = (w1, · · · ,wn)T , Dr is an n by n diagonal ma-
trix with iith element σ2

ri , V = h2K+(1−h2)I, H = σ2V+Dr, Pw = H−1−H−1WT (WTH−1W)−1WH−1

and Px = Pw −Pwx(xTPwx + σ−2b )−1xTPw.
We can use the Metropolis–Hastings (MH) algorithm to obtain posterior samples for σ2 and h2 jointly.

Afterwards, we can obtain posterior samples for α, β and g + e in turn,

P (β|z,γ, σ2
g , σ

2
e) ∼ N((xTPwx + σ−2b )−1xTPw(z−mγ), (xTPwx + σ−2b )−1), (11)

P (α|z,γ, β, σ2
g , σ

2
e) ∼ MVN((WTH−1W)−1WTH−1(z−mγ − xβ), (WTH−1W)−1), (12)

P (g + e|z,γ,α, β, σ2, h2) ∼ MVN(σ2VH−1(z−mγ −Wα− xβ), σ2VH−1Dr). (13)

Finally, conditional on yi and λi, the posterior of zi is easy to sample. By using the relationship
between the gamma distribution and the exponential distribution, we have

zi|yi, λi ∼ Ga(ri, 1 + λi) + Ga(yi, λi). (14)
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The most computationally expensive part of the algorithm is the MH step: a naive approach to
evaluate P (σ2, h2|zi, γi) would involve cubic operations. Our mean normal mixture approximation allows
us to evaluate this marginal likelihood efficiently as we can apply here the mixed model innovations
developed recently [23–26]. This is because given the observed data, Dr is a fixed diagonal matrix where
the elements do not depend on a γ that changes in every MCMC iteration. Therefore, for a given matrix

V, we can perform an eigen-decomposition on D
− 1

2
r VD

− 1
2

r = UDUT . This allows us to decompose

H = σ2V + Dr = D
1
2
r U(σ2D + I)UTD

1
2
r . Afterwards, we can transform the latent variables and other

covariates to obtain D
1
2
r U(z −mγ), D

1
2
r UW and D

1
2
r Ux. This procedure avoids any cubic operations

later on in the MCMC steps. Therefore, with the mean normal mixture approximation, we only need to
perform eigen-decompositions at the beginning of the MCMC. Afterwards, each Gibbs step only requires
quadratic operations (transformation of z−mγ). In practice, because V is a function of h2, we assign a
discrete uniform prior for h2 and evaluate the eigen-decompositions on every discrete values of h2. In the
present study, we found that using either 10 or 100 discrete values of h2 yields almost identical results
(and we present the analyses results for the formal in the main text), suggesting that a fine grid for h2

is not necessary because of our small sample size. Finally, for all analyses in the present study, we ran
1100 Gibbs sampling iterations with the first 100 as burn-in. In each Gibbs iteration, after sampling the
latent variables z and the latent indicators γ, we further ran 10 MH steps before continuing the Gibbs
iterations.

4 Parameter Estimation and p Value Computation

Denote β̄ as the posterior mean and σ2
β as the posterior variance. Since both the likelihood and the

posterior follow normal distributions asymptotically, and because we also use a normal distribution as
the prior distribution, we can easily obtain the approximate maximum likelihood estimate and its standard
error by the method of moments, or

β̂ = σ2
b β̄/(σ

2
b − σ2

β), (15)

se(β̂) = σbσβ/
√
σ2
b − σ2

β . (16)

The condition σ2
b > σ2

β is guaranteed by asymptotics. In rare cases, however, this condition may not
be satisfied because of the limited MCMC sampling iterations in practice. This may be particularly
concerning for sites where the likelihood function is not informative. Arguably, these non-informative
sites are the ones that we do not want to perform analysis on in the first place. Therefore, this condition
gives us a natural way to perform post-filtering. In the software implementation, we do not analyze sites
where σ2

β ≥ cσ2
b for a user defined threshold c (c ≤ 1). We use c = 0.95 throughout the present study.

This post-filtering step, however, has minimal influence on the results, as only a few dozen sites, out of
half a million, are filtered out in each analysis.
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