Supplementary Materials

Harnessing a Novel P450 Fatty Acid Decarboxylase from *Macrococcus* caseolyticus for Microbial Biosynthesis of Odd Chain Terminal Alkenes

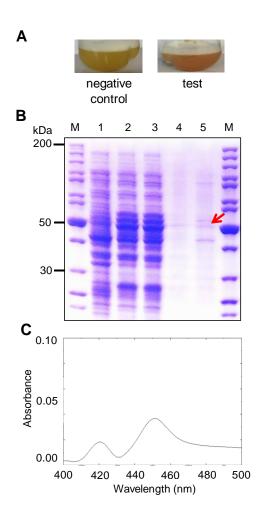
Jong-Won Lee^{1,2,§}, Narayan P. Niraula^{3,§,#}, and Cong T. Trinh^{1,2,3,*}

 ¹Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, USA
 ²Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
 ³Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA

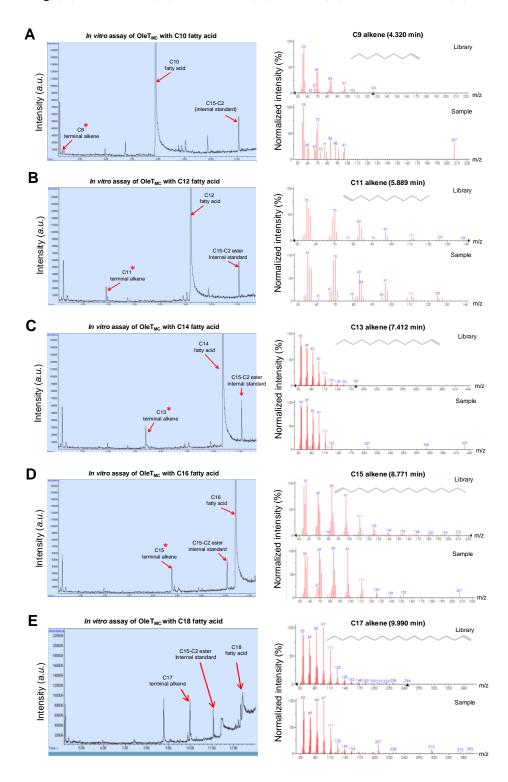
§Equal contributions

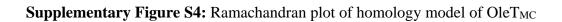
*Corresponding author. Email: ctrinh@utk.edu

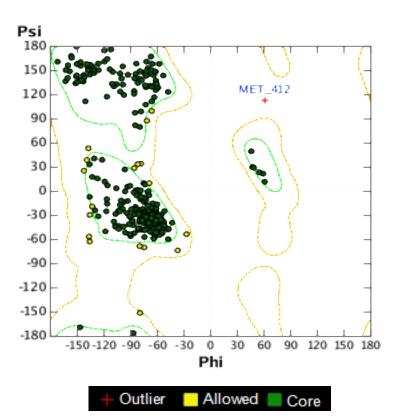
[#]Current address: Pfizer Inc, Kalamazoo, MI


Running title: Harnessing OleT_{MC} for terminal alkene synthesis in E. coli

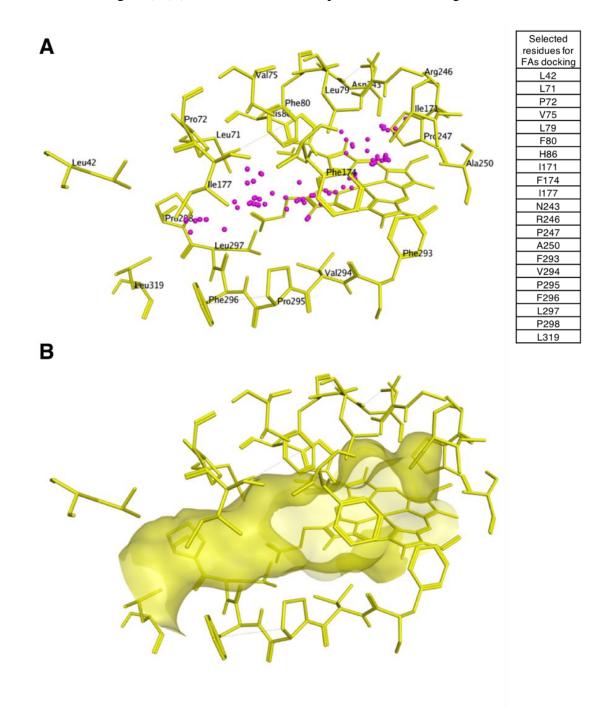
Supplementary Figure S1. Alignment of $OleT_{JE}$ with the CYP152 P450 enzyme family. The sequences were aligned via MUSCLE and sequence identities were calculated by BLASTp using

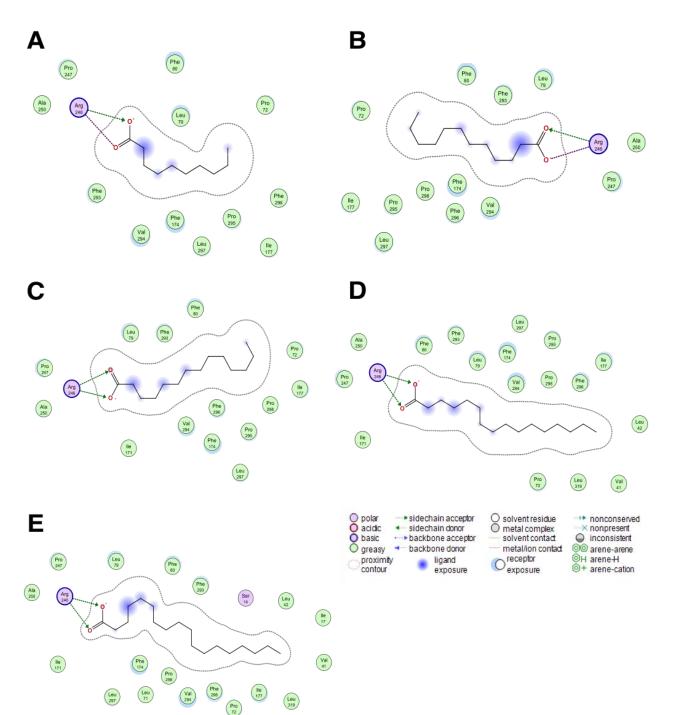

OleT_{JE} as a template.


	F ⁷⁹	H ⁸⁵	R ²⁴⁵	Identity (%)
1. ADW41779.1_terminal_olefin-forming_fatty_acid_decarboxylase_Jeotgalicoccus_spATCC_8456	LFGKG/	AIH	R P	100
BAA22987.1_fatty_acid_alpha-hydroxylase_Sphingomonas_paucimobilis	LLGQG	3 V Q	RP	37
3. NP_349922.1_hypothetical_protein_CA_C3330_Clostridium_acetobutylicum_ATCC_824	LLGEN/	A I Q	RP	40
 NP_388092.1_fatty-acid_peroxygenase_Bacillus_subtilis_subspsubtilis_str168 	LFGVN/	A I Q	RP	42
5. WP_010897918.1_cytochrome_P450_Bacillus_halodurans	LFGEN/	A I Q	RP	36
6. WP_011075937.1_cytochrome_P450_Corynebacterium_efficiens	LFGEG/	A V H	R P	32
7. WP_011247882.1_cytochrome_P450_Bacillus_clausii	LFGKGO	3 V Q	RP	38
8. WP_011542827.1_cytochrome_P450_Sphingopyxis_alaskensis	LLGVGC	3 V Q	R P	36
9. WP_011578671.1_cytochrome_P450_Chelativorans_spBNC1	LLGVGC	3 V Q	RP	37
10. WP_012117266.1_MULTISPECIES:_cytochrome_P450_Bacillus_amyloliquefaciens_group	LFGTG/	A I Q	RP	42
11. WP_012200920.1_cytochrome_P450_Lachnoclostridium_phytofermentans	LFGVN/	A I Q	RP	38
12.WP_012399225.1_cytochrome_P450_Kocuria_rhizophila	LFGAG	A V H	R P	31
13.WP_012960819.1_cytochrome_P450_Bacillus_pseudofirmus	LFGED/	A I Q	RP	42
14.WP_013272538.1_cytochrome_P450_Clostridium_saccharolyticum	LFGVN/	A I Q	R P	38
15. WP_013288001.1_MULTISPECIES:_cytochrome_P450_Micromonospora	LTGVGC	3 V Q	R P	37
16. WP_015880780.1_cytochrome_P450_Exiguobacterium_spAT1b	LFGEGO	3 V Q	R P	35
17.WP_041635889.1_cytochrome_P450_Macrococcus_caseolyticus		4 I H	R P	60
18. ZP_00964321.1_fatty_acid_alpha_hydroxylase_cytochrome_P450_Sulfitobacter_spNAS-14.1	LLGEGO	3 I Q	R P	34
19. ZP_01227146.1_acid_alpha_hydroxylase_cytochrome_P450_Aurantimonas_manganoxydans_SI85-9A1	LLGKHO	3 V Q	R P	35
20. ZP_01728364.1_fatty_acid_alpha_hydroxylase_cytochrome_P450_Cyanothece_spCCY0110	LFGEKO	3 I Q	R P	37
21. ZP_02200540.1_Cytochrome_P450-like_protein_Methylobacterium_populi_BJ001	I Q D H G S	B V M	R P	31
22. ZP_02617555.1_cytochrome_P450_Clostridium_botulinum_Bf	LFGEN/	A I Q	R P	41
23. ZP_02994641.1_hypothetical_protein_CLOSP0_01760_Clostridium_sporogenes_ATCC_15579	LFGEN/	A I Q	RP	41
24. ZP_03227611.1_fatty_acid_alpha_hydroxylase_cytochrome_P450_Bacillus_coahuilensis_m4-4	LFGEGO	3 V Q	RP	40
25. ZP_03494465.1_cytochrome_P450_Alicyclobacillus_acidocaldarius_LAA1	LFGEN/	A I Q	RP	40
26. ZP_04432145.1_fatty_acid_alpha_hydroxylase_Bacillus_coagulans_36D1	LFGEN/	A I Q	RP	38
27. ZP_06401204.1_fatty_acid_alpha_hydroxylase_cytochrome_P450_Micromonospora_spL5	LTGVGC	3 V Q	RP	38
28. ZP_06874634.1_fatty_acid_beta-hydroxylating_cytochrome_P450_Bacillus_subtilis_subspspizizenii_ATCC_663	LFGVN/	A I Q	RP	41
29. ZP_06884025.1_cytochrome_P450_Clostridium_lentocellum_DSM_5427	LFGVN/	A I Q	R P	36


Supplementary Figure S2. Characterization of $OleT_{MC}$. (A) Reddish exhibition of BL21 ($\lambda DE3$)/ pNN33 upon expressing $OleT_{MC}$. Negative control: cell culture of BL21 ($\lambda DE3$) without carrying $OleT_{MC}$. (B) SDS-PAGE analysis of the expressed $OleT_{MC}$ in BL21 ($\lambda DE3$)/pNN33. Lane M, protein marker; lane 1, total cell extracts of un-induced cells; lane 2, total cell extracts of induced cells; lane 3, soluble fraction of induced cells; lane 4, insoluble fraction of induced cells; lane 5, Ni-NTA semi-purified fraction of induced cells. The arrow indicates the target protein $OleT_{MC}$ with predicted mass of ~51 kDa. (C) Reduced carbon monoxide difference spectra of semi-purified $OleT_{MC}$

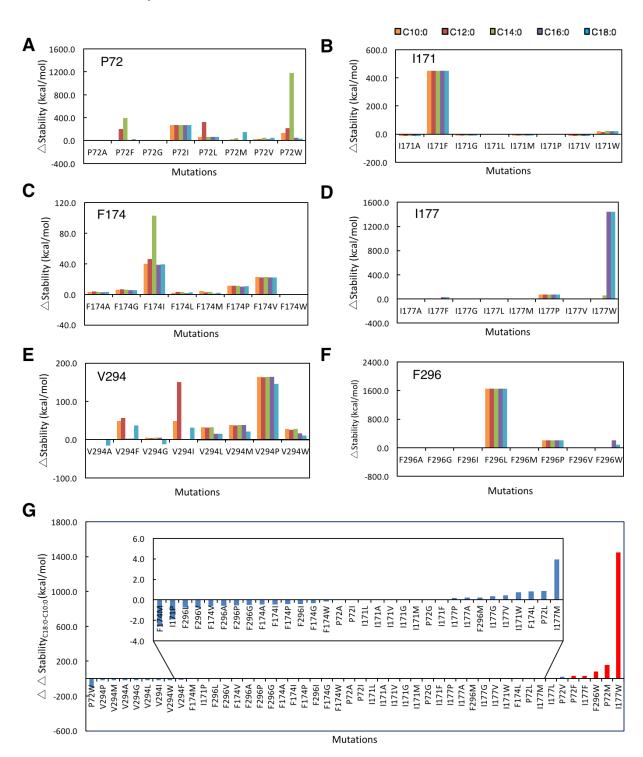
Supplementary Figure S3: GC/MS chromatograms for *in vitro* biosynthesis of terminal alkenes by OleT_{MC} using (**A**) C10:0 FA, (**B**) C12:0 FA, (**C**) C14:0, (**D**) C16:0 FA, and (**E**) C18:0.



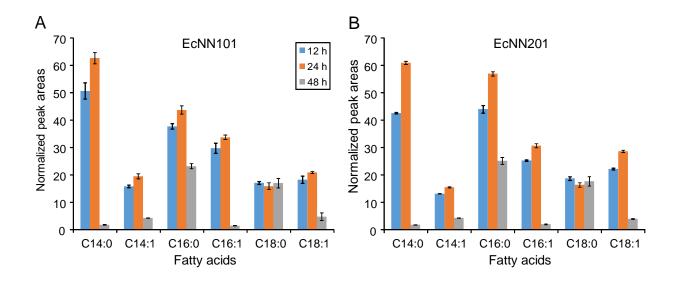


# Outlier Region	Resides	Psi	Phi	
1	Pro295	-56.5	-85.7	
2	Met412	113.1	61.1	

Supplementary Figure S5: (**A**) Selected residues for FAs docking (dummy atoms are in purple, potential FA binding site). (**B**) Molecular surface of potential FA binding site.



Supplementary Figure S6: 2D Ligand interaction diagrams for docking various FAs, including (A) C10:0, (B) C12:0, (C) C14:0, (D) C16:0, and (E) C18:0, into the homology model of OleT_{MC}.


7

Pro 295

Supplementary Figure S7: (A-F) Analysis of Δ Stability of the FA (C10:0-C18:0)-bound OleT_{MC} mutants (G) Δ Stability differences between the C18:0 FA and C10:0 FA-bound OleT_{MC} mutants.

Supplementary Figure S8: Normalized peak areas of saturated and unsaturated fatty acids from the GC/MS chromatograms for strains (**A**) EcNN101 and (**B**) EcNN201 during 48 h cell culturing. The peak area of internal standard is used for normalizing the peak area of samples

