1 Ionization Efficiency (IE) prediction.

1.1 Notations
Let peptide; be a product of digestion of protein;.
I; : Intensity of peptide;
IE; : Tonization Efficiency of peptide;
¢; : concentration of peptide; after trypsin digestion
¢; : concentration of protein; before trypsin digestion

n : total number of detected peptides

1.2 Model

By definition, I; = I F;c;. Assuming a perfectly efficient trypsin digestion, if peptide; is tryptic,
then ¢; = ¢;. Thus, for any peptide i belonging to protein j :

logyo(1;) = logo (I E;) + logy(c;)
Let y; = log,(;), and b; = log;(c;).
Yi = loglo(IEi) +b;

We model log;(IE;) as a linear combination of a K-long feature vector X;j derived from
peptide;’s amino acid sequence, weighted with weights W = [wy, ..., wk]

logo(IE;) = Y (wiXix) + €
k

Yi = Z(kai,k) +b; +¢
%

where ¢; ~ N(u = 0, 0?), and ¢; is independent of X. The equation resembles that of a
Gaussian-noise simple linear regression model, except for the fact that there is a separate intercept
b; per protein. The likelihood of the system is given by:
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1.3 Data preparation

We selected unmodified peptides of charge 2 to train our model. Using the MQ output file ’evi-
dence.txt’ as our input. Peptides belonging to proteins detected by only one peptide were excluded
from the analysis. The remaining peptides were grouped by sequence, and their intensity was de-
fined as the sum of their intensities across all fractions.

For each peptide, we then computed features capturing their amino acid composition, their length,
and potential mis-cleavage issues (see Table 1)

Features were then centered and reduced to unit variance to create the feature matrix X



1.4 Parameter fitting and results

We obtained maximum likelihood estimates for W, B and o by maximizing the log likelihood
described in section 1.2., using the L-BFGS-B implementation of Python’s sklearn module. Figure
1 shows a good agreement between the predicted log,o(/E) (defined as >, (wiX;)) and the
observed log,o(IE) (defined as y; — b;), with a Pearson correlation coefficient R = 0.67. In order
to control for over-fitting, we further divided the set of proteins in two equally sized groups, and
fitted the weights W and log,,(proteinlevels) B separately for both groups. We found a very
good agreement between the W vectors in both groups, confirming that we were not over-fitting
the data (Figure 2). We report the value of the fitted W coeflicients in Figure 3



Table 1: Features computed for this analysis

Name Description Length
count 4 # of occurences of AA in peptide 20
countrp # of occurences of the subsequence 'RP’ in peptide 1
count i p # of occurences of the subsequence ’KP’ in peptide 1
Nierm Pro 1 if peptide starts with Pro, 0 otherwise 1
-2is R 1 if the aa in position -2 relative to the Ny, cleavage site is 'R’, 0 otherwise | 1
2is K 1 if the aa in position -2 relative to the Ny, cleavage site is 'K’, 0 otherwise | 1
-1is R 1 if the aa in position -1 relative to the Ny, cleavage site is 'R’, 0 otherwise 1
-1is K 1 if the aa in position -1 relative to the Ny, cleavage site is 'K’, 0 otherwise | 1
+11is R 1 if the aa in position +1 relative to the Cie,.y cleavage site is 'R’, 0 otherwise | 1
+11is K 1 if the aa in position +1 relative to the Cie,p, cleavage site is 'K’, 0 otherwise | 1
+11is P 1 if the aa in position +1 relative to the Cieppy cleavage site is 'P’, 0 otherwise | 1
inverse length | inverse of the peptide’s length 1
length length of the peptide 1
Total 32
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Figure 1: The predicted log,o(/E) was computed as ), (wpX; ), and the observed

log,((IE) was defined as y; —

b;. Pearson correlation coefficient = 0.69, o = 0.58
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Figure 2: Weights of the regression coefficients W, fitted separately on each half of
the dataset, are plotted against one another. Pearson correlation coefficient > 0.999
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Figure 3: Weights of the regression coefficients W, fitted on the entire dataset. The
weigths are given in unit of log;,(IE)
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