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Supplementary Table 1 
 

 
 

ST1: The combined patients sample, containing the previously reported subjects and the new 
sample. The tables present (top) demographics for the patients sample and (bottom) diagnosis. 
SCZ=schizophrenia; BPD=bipolar disorder; MDD=major depression. All brains have RIN 
≥6.9; mean pH from cerebellar tissue is 6.42 (SD±0.26), and mean postmortem interval (PMI) 
is 32.73 hours (SD±20.63). 

 Non Suicide Suicide by 
Non-Violent Means 

Suicide by 
Violent Means Total Statistics2 

N 101 50 77 228  

Age1 48.45±13.9 44.25±13.52 41.62±14.47 45.22±14.28 
Suicides are younger than 

non suicides (p=0.002), 
especially suicides by 

violent means (p<0.002) 

Males 61 25 58 144 
Among suicides, more men 
choose violent means than 

females (p=0.006) 
1Values are years, means ±SD 
2Two sample t-test and Χ2 test for difference 

 
 

 SCZ MDD BPD 

Non Suicide 51 36 14 

Suicide by 
Non-Violent Means 11 24 15 

Suicide by Violent 
Means 16 47 14 
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Supplementary Figures 
 
Supplementary Figure 1 

 
 

SF1: LINC01268 DLPFC expression in a sample of normal controls of varying ages and 
races. Peak expression of the gene appears to be in early adult life. 
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Supplementary Figure 2 
 

A B  
 
SF2: Boxplots of the effect of manner of death on the DLPFC expression of LINC01268 in 
the replication sample (N=189, All PZ, with age, sex and RIN as covariates). Manner of death 
is significantly associated with LINC01268 expression, which is greater in suicide completers 
compared with non-suicidal deceased (A), and specifically in suicides by violent means 
(N=65) compared with non-suicides (N=78) and suicides by non-violent means (N=46) (B). 
Non-suicides and suicides by non-violent means do not differ. Statistics: (A) non suicide vs 
suicide: t=2.750, p=0.0065 (df 1, 184); (B) non suicide vs violent suicide: t=5.064, p=1.29e-
06 (df 1, 138); non suicide vs non-violent suicide: t=-0.505, p=0.61433 (df 1, 119); non-
violent suicide vs violent suicide: t=5.116, p=1.4e-06 (df 1, 106). 
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Supplementary Figure 3 

 

 
 

SF3: Boxplots of the effect of suicide by violent means vs non-suicide on the DLPFC 
expression of LINC01268 in the total sample (N=228, all PZ), divided by sex. Statistics for 
LM (with age and RIN as covariates) in F: t=4.407 p=4.9e-05; in M: t=5.104 p=1.33e-06. 
LINC01268 expression is greater in suicide by violent means compared with non-suicidal 
deceased in both sexes. F= female, M= male. 
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Supplementary Figure 4 
 

 
 

SF4: Boxplots of the effect of suicide by violent means vs non-suicide on the DLPFC 
expression of LINC01268 in the total sample (N=228, all PZ), divided by diagnosis. Statistics 
for LM (with age, sex and RIN as covariates) in SCZ: t=5.333, p=1.44e-06; in MDD: t=4.715, 
p=1.04e-05; in BPD: t=1.343, p=0.192. LINC01268 expression is greater in suicide by violent 
means compared with non-suicidal deceased in each diagnosis; the effect is not significant in 
BPD, likely due to the smaller sample size. 
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Supplementary Figure 5 
 

 

 
SF5: Preservation of suicide by violent means modules in (top) non-suicide and (bottom) 
suicide by non-violent means. Dotted lines on the Zsummary plots (right) represent the cut-
off for preservation significance (i.e. first line =2 and second =10), while the median rank 
(left) is the measure of preservation accounting for the module size (number of gene). The 
‘purple’ module from the suicide by violent means network is the most preserved module in 
the other two groups: Zsummary>30 and median rank≈1.  
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Captions for additional file ST2 
 
ST2: GO terms enriched purple module. Reported are the biological processes (BP) 
terms showing statistically significant enrichment (p<0.01 after Benjamini-Hochberg 
correction) for the purple module. The purple module, containing LINC01268, was 
significantly enriched for 497 GO BP identities related to immunological functions 
such as positive regulation of immune response. 
 
 
Supplementary Text 
 
Additional Sensitivity Analyses 
 
To minimize artifacts such as occult RNA quality differences that may affect the 
results and partially explain the differences between the three groups, we repeated the 
analysis with the addition of adjusting covariates from a PC analysis. After selecting 
the genes with mean expression >0.01 RPKM, a principal component (PC) analysis 
was performed on the whole DLPFC RNA-sequencing transcriptome for the 228 
patients, using the function “prcomp” in ‘R’. The first five components were the most 
relevant in terms of variance explained (square roots of the eigenvalues of the 
covariance/correlation matrix: 23.858, 17.500, 14.505, 11.479 and 9.007 respectively) 
and were employed as adjusting variables in the comparisons between groups in such 
analysis. Correcting for such PCs did not compromise the results: non-suicide vs 
suicide t=3.705, p=0.000267; non-suicide vs suicide by violent means t=5.702, 
p=5.09e-08; suicide by non-violent vs suicide by violent means t=-3.593, 
p=0.000475; non-suicide vs suicide by non-violent means t=0.268, p=0.78925. These 
PCs correlated with all of our covariates of interest (RIN, sex, age as well as 
diagnosis) and, notably, to the degree of physical trauma (e.g., PC1: t=5.667, 
p=4.48e-08; by factor violent vs non-violent death, regardless of suicidal intent). As a 
consequence, the differences in LINC01268 levels do not seem related to injuries 
resulting from the violent action. We addressed this further in an analysis of a sample 
of non-suicide subjects, comparing LINC01268 expression in natural deaths (mostly 
cardiac) and violent, non-suicidal, deaths (homicides and accidents – mostly motor 
vehicle accidents). These groups did not differ in LINC01268 levels (t=1.050, p=0.3, 
following PC correction). These data, together with previous evidence that 
LINC01268 is not influenced by the acute exposure to chemical substances(17), such 
as those employed for self-poisoning, support the conclusion that the lincRNA is 
related to the employment of violent means for suicide per se. 
 
 
Supplementary Methods 
 
Gene Expression 
RNA extraction and sequencing. Post-mortem tissue homogenates of dorsolateral 
prefrontal cortex gray matter (DLPFC) approximating BA46/9 were obtained from all 
brains. Total RNA was extracted from ~100 mg of tissue using the RNeasy kit 
(Qiagen) according to the manufacturer's protocol. The poly(A)-containing RNA 
molecules were purified from 1 µg DNase-treated total RNA and, following 
purification, fragmented into small pieces using divalent cations under elevated 
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temperature. Reverse transcriptase and random primers were used to copy the cleaved 
RNA fragments into first-strand cDNA, and the second-strand cDNA was synthesized 
using DNA polymerase I and RNase H. We performed the sequencing library 
construction using the TruSeq RNA Sample Preparation v2 kit by Illumina. An 
index/barcode was inserted into Illumina adapters, allowing samples to be 
multiplexed in one lane of a flow cell. These products were then purified and enriched 
with PCR to create the final cDNA library for high throughput DNA sequencing using 
an Illumina HiSeq 2000. 
RNA sequencing data processing. The Illumina Real Time Analysis (RTA) was 
applied to perform image analysis and base calling; the BCL Converter (CASAVA 
v1.8.2) followed to generate FASTQ files. The sequencing depth was over 80 million 
(40 million paired-end) mappable sequencing reads. Pair-end reads of cDNA 
sequences were aligned to the human genome (UCSC hg19) by the spliced read 
mapper TopHat (v2.0.4), using the reference transcriptome (Ensembl Build 
GRCh37.67) to initially guide the alignment. Gene counts were generated using the 
featureCounts tool (v1.4.3-p1) based on the more recent Ensembl v75, which was the 
last stable release for the hg19 genome build. Counts were converted to RPKM values 
using the total number of aligned reads across the autosomal and sex chromosomes 
(dropping reads mapping to the mitochondria chromosome). More details of this 
method have been described elsewhere(1). 
 
 
fMRI 
fMRI data acquisition. Blood Oxygen Level Dependent (BOLD) fMRI was performed 
on a GE Signa 3T scanner (gradient echo-planar imaging sequence, TR/TE = 2000/28 
ms; 24 interleaved slices, thickness = 4 mm, gap = 1 mm; voxel size 3.75 × 3.75 × 5 
mm; scan repetitions = 180; flip angle = 90°; field of view = 24 cm; matrix = 64 × 64) 
while subjects performed the task. The first four scans were discarded to allow for 
signal saturation. Stimuli were presented via a back-projection system and responses 
were recorded through a fiber optic response box, which allowed measurement of 
behavioral data as percent of correct responses and reaction time (RT). fMRI 
responses were modeled using a canonical hemodynamic response function and 
temporally filtered using a high-pass filter of 128 Hz to minimize scanner drift. 
fMRI data analysis. Analysis of the fMRI data was completed using Statistical 
Parametric Mapping (SPM8; www.fil.ion.ucl.ac.uk/spm). Images, for each subject, 
were realigned to the first volume in the time series and movement parameters were 
extracted to exclude subjects with excessive head motion (> 2 mm of translation, > 
1.5° rotation). Images were then re-sampled to a 2 mm isotropic voxel size, spatially 
normalized into a standard stereotactic space (Montreal Institute on Neurology, MNI, 
template) and smoothed using a 4 mm full-width half-maximum isotropic Gaussian 
kernel to minimize noise and to account for residual inter-subject differences. A 
boxcar model convolved with the hemodynamic response function (HRF) at each 
voxel was modeled. Vectors were created for angry, happy, fearful and neutral faces. 
Residual movement was modeled as regressor of no interest. Predetermined condition 
effects at each voxel were created using a t statistic, producing a statistical image for 
BOLD responses to brain processing of stimuli representative of each condition, i.e., 
angry, happy, fearful and neutral faces versus fixation crosshairs. Individual contrasts 
of angry faces versus crosshairs were then entered in second-level random effects 
models; a one-sample t-test was performed to obtain a whole sample activation map 
for the angry condition. A factorial regression analysis with rs7747961 genotype and 
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Adult BG scores as predictor variables was performed to investigate their interaction 
on the activity of a PFC region of interest, defined by the map of the main effect of 
task obtained with the one-sample t-test. For group statistics we used a statistical 
threshold of P<0.05, minimum cluster size [k]=20, family-wise error (FWE) corrected 
using as volume of interest the PFC, specifically the DLPFC as identified with the 
Wake Forest University Pickatlas (www.fmri.wfubmc.edu/software/PickAtlas). This 
region was chosen a priori based on previous literature suggesting a potential role in 
emotional processing, aggressive behaviors and suicide as discussed in main text. 
Outside this ROI, no activation encompassed the threshold of FWE P<0.05 whole-
brain corrections. Finally, BOLD responses were extracted from significant clusters 
using MarsBar (www.marsbar.sourceforge.net/). 
 
WGCNA 
For WGCNA(2), gene level RNA-seq data from the same samples of DLPFC tissue 
from patients were used. Only genes with sufficient abundance (median RPKM ≥ 0.1) 
were retained for analysis; this criterion yielded a number of 23,172 genes. Gene 
expression data were adjusted to remove the unwanted variance potentially explained 
by RNA quality as noted above. Specifically, expression data, normalized by log2 
transformation with an offset of 1 to avoid issues with 0s, were adjusted to control for 
unwanted variance by using the empiricalBayesLM function implemented in 
WGCNA(3). Such method removes variation due to unwanted covariates, while 
preserving covariates of interest, and employs empirical Bayes-moderated linear 
regression in a robust version, resistant to expression outliers. “Removed” covariates 
included RIN, PMI and pH. Since co-expression analysis can be more sensitive to 
variables associated with RNA quality than single-gene models, we applied a similar 
strategy to a previous reference(4). More in details, we first tested if our RNA quality 
measures (i.e. RIN, PMI, pH) were associated with the PCs derived from the 
expression data and used in the additional sensitivity analysis (see above). Since all of 
them were correlated with the PCs (not shown), we used them in the procedure of 
removing the unwanted covariance. On the other hand, we were interested in 
preserving the effect of age and sex on the co-expression network; therefore we 
retained them in the model. The output of the empirical Bayes adjustment was a new 
expression dataset that was used in the co-expression network analysis. We would 
mention however that removing unwanted variance of observed and latent variables 
with concomitant preservation of signal of interest remains an ongoing work(5); we 
applied here the empirical Bayes linear regression method, which has been 
successfully tested in previous studies(6), acknowledging that type I errors may not be 
fully controlled by this method. 
After creating the new, adjusted expression dataset, a weighted gene co-expression 
analysis was performed with functions implemented in the WGCNA package(3). A 
co-expression network based on the samples of suicide by violent means, irrespective 
of diagnosis, (N=77) was created. WGCNA uses correlation between pairs of genes to 
construct co-expression modules. These modules can then be summarized by the 
“eigengene” for each module (ME). Biological inference can be drawn from the genes 
in these constructed modules by using gene-set enrichment analyses and by 
correlating module eigengenes with biological covariates. 
WGCNA blockwiseModules function was used for automatic network construction 
and module detection. Parameters of network construction included robust WGCNA 
(bi-weight mid-correlation) with “signed” networks to allow for potentially non-linear 
correlations between genes that may better reflect the underlying biology of the brain. 
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The “Soft Thresholding” method (implemented through pickSoftThreshold function) 
was used to improve the sensitivity of network construction; this procedure applies 
the power function to the gene correlations prior to network construction. Results 
from this function help to select the adequate power to which the similarity will be 
raised and thus to obtain the weighted networks. For the specific networks constructed 
here, a power of 14 corresponding to an R^2 of 0.8 was selected. After network 
construction, modules of co-expression were detected with hierarchical clustering 
using a measure of dissimilarity (the topological overlap). Module eigengenes were 
calculated for identified modules of co-expression. These can be regarded as 
expression profiles that best characterize the gene correlations within modules. Their 
major advantage is the dimensionality data reduction, which makes them particularly 
suitable for correlation with traits of interest by eliminating the problem of multiple 
comparisons corrections. 
Module preservation analysis was use to confirm “violent suicide” co-expression 
modules in expression data from “non-violent suicide” donors and from “non-suicide” 
donors. This analysis is implemented by modulePreservation function in WGCNA, 
which computes pair-wise module preservation statistics between a reference set (in 
this case the “violent suicide” expression data) and a test set (“non-violent suicide” or 
“non-suicide” datasets). Measures of preservation are the Z summary score that 
indicates no preservation for a range between 0-2, weak preservation between 2-10 
and strong preservation >10, and Z median rank that orders the preserved modules 
accounting also for their size (number of genes). 
We finally performed a Gene Ontology (GO) analysis with enrichGO function 
implemented in clusterProfiler R package(7), looking for enrichment of the “violent 
suicide” module in meaningful biological processes. This function performs a 
hypergeometric test to assess the over-representation of GO biological processes (BP) 
in the gene sets that constitute the modules of the violent suicide network.  
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