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A Details of Published hERG Channel Models1

Figure 1 of the main text features simulations from 29 literature hERG or IKr models. In Table A12

we list these models, give references, and show the seven different structures that they feature in3

Figure A1.4
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Figure A1: Different mathematical model structures for the literature models listed in Table A1.
The model we use in the main text takes structure D as shown in Figure 4B. Note that, depending
on their parameterisations, models D, E, F and G could satisfy independent gating (Hodgkin-Huxley
assumptions) and then the states annotated as ‘I’ could also be considered ‘IO’ — but as drawn
here this is not a requirement, and in neither case does current flow, so we removed the ‘O’ from
these for simplicity.

There are two models in this table that are not in Figure 1: the Kiehn et al. (1999) model as it5

is defined only at certain voltages; and the Piper et al. (2003) model as it does not easily fit into6

the Hodgkin-Huxley/Markov model framework we used in our simulation code.7
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Table A1: Table summarising details of each published IKr model formulation, in chronological
order. ‘# Params’ indicates the total number of free parameters (the number given includes a GKr

parameter for the conductance). The Model Type is ‘HH’ for Hodgkin–Huxley models and ‘MM’ for
Markov Models, or a hybrid of the two (MM/HH, which generally means a MM with some symmetry
in transition rates). Temp. represents temperature and is given as ‘Room’ for room temperature
or ‘PT’ for physiological temperature. Structure respresents the model structure as shown iin
Figure A1 We see that models are calibrated to experimental datasets from different conditions —
species, cell types and temperatures. These conditions may not be the same temperature, cell type
or even species as the models are intended to represent (see Niederer et al., 2009), and so the final
column indicates the species of the cell model in which the hERG model was used.

Model Model # Experimental Calibration Data Conditions Structure Model for
Type Params Species and Cell Type(s) Temp. Species

Zeng et al. (1995) HH 11 Guinea pig ventricular myocytes PT D Guinea pig
Lindblad et al. (1996) HH 11 Rabbit SA, AV, atrial myocytes and PT D Rabbit

rabbit and guinea pig ventricular myocytes
Liu et al. (1996) MM 11 Ferret atrial myocytes Room C Ferret
Wang et al. (1997) MM 15 Xenopus oocytes Room B N/A
Courtemanche et al. (1998) HH 10 Human atrial myocytes PT D Human
Nygren et al. (1998) HH 9 Human atrial/rabbit atrial myocytes PT D Human

and Xenopus oocytes
Priebe and Beuckelmann (1998) HH 9 Human ventricular myocytes PT D Human
Kiehn et al. (1999) MM 9∗ Xenopus oocytes Room A N/A
Winslow et al. (1999) HH 7 Guinea pig ventricular myocytes PT D Dog
Ramirez et al. (2000) HH 13 Canine atrial myocytes PT D Dog
Zhang et al. (2000) HH 15 Rabbit sino-atrial node PT F Rabbit
Clancy and Rudy (2001) MM 14 Guinea pig ventricular PT A Guinea pig
Lu et al. (2001) MM 17 Chinese Hamster Ovary (CHO) PT A N/A
Mazhari et al. (2001) MM 17 Human Embryonic Kidney (HEK) 293 PT A N/A
Fox et al. (2002) HH 10 Canine ventricular myocytes PT D Dog
Kurata et al. (2002) HH 18 Rabbit sino-atrial node PT F Rabbit
Oehmen et al. (2002) MM 11 Rabbit sino-atrial node PT C Rabbit
Matsuoka et al. (2003) HH 23 Rabbit sino-atrial node and PT F Guinea pig

guinea pig ventricular myocytes
Piper et al. (2003) MM/HH 43 Xenopus oocytes Room G N/A
Seemann et al. (2003) HH 7 Human ventricular myocytes PT D Human
Hund and Rudy (2004) HH 11 Canine ventricular myocytes PT D Dog
Shannon et al. (2004) HH 11 Rabbit ventricular myocytes PT D Rabbit
Ten Tusscher et al. (2004) HH 13 HEK 293/CHO/Xenopus oocytes PT D Human
Fink et al. (2008) MM 15 Human Embryonic Kidney (HEK) 293 PT B Human
Aslanidi et al. (2009) HH 8 Canine Purkinje PT D Dog
Inada et al. (2009) HH 20 Rabbit atrio-ventricular node PT F Rabbit
Grandi et al. (2010) HH 12 Human ventricular myocytes PT D Human
O’Hara et al. (2011) HH 19 Human ventricular myocytes PT F Human
Severi et al. (2012) HH 17 Rabbit sino-atrial node PT F Rabbit
Di Veroli et al. (2013) MM/HH 13 Chinese Hamster Ovary (CHO) Room E N/A
Di Veroli et al. (2013) HH 17 Human Embryonic Kidney (HEK) 293 PT D N/A

expressing canine ERG
∗ The transition rates of the Kiehn et al. (1999) model are defined at specific voltages, so for this model there are 8
parameters (and 1 conductance parameter) for each voltage at which the model is defined.
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B Additional Methods8

This section contains further description of the methods that were used, with a particular focus on9

details of the Bayesian Inference scheme in Section B2. These sections do not feature in the main10

Methods section due to space constraints.11

B1 Additional Experimental Methods12

B1.1 Cell Culture13

Chinese Hamster Ovary (CHO) cells stably expressing Kv11.1 were used in the patch clamp experi-14

ments performed in this study. Cells were cultured in Ham’s F12 nutrient mix containing 5% foetal15

bovine serum and maintained at 37°C with 5% CO2.16

B1.2 Electrophysiology Solutions17

The bath solution was composed of: NaCl (137 mM), KCl (4 mM), MgCl2 (1 mM), HEPES (10 mM),18

glucose (10 mM), and CaCl2 (1.8 mM). The pH of the solution was adjusted to 7.4 with NaOH.19

Borosilicate glass micropipettes were pulled and fire polished to final tip resistances of approxi-20

mately 2–5 MΩ when filled with pipette solution containing: KCl (130 mM), MgCl2 (1 mM), HEPES21

(10 mM), EGTA (5 mM), and MgATP (5 mM). pH of the solution was adjusted to 7.2 with KOH.22

All experiments were performed at room temperature (21–22°C). Using this temperature and the23

composition of the bath and pipette solutions, a K+ reversal potential of approximately -88.4 mV24

was calculated using the Nernst potential (equation (8)), the exact value depending on the particular25

temperature of each experimental recording.26

B1.3 Recording Techniques27

Current recordings were made using an Axopatch 200B amplifier in whole-cell patch clamp mode.28

Data acquisition was performed using pClamp 10 software (Molecular Devices, Sunnyvale, USA).29

The protocols were first created as text files and then converted to .abf stimulus files to make30

corresponding .pro protocol files in the pClamp 10 software. A CV 203BU amplifier headstage31

and a Digidata 1440A were used. A Sutter MP225 micromanipulator was used for positioning of32

the microelectrode. The current signal was sampled at a rate of 10 kHz. 75–80% series resistance33

compensation was applied and data were 5 kHz low pass Bessel filtered by the hardware. No34

software filtering was applied. Whole-cell capacitance compensation was applied electronically.35

Leak subtraction was applied offline by using a 50 ms leak step to allow correction. To make a series36

of successive recordings using different protocols on the same cell, the pClamp “Sequencing Keys”37

tool was utilised, with a .sks file detailing the sequence the protocols should be performed in.38

B1.4 Details of Voltage Clamp Protocols39

Here we list the details of the voltage-clamp protocols that were not included in the main text. The40

protocols can also be found encoded in the software, available to download as described at the end41

of the main text.42

Protocol 0 — Repeated activation step43

Before the start of each set of recordings on each cell an activation step protocol with a start-to-44

start interval of 12 seconds was repeated several times until consistent currents were observed on45
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each repeat. From an initial holding potential of −80 mV, this protocol comprised a 5 s step to46

10 mV followed by a 5 s step to −50 mV before returning again to a holding potential of −80 mV.47

This protocol is depicted in Figure B2. We repeated this protocol while dofetilide was added (see48

Figure 2) and the current traces recorded from this protocol were used to assess when a steady level49

of dofetilide block had been reached.50

Protocols 1,2 — Activation Kinetics51

After the initial period at holding potential incorporating the −120 mV leak step, a step to Vstep152

followed and was held at that voltage for Tstep ms, before a step to −120 mV for 2.5 s, before53

returning to holding potential of −80 mV for 1 second. The protocol was repeated 6 times with a54

different Tstep on each repeat. Tstep took the values of 3, 10, 30, 100, 300 and 1000 ms.55

� For Protocol 1, Vstep1 is 0 mV. This protocol is depicted in Figure B3.56

� For Protocol 2, Vstep1 is +40 mV. This protocol is depicted in Figure B4.57

Figures B2–B4 show plots of the voltage clamps that are used in the repeated activation step58

and activation kinetics protocols (Pr0–Pr2).59
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Figure B2: Repeated Activation
Step Protocol (Pr0).
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Figure B3: Activation Kinetics
1 Protocol (Pr1).
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Figure B4: Activation Kinetics
2 Protocol (Pr2).

Protocol 3 — Steady-State Activation60

From the initial period at holding potential incorporating the −120 mV leak step, a step to Vstep61

was applied for 5 seconds, followed by a 1 s step to −40 mV, before a 500 ms step to −120 mV, and62

then returning back to holding potential for one second. This process was repeated 7 times with a63

different Vstep on each repeat. Vstep ranged from −60 mV to +60 mV in 20 mV increments. This64

protocol is depicted in Figure 5A (left column).65

Protocol 4 — Inactivation66

From the initial period at holding potential incorporating the −120 mV leak step, a step to 50 mV67

for 600 ms, and a step to −90 mV for 60 ms, followed by a step to Vstep for 150 ms, before a 500 ms68

step to −120 mV, and a 1 s step back to holding potential of −80 mV; This was repeated 16 times69

with a different Vstep on each repeat. Vstep ranged from −100 mV to 50 mV in 10 mV increments.70

This protocol is depicted in Figure 5A (middle column).71
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Protocol 5 — Deactivation72

From the initial period at holding potential incorporating the −120 mV leak step, a step to 50 mV73

for 2 s was applied, followed by a step to Vstep for 6 s, before a 500 ms step to −120 mV, and then74

returning back to holding potential for one second. This process was repeated 9 times with a75

different Vstep on each repeat. Vstep ranged from −120 mV to −40 mV in 10 mV increments. This76

protocol is depicted in Figure 5A (right column).77

Protocol 6 — Action Potentials Clamp78

See main text.79

Protocol 7 — Sinusoidal Clamp80

The full protocol is comprised of 250 ms at holding potential of −80 mV, followed by a 50 ms ‘leak81

detection’ step to −120 mV, and then 200 ms back at −80 mV. This was followed by an ‘activation’82

step of 1 s step to 40 mV; a ‘closing’ 500 ms step to −120 mV; and a return to −80 mV for 1 second.83

The 3.5 s sinusoidal portion of the protocol then followed (the form of which is described below),84

before a ‘closing’ 500 ms step to −120 mV, and a return to −80 mV for 1 s.85

The sinusoidal portion of the protocol takes the form of a sum of three sine waves as discussed
in the main text Equation (1), and repeated here for convenience:

V (t) = −30 +A1 sin (ω1(t− t0)) +A2 sin(ω2(t− t0)) +A3 sin(ω3(t− t0)),

where A1 = 54 mV, A2 = 26 mV, A3 = 10 mV, ω1 = 0.007 ms−1, ω2 = 0.037 ms−1 and ω3 =86

0.19 ms−1, and t is time measured in milliseconds.87

The protocol was initially designed with just the −120 mV leak step and not the additional88

‘activation’ steps to 40 mV and −120 mV (which were included after preliminary experiments as89

described in Section B2.2) and so the sine wave was shifted using t0 = 2500 ms to begin at the same90

phase after we incorporated the additional steps. This offset is not expected to be important to91

include, but was included here for clarity for anyone attempting to reproduce our study.92

B1.5 Liquid Junction Potential93

All of the protocols described in this section were adjusted on the amplifier to account for the liquid94

junction potential which was calculated to be 4.1 mV from the ionic composition of our physiological95

solutions which are described in Section B1.2. The liquid junction potential was calculated using96

the junction potential calculator in the pClamp software.97

B1.6 Effect of Dofetilide Subtraction98

To show the effect of 0.3µM dofetilide subtraction and to demonstrate the lack of endogenous99

currents remaining following this step, we compare the current traces before and after dofetilide100

subtraction in Figure B5. We show currents from Cell #5 which features in the figures of the main101

text.102

There was little contribution from endogenous currents in these cells. The application of 0.3µM103

dofetilide eliminates almost all current, indicating that both the vehicle recording and ‘dofetilide104

subtracted’ currents are almost entirely due to hERG. While levels of endogenous currents and the105

impact of leak subtraction on the current traces may vary from cell-to-cell, overall we found only106

small endogenous currents were observed in the cells.107
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Figure B5: Raw recordings, recordings with leak subtraction, and 0.3µM dofetilide controls for
Cell #5. Top row: input voltage trace from the sine wave protocol (same on both sides for com-
parison with traces below). In A–D we show the current in response to this voltage protocol in
four situations — each panel shows the same four traces, with a different one highlighted in red.
In A we highlight the raw recording of whole current; in B the whole current recording after leak
subtraction, in C the raw recording after the addition of dofetilide; and in D the dofetilide recording
after leak subtraction.

An example of where dofetilide subtraction may play a more important role is shown in Fig-108

ure B6, where the hERG current is much lower and so any contribution from endogenous currents109

would have more impact and it may be important to remove this contribution. This example is for110

Cell #6 from the main text.111

B1.7 Deriving IV Curves and Time Constant-V Curves112

To derive time constant-voltage relationships from experimental data and simulated data traces,113

we used the Levenberg-Marquardt algorithm with a tolerance of 10−6 within Clampfit v10.5. To114

derive the instantaneous inactivation time constant curves shown in Figure 5 (inactivation column,115

row D) we fitted a single a single exponential to the current responses during the 150 ms Vstep, as116

defined in the inactivation protocol (Pr4) description above.117

To produce the deactivation and recovery from inactivation rate time constant–voltage relation-118

ship for the experimental data traces, we fitted a triple exponential through the experimental data119

trace from the deactivation protocol (Pr 5). The section of the data used for fitting is the current120

in response to the 6 second Vstep. Both this region of experimental data used for fitting and that121

for the instantaneous inactivation time constant described above are highlighted in row B of Figure122

5. The fastest time constant from the triple exponential fit to each test step corresponded to the123

recovery from inactivation time constant. We then used the weights of the remaining two time con-124

stants from each triple exponential fit to produce a single weighted time constant for deactivation125

(Lacroix et al., 2011). To derive the deactivation and recovery from inactivation time constants126

from simulated data we fitted a double exponential through the current in response to the 6 second127
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Figure B6: Raw recordings, recordings with leak subtraction, and 0.3µM dofetilide controls for
Cell #6. Top row: input voltage trace from the sine wave protocol (same on both sides for com-
parison with traces below). In A–D we show the current in response to this voltage protocol in
four situations — each panel shows the same four traces, with a different one highlighted in red.
In A we highlight the raw recording of whole current; in B the whole current recording after leak
subtraction, in C the raw recording after the addition of dofetilide; and in D the dofetilide recording
after leak subtraction.

Vstep section of the deactivation protocol. Again, we used the faster time constant as the recovery128

from inactivation time constant and the slower time constant as that for deactivation.129

To produce the peak current-voltage relationship for the steady state activation protocol for the130

simulated data traces we wrote MatLab code to identify the peak current in the region between131

5.6292 and 5.7292 seconds on each sweep of the protocol, which corresponds to the current response132

just after the 5 second Vstep when the voltage is stepped to −40 mV. We then normalised the peak133

current data to the maximum overall peak identified in this region to produce the current-voltage134

relationship curve. For the simulated data we wrote a MatLab script (included in code download)135

to identify the peak-current voltage relationship for this protocol but for the experimental traces136

we verified these peak points manually to avoid incorrect peaks being identified due to noise or137

capacitive effects. We also identified the peak currents in the currents evoked by the activation138

kinetics protocols manually for the same reason. In the activation kinetics protocol we identified139

the peak currents during the Vstep for each interval of Tstep duration.140

B2 Bayesian Inference Scheme141

B2.1 Likelihood formulation142

For an observed experimental recording which we will denote y, we can infer the probability of dif-143

ferent combinations of model parameters θ. Bayes’ rule underpins this approach which is expressed144

as145

P (θ|y) =
P (y|θ)P (θ)

P (y)
(B.1)
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P (θ|y) is a probability density that encodes our belief that the parameters of the model are in a146

neighbourhood of θ after observing the experimental data y, and is termed the posterior probability147

density. P (y|θ) is the probability density that corresponds to the probabilistic generation of the148

experimental data y given a model parameterised with parameters θ. P (θ) encapsulates our beliefs149

about θ before observing any experimental data and is termed the prior distribution (details of150

the prior that we used are in Appendix B2.3). P (y) is a normalising term which is the integral of151

all possible probabilities P (y|θ) and ensures that the posterior density P (θ|y) integrates to 1. In152

practice this normalising term is calculated by153

P (y) =

∫
P (y|θ)P (θ)dθ. (B.2)

A Bayesian inference approach to parameter estimation combines beliefs about the parameters in the154

prior distribution P (θ) with the likelihood P (y|θ) to determine the posterior probability distribution155

P (θ|y).156

We define the likelihood157

L(θ|y) = P (y|θ) (B.3)

to insist on the fact that we consider it as a function of θ, with y kept fixed at the observation158

values. Bayes’ rule (in Equation (B.1)) can be rewritten in terms of likelihood as159

P (θ|y) ∝ P (θ)L(θ|y). (B.4)

When the prior distribution is assumed to be uniform (as it is in this study), we can make inferences160

based on just the likelihood, as the prior P (θ) is either constant or zero. If a proposed parameter161

is outside our chosen prior then likelihood is 0 and we simply record that this parameter set has a162

likelihood of 0 and propose another parameter set.163

We assume that the errors at each time point are independent and so the conditional probability164

density of observing the whole experimental trace from time sample 0 to time sample T given the165

model parameter set θ is166

L(θ|y) =

T∏
t=0

P (yt|θ). (B.5)

We assume that the experimental noise is independently and normally distributed with a mean167

of zero and variance of σ2. The likelihood is then expressed as168

L(θ|y) =

T∏
t=0

N (yt|ft(θ), σ2) =

T∏
t=0

1√
2πσ2

exp

(
−(yt − ft(θ))2

2σ2

)
. (B.6)

In our case ft(θ) is the predicted current at each time point given the parameters, this is given169

by equation (7) after solving the model system (equations (3)–(6)). Calculating equation (B.6)170

requires the evaluation of the product of many numbers less than 1, so it is more numerically171

convenient to calculate the log-likelihood instead. As our aim is to identify parameter sets θ which172

maximise the likelihood in equation (B.6), maximising the likelihood is equivalent to maximising173

the log-likelihood:174

log (L(θ|y)) = −1

2

T∑
t=0

log(2πσ2)− 1

2

T∑
t=0

(yt − ft(θ))2

σ2
. (B.7)

In practice, the sums over time in equation (B.7) are formulated so that we exclude time points175

from regions where the data are affected by capacitive spikes. To be precise, we exclude 5 ms176
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intervals following step-changes in the imposed voltage clamp. In the sine wave protocol (Pr7) these177

step-changes occur at 0.25 seconds, 0.3 seconds, 0.5 seconds, 1.5 seconds, 2 seconds, 3 seconds, 6.5178

seconds and 7 seconds (spikes are seen in experimental recordings at these times in Figure 3).179

B2.2 Conductance estimation to inform the prior180

Preliminary work revealed that using sine wave protocols alone often allowed kinetic parameters in181

the hERG model to be recovered, but there was potential for identifiability problems (or at least182

we encountered difficulties in finding a global optimum due to a rugged likelihood surface) when183

simultaneously fitting the conductance parameter and transition rate parameters P1 to P8 (although184

previous work suggests all parameters are theoretically identifiable (Walch and Eisenberg, 2016)).185

To add extra information on conductance, we incorporated a voltage-step to +40 mV followed by a186

step down to −120 mV, as described in the definition of the sinusoidal protocol above. The aim being187

to provoke a large current. We then fitted a single exponential through the slow time constant of188

the tail current exhibited during the −120 mV step (fitting was performed in the Clampfit software,189

using the Levenberg-Marquardt algorithm with a tolerance of 10−6). We then extrapolated back to190

the point at which the voltage step to −120 mV was made, and used the extrapolated current value191

at this point to estimate a conductance at this time point (this extrapolation method is described192

in Vandenberg et al. (2012)). The conductance we estimated was used as a lower bound for the193

prior distribution of the conductance, as we describe below.194

B2.3 Prior195

In this section we describe our prior assumptions on the values that each model parameter can take.196

The prior for the conductance GKr is assumed to be independent of the kinetic parameters, and to197

take a uniform distribution. As discussed above, the lower bound is formed by estimating a lower198

bound on the conductance value ‘directly’ from the experimental data; the upper bound is assumed199

to be 10 times the value of the lower bound.200

The other model parameters are within transition rates of the form201

k = A exp(BV ), (B.8)

where V is voltage and A and B are model parameters (P1 to P8 for k1 to k4, as shown in Figure 4).202

For parameters of the form A we assumed that the prior distribution is uniform between 10−7
203

and 1000 ms−1, again to cover (and extend beyond) the full physiological range expected with hERG204

channel gating.205

We assume that the prior distributions for B parameters are uniform between 10−7 and 0.4206

mV−1. The lower bound for this parameter was selected as the voltage-dependence becomes prac-207

tically redundant when B becomes small: when B = 10−7 the value of exp(BV ) will change by less208

than 0.0015% across the voltages we reach in this study. The upper value is beyond the physiolog-209

ically expected range.210

We also impose a prior on the maximum rate of transition k between any states (maximum211

across the full voltage range in the protocol (that is from −120 to 58.25 mV)). If the maximum212

rate k is greater than 1000 ms−1, or less than 1.67 × 10−5 ms−1, the pair of parameter values that213

give rise to this are assigned prior probability zero (strictly, this is equivalent to defining 2D prior214

on A and B, but is easier to describe here, and code, as an additional constraint): the lower bound215

is based on the assumption that a transition is not physiologically realistic if it occurs over a time216

scale slower than one minute; the upper bound was decided based on the prior for the individual217

10



parameters A and B in the transition rate expression and to prevent the transitions occurring over218

a time scale much faster than would be physiologically expected.219

Note that our analysis is relatively insensitive to the precise form of the prior that is used as220

there are around 80,000 data points (8 s of 10 kHz samples) in the likelihood product calculation of221

Equation (B.5), which is then also in a product with the prior in Equation (B.4). So, effectively,222

each of the 10,000 data points has the same impact as the prior does on the posterior. Given223

our likelihood is extremely peaked around its maximum (Figure 4C), we have observed no notable224

influence of the shape of the prior, as long as the maximum posterior density point is well away from225

the limits described above — which it has been in all cases. Note that the same concept means226

that, in our case, the “maximum likelihood estimate” (MLE — parameter set that maximises227

Equation (B.5)) would be practically indistinguishable from the “maximum a posteriori estimator”228

(MAP — parameter set that maximises Equation (B.4)) even if we had a non-uniform prior.229

B2.4 Global minimisation230

The Covariance Matrix Adaptation — Evolution Strategy (CMA-ES) algorithm was used to perform231

an initial exploration of the surface of the posterior density, and to identify parameter sets which232

allow the model to fit the experimental data well. The tolerance used is 10−4 and all other settings233

are the defaults in MatLab implementation of CMA-ES v3.61, downloaded from https://www.lri.234

fr/~hansen/cmaes.m. We imposed bounds based on the prior as we describe above in Section B2.3.235

We run the CMA-ES algorithm from different starting points and continue to do so until we236

identify the same region of parameter space for optimal parameter sets for each experimental data237

trace when starting from many different starting points. In this way, we can be confident that we238

identify the same region of high likelihood consistently (not simply the first local minimum that is239

found), and we have more confidence that this corresponds to the globally optimal likelihood.240

These initial starting points for the CMA-ES algorithm are sampled from within the prior241

defined for each parameter, described in section B2.3. To sample from the prior we simply select242

the voltage-dependent transition rate parameters (of the form B described above) uniformly from243

the defined range. The same approach is used to sample the conductance parameter.244

For the parameters of the form A above we sample starting points in a logarithmic fashion across245

the range of the uniform prior. This approach helps to restrict the initial guesses of parameters to246

the region of measurable time scales we imposed by defining the maximum and minimum ranges on247

the overall transition rate, as described above. We also run a small selection of starting points with248

both A and B parameter values sampled uniformly from [10−7, 0.1] (the range in which most existing249

model parameters lie), again to ensure we identify the global optimal solution to the optimisation250

problem. We log-transform all parameters within CMA-ES to aid the optimisation process by251

making all values similar orders of magnitude.252

B2.5 Markov Chain Monte Carlo parameter inference253

We use Markov Chain Monte Carlo (MCMC) methods to explore the posterior probability distri-254

bution. The approach we use is the Metropolis-Hastings algorithm. In this algorithm, candidate255

parameter sets are proposed from a proposal distribution q(θcand|θi) which depends only on the256

previously accepted parameter set θi. We use a multivariate normal distribution as our proposal257

distribution. Any candidate parameter set θcand is compared to the current parameter set θi by258

calculating the ratio of the likelihood of the two parameter sets. The value of the ratio determines259

whether or not the proposed parameter set is accepted as part of the MCMC chain. If the can-260

didate parameter set has a greater posterior density value than the existing parameter set then261
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it will be added to the Markov chain, that is θi+1 = θcand. Otherwise, the parameter set may262

still be accepted with a probability equal to the ratio of likelihood/posterior density values. That263

is, a proposed parameter set generated from a multivariate normal distribution is accepted with264

probability265

α = min

{
L(θcand|y)

L(θi|y)
, 1

}
. (B.9)

Also note that if the proposed parameter set contains any parameters outside the range of the266

prior, or violates any of the conditions on the parameters that we have imposed, the parameter set267

is assigned an acceptance probability of 0 and immediately rejected and the previously accepted268

parameter set is again added to the Markov chain — that is, θi+1 = θi.269

In practice, we use a covariance matrix adaptive version of the Metropolis-Hastings Algorithm270

which helps identify the directions in parameter space which have the highest likelihood values, the271

algorithm is described in Haario et al. (2001). At each iteration of the algorithm, the covariance272

matrix of the multivariate normal distribution is updated and a scalar value is also updated to273

define the width of the distribution. We run our MCMC chains for 250,000 samples and discard274

the first 50,000 samples as ‘burn in’ (for an introduction to MCMC see Gilks et al. (1996)).275
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C Synthetic Data Study to Assess Protocol Information Content276

In order to verify that there was sufficient information within the sinusoidal protocol to parameterise277

our model we performed a synthetic data study. The aim in such a study is to ascertain whether we278

can recover the parameters used in the simulation from a simulated data trace (with added noise279

in this case).280

C1 Producing synthetic data281

In order to produce synthetic data we simulate with some fixed known parameter set. We performed282

this with both our best initial parameter set estimate (those parameters in literature HH models),283

and also from the parameters we obtained after fitting to the experimental data trace as we present284

here (both showed good identifiability). We scale the simulated trace by multiplying by this factor,285

so it becomes approximately the same magnitude (in nA) as the experimental trace. We estimated286

the typical level of noise from the experimental trace by calculating the standard deviation σ of the287

experimental current during the first 200 ms (where the current is around zero at the initial holding288

potential of −80 mV). We then generate a synthetic data trace by adding normally distributed noise289

with a mean of zero and the standard deviation equal to the noise estimated from the experimental290

trace (∼ N(0, σ2)) to the conductance-scaled simulated trace. The example we present here uses291

the experimental reference trace from Cell #5, featured in much of the manuscript.292

C2 Inferring parameters from synthetic data293

We then attempt to infer parameters from this synthetic data trace, using the CMA-ES algorithm294

followed by MCMC as described in Section 2.5. In Figure C7 we present probability density distri-295

butions obtained when using both synthetic and experimental traces. We are able to recover the296

original parameters underlying the synthetic trace with high accuracy.297

The synthetic data study provides us with confidence in the suitability of our protocol for298

accurately identifying parameters of the model presented in Figure 4B in the main text, and also299

that the parameter inference protocol(s) we are using are suitable for the task. We believe such an300

approach should always be used to test whether there is sufficient information in the experimental301

data being proposed for calibration of a mathematical model. The test should be performed twice:302

before conducting the experiment (with the pre-existing best guess at the parameters); and also after303

conducting the experiment (with the new maximum posterior density estimate of the parameters304

— as we illustrate in Figure C7).305
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Figure C7: Probability density distributions for each parameter estimates from fitting to both
experimental data (red) and simulated data (blue). Crosses indicate the parameter set with the
maximum posterior density.

D Cell-Specific versus Literature Model Predictions306

In Tables D2–D10 we compare the predictions given by each cell-specific model with a range of307

literature model predictions. We compare their ability to predict the full current traces for the308

validation protocols Pr3–6 discussed in the main text. Each table provides the mean (over each309

time point) square difference between an experimental current recording in one particular cell and310

its cell-specific model prediction under each of the validation protocols, and compares this with311

current predictions from a range of literature models. Equation (F.10) gives the formula that was312

used to calculate the error entries.313

Note that we have to choose a conductance value, GKr, for the literature models. GKr is selected314

differently for each cell by minimising the error metric for the predicted current trace under the315

action potential protocol (Pr6) for each model (a best-case scenario for each literature model). Our316

new cell-specific models’ conductances were fitted to the sine wave protocol (Pr7), along with the317

rest of their parameters. N.B. the literature model predictions are worse if we scale them to fit the318

sine wave; we considered this perhaps unjustified since they were developed never having seen such319

a protocol.320

Despite literature models having their conductance scaled to minimise error in the Pr6 (action321

potential clamp) current prediction; only the Di Veroli et al. (2013) model for Cell #9 performs322

better than our cell-specific models. The sine-wave fitted model outperforms all other literature323

models for all other cells.324

Additionally, the Wang et al. (1997) model gives better predictions for the deactivation protocol325

current for some cells and for the steady state activation protocol for Cell #4. The Di Veroli et al.326

(2013) model gives better predictions for the inactivation protocol for Cells #2, and #9; and the327

deactivation protocol for Cell #6. The Mazhari et al. (2001) model gives a better prediction for the328

steady state activation protocol for Cell #7.329
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Table D2: Table quantifying mean square difference (units nA) between experimental current traces
and simulation predictions for the validation protocols shown in Figures 5 and 6 for Cell #1. Here
the colour scale is set so that T represents zero error and T represents the highest error for each
protocol/column.

Model Sine Wave (Pr7) AP (Pr6) Steady Act. (Pr3) Deact. (Pr5) Inact. (Pr4)

New model for Cell #1 0.0151 0.0283 0.0332 0.0925 0.0312
Wang et al. (1997) 0.0389 0.0419 0.0842 0.1195 0.0402
Di Veroli et al. (2013) 0.0487 0.0545 0.0916 0.1400 0.0479
Mazhari et al. (2001) 0.0499 0.0516 0.0731 0.1491 0.0564
Ten Tusscher et al. (2004) 0.0599 0.0557 0.0939 0.1538 0.0653
Zeng et al. (1995) 0.0787 0.0802 0.0989 0.1616 0.0638

Table D3: Table quantifying mean square difference (units nA) between experimental current traces
and simulation predictions for the validation protocols shown in Figures 5 and 6 for Cell #2. Here
the colour scale is set so that T represents zero error and T represents the highest error for each
protocol/column.

Model Sine Wave (Pr7) AP (Pr6) Steady Act. (Pr3) Deact. (Pr5) Inact. (Pr4)

New model for Cell #2 0.0164 0.0295 0.0270 0.0656 0.0219
Wang et al. (1997) 0.0529 0.0528 0.0746 0.0633 0.0384
Di Veroli et al. (2013) 0.0314 0.0302 0.0506 0.0679 0.0212
Mazhari et al. (2001) 0.0361 0.0380 0.0533 0.0939 0.0324
Ten Tusscher et al. (2004) 0.0575 0.0639 0.0846 0.1011 0.0539
Zeng et al. (1995) 0.0654 0.0717 0.0828 0.1070 0.0452

Table D4: Table quantifying mean square difference (units nA) between experimental current traces
and simulation predictions for the validation protocols shown in Figures 5 and 6 for Cell #3. Here
the color scale is set so that T represents zero error and T represents the highest error for each
protocol/column.

Model Sine Wave (Pr7) AP (Pr6) Steady Act. (Pr3) Deact. (Pr5) Inact. (Pr4)

New model for Cell #3 0.0253 0.0415 0.0658 0.0785 0.0537
Wang et al. (1997) 0.0472 0.0492 0.0729 0.0648 0.0549
Di Veroli et al. (2013) 0.0630 0.0859 0.1136 0.1034 0.0743
Mazhari et al. (2001) 0.0627 0.0819 0.0910 0.1099 0.0835
Ten Tusscher et al. (2004) 0.0733 0.0712 0.0936 0.1101 0.0822
Zeng et al. (1995) 0.0972 0.1153 0.1216 0.1282 0.0868
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Table D5: Table quantifying mean square difference (units nA) between experimental current traces
and simulation predictions for the validation protocols shown in Figures 5 and 6 for Cell #4. Here
the color scale is set so that T represents zero error and T represents the highest error for each
protocol/column.

Model Sine Wave (Pr7) AP (Pr6) Steady Act. (Pr3) Deact. (Pr5) Inact. (Pr4)

New model for Cell #4 0.0258 0.0359 0.0701 0.0878 0.0522
Wang et al. (1997) 0.0595 0.0443 0.0587 0.0506 0.0537
Di Veroli et al. (2013) 0.0429 0.0559 0.1045 0.0955 0.0596
Mazhari et al. (2001) 0.0472 0.0581 0.0709 0.1074 0.0681
Ten Tusscher et al. (2004) 0.0668 0.0741 0.0760 0.1030 0.0665
Zeng et al. (1995) 0.0832 0.1067 0.1079 0.1282 0.0733

Table D6: Table quantifying mean square difference (units nA) between experimental current traces
and simulation predictions for the validation protocols shown in Figures 5 and 6 for Cell #5. Here
the color scale is set so that T represents zero error and T represents the highest error for each
protocol/column.

Model Sine Wave (Pr7) AP (Pr6) Steady Act. (Pr3) Deact. (Pr5) Inact. (Pr4)

New model for Cell #5 0.0203 0.0453 0.0437 0.1317 0.0700
Wang et al. (1997) 0.0725 0.0764 0.1374 0.1611 0.0933
Di Veroli et al. (2013) 0.0675 0.0958 0.1148 0.1881 0.0735
Mazhari et al. (2001) 0.0824 0.0963 0.1009 0.2286 0.1012
Ten Tusscher et al. (2004) 0.1080 0.1260 0.1603 0.2422 0.1415
Zeng et al. (1995) 0.1318 0.1650 0.1620 0.2575 0.1259

Table D7: Table quantifying mean square difference (units nA) between experimental current traces
and simulation predictions for the validation protocols shown in Figures 5 and 6 for Cell #6. Here
the color scale is set so that T represents zero error and T represents the highest error for each
protocol/column.

Model Sine Wave (Pr7) AP (Pr6) Steady Act. (Pr3) Deact. (Pr5) Inact. (Pr4)

New model for Cell #6 0.0113 0.0216 0.0264 0.0504 0.0170
Wang et al. (1997) 0.0263 0.0273 0.0370 0.0299 0.0240
Di Veroli et al. (2013) 0.0251 0.0375 0.0379 0.0492 0.0204
Mazhari et al. (2001) 0.0319 0.0369 0.0324 0.0606 0.0292
Ten Tusscher et al. (2004) 0.0409 0.0451 0.0455 0.0603 0.0384
Zeng et al. (1995) 0.0488 0.0644 0.0472 0.0688 0.0342
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Table D8: Table quantifying mean square difference (units nA) between experimental current traces
and simulation predictions for the validation protocols shown in Figures 5 and 6 for Cell #7. Here
the color scale is set so that T represents zero error and T represents the highest error for each
protocol/column.

Model Sine Wave (Pr7) AP (Pr6) Steady Act. (Pr3) Deact. (Pr5) Inact. (Pr4)

New model for Cell #7 0.0495 0.0777 0.1446 0.1824 0.0655
Wang et al. (1997) 0.1175 0.1394 0.1743 0.1392 0.0923
Di Veroli et al. (2013) 0.1142 0.1541 0.2052 0.2382 0.0960
Mazhari et al. (2001) 0.1485 0.1628 0.1410 0.2669 0.1303
Ten Tusscher et al. (2004) 0.1900 0.2102 0.2237 0.2726 0.1700
Zeng et al. (1995) 0.2121 0.2567 0.2567 0.3177 0.1624

Table D9: Table quantifying mean square difference (units nA) between experimental current traces
and simulation predictions for the validation protocols shown in Figures 5 and 6 for Cell #8. Here
the color scale is set so that T represents zero error and T represents the highest error for each
protocol/column.

Model Sine Wave (Pr7) AP (Pr6) Steady Act. (Pr3) Deact. (Pr5) Inact. (Pr4)

New model for Cell #8 0.0294 0.0482 0.0551 0.0927 0.0510
Wang et al. (1997) 0.0605 0.0625 0.1112 0.1258 0.0626
Di Veroli et al. (2013) 0.0542 0.0753 0.0858 0.1415 0.0641
Mazhari et al. (2001) 0.0700 0.0759 0.0893 0.1717 0.0831
Ten Tusscher et al. (2004) 0.0864 0.0940 0.1279 0.1810 0.1013
Zeng et al. (1995) 0.0990 0.1168 0.1324 0.1909 0.0961

Table D10: Table quantifying mean square difference (units nA) between experimental current
traces and simulation predictions for the validation protocols shown in Figures 5 and 6 for Cell #9.
Here the color scale is set so that T represents zero error and T represents the highest error for
each protocol/column.

Model Sine Wave (Pr7) AP (Pr6) Steady Act. (Pr3) Deact. (Pr5) Inact. (Pr4)

New model for Cell #9 0.0183 0.0314 0.0361 0.0506 0.0294
Wang et al. (1997) 0.0300 0.0351 0.0558 0.0483 0.0339
Di Veroli et al. (2013) 0.0248 0.0307 0.0374 0.0531 0.0277
Mazhari et al. (2001) 0.0262 0.0329 0.0407 0.0632 0.0315
Ten Tusscher et al. (2004) 0.0358 0.0421 0.0612 0.0673 0.0408
Zeng et al. (1995) 0.0429 0.0470 0.0602 0.0709 0.0364
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E Additional Current-Voltage Relationship Predictions330

Here we show the remainder of the predictions of the current-voltage relationships for the validation331

data of cell 5 that were not included in the main text (the results of Pr1 and Pr2, and extra IV332

curves for Pr4). Figure E8 shows the summary curves for Pr1 (voltage clamp shown in Figure B3)333

and Pr2 (voltage clamp shown in Figure B4).334

Traditionally these peak current curves would be plotted by normalizing to the peak current335

recorded in each activation kinetics protocol. However, as we have used a shorter version of the336

activation kinetics protocol, we do not expect that the channel would be fully open at the longest337

duration test step in Pr1 and Pr2. We have therefore instead normalized the curves using the peak338

current during the initial deactivation step in the sine wave protocol (around 1.6 seconds) where we339

expect the channel to be maximally open.340
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Figure E8: Predictions of peak current-voltage relationship derived from experiment and model
predictions in response to; A) Activation Kinetics Pr1, B) Activation Kinetics Pr2, with compari-
son of our model prediction with predictions from existing literature models. Currents have been
normalized to the peak current in the initial deactivation step in the sine wave protocol (around 1.6
seconds) as we do not expect the channel to be fully open at the longest Tstep in these activation
kinetics protocols.

In Figures E9 and E10 we plot additional IV curves summarising the experimental, New Model341

and literature model responses to the inactivation protocol Pr4.342
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Figure E9: Inactivation peak current IV curve, summarizing currents in response to Pr4. The New
Model, Wang, DiVeroli and Mazhari model IV curves are all indistinguishable here and lie on top
of one another under the green line.
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Figure E10: Inactivation steady-state current IV curve, summarizing currents in response to Pr4.
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F Comparing Cell-Specific with Average Model343

In addition to creating cell specific models as described so far we also created an averaged model344

by first normalizing each experimental trace to one reference trace (so that each trace was given345

equal weight in the averaging regardless of the conductance of the channel) and then summing and346

averaging the current value at each time point along the protocol.347

The parameter values obtained when calibrating each cell-specific and averaged model are shown348

in Table F11. These values correspond to the parameter sets with maximum posterior density349

identified in the MCMC chain. The full posterior density distributions for each parameter for each350

of the 9 cells are shown in Figure F11.351

Table F11: Table of parameter values at the maximum posterior density for each cell-specific model,
and the model fitted to averaged data (N.B. not the average of the cell-specific parameters). Here
the model parameter numberings correspond to those detailed in Figure 4B, and GKr represents
the conductance value fitted for each model. *Note that the conductance fitted for the ‘Averaged’
model reflects mainly the conductance for the reference experimental trace (used for scaling all
other traces before averaging), and should not be considered the ‘average’ conductance, hence its
omission from Figure 7A.

P1 P2 P3 P4 P5 P6 P7 P8 GKr

Cell #1 1.9800× 10−4 0.0593 7.1688× 10−5 0.0493 0.1048 0.0139 0.0038 0.0360 0.1351
Cell #2 3.2387× 10−4 0.0653 7.8195× 10−5 0.0497 0.0805 0.0025 0.0049 0.0324 0.0902
Cell #3 4.7771× 10−4 0.0661 5.1611× 10−5 0.0523 0.1375 0.0094 0.0039 0.0375 0.1011
Cell #4 6.7414× 10−4 0.0577 5.8027× 10−5 0.0517 0.0893 0.0057 0.0059 0.0324 0.0741
Cell #5 2.2603× 10−4 0.0699 3.4481× 10−5 0.0546 0.0873 0.0089 0.0052 0.0316 0.1524
Cell #6 6.1840× 10−4 0.0658 1.2754× 10−4 0.0379 0.0810 0.0165 0.0092 0.0253 0.0218
Cell #7 5.4045× 10−4 0.0484 6.5855× 10−5 0.0457 0.0627 0.0087 0.0054 0.0318 0.1553
Cell #8 3.1336× 10−4 0.0481 5.0647× 10−5 0.0491 0.0723 0.0063 0.0060 0.0328 0.0984
Cell #9 5.6194× 10−4 0.0433 1.2400× 10−4 0.0444 0.0659 0.0028 0.0036 0.0343 0.0514

Averaged 4.0000× 10−4 0.0579 6.5092× 10−5 0.0487 0.0807 0.0068 0.0052 0.0334 0.0673*

To quantitatively compare the average model predictions and the cell-specific model predictions352

shown in Figure 7B of the main text we calculated the mean square difference at each point between353

the average model and the cell-specific models for each cell when predicting the full current trace354

in response to the steady-state activation protocol. We also repeated this for the deactivation and355

inactivation protocols and the action potential protocol shown in Figures 5 and 6. The differences356

for each cell are shown in Table F12 with a comparison between the experimental result and the357

average model predictions with the cell-specific predictions.358

We note that we have ordered the cells in this table (as in Figure 7) according to the percentage359

change in leak resistance between performing the vehicle and dofetilide repeats of the sine wave360

voltage protocol used to construct the model. This ordering acts as an estimated ranking for the361

quality of each recording. The benefit of a cell-specific approach occurs when using the highest362

quality data for both model construction and validation. We should note that even though in cells363

#4 and #6 the average model provides the better prediction of the steady-state activation peak364

current-voltage relationship than the cell-specific model, the cell-specific models are still providing365

very good predictions in these cases, it is just that the experimental behavior is more like the average366

model behavior for these cells. We also note that for eight out of the nine cells, the cell-specific367

model provides a better prediction of the current response to the action potential protocol than the368

average model, however, in the case where the cell-specific model is worse the difference is only a369

small amount.370
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Figure F11: Distributions for each parameter for each of the 9 cell-specific models and the averaged
data model. To aid comparison these are all histograms with 100 bars (plotting probability distri-
butions here leads to very different maxima, obscuring the spread information), and so the y-axis
is in arbitrary units related to the number of samples. We see that the parameter values tend to
be given distinct distributions and so we would consider most of them to be ‘significantly different’,
indicating that the variation we see in Figure 7 is due to cell-cell variability in the recordings rather
than noise or unidentifiability in our parameter estimates.
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We use a measure of371

error =
1

T

T∑
t=1

(
(simulated current at time step t− experimental current at time step t)2

) 1
2
,

(F.10)
to evaluate the error in model predictions for individual cells (using the whole current traces,372

apart from removing regions in the sine wave protocol with capacitive spikes as explained in Meth-373

ods B2.1).374

Table F12: Table showing the error measure defined by equation F.10 between cell-specific or
average models and the experimental current recording for fit (sine wave Pr7) and predictions with
validation protocols (all other columns). Cells are ordered in ascending order according to the
percentage change in leak resistance Rleak. Here the color scale is set so that within each pair
of columns T represents lowest error and T represents the highest error for each protocol/pair
of columns. Note that the cells with larger currents will show larger errors, but the left column
cell-specific predictions tend to perform better than the average model, particularly for cells where
the average model gives a relatively large error.

Cell ∆Rleak Sine Wave (Pr 7) APs (Pr 6) Steady Act. (Pr 3) Deact. (Pr 4) Inact. ( Pr 5)
# (%) Specific Average Spec. Aver. Spec. Aver. Spec. Aver. Spec. Aver.

1 0.0 0.0151 0.0367 0.0283 0.0567 0.0332 0.0770 0.0925 0.1138 0.0312 0.0372
2 7.7 0.0164 0.0271 0.0295 0.0343 0.0270 0.0334 0.0656 0.0619 0.0219 0.0237
3 12.5 0.0253 0.0406 0.0415 0.0681 0.0658 0.1111 0.0785 0.0869 0.0537 0.0731
4 16.7 0.0258 0.0318 0.0359 0.0411 0.0701 0.0580 0.0878 0.0846 0.0522 0.0563
5 20.0 0.0203 0.0228 0.0453 0.0535 0.0437 0.0591 0.1317 0.1608 0.0700 0.0668
6 28.6 0.0113 0.0205 0.0216 0.0250 0.0264 0.0206 0.0504 0.0435 0.0170 0.0183
7 32.5 0.0495 0.0631 0.0777 0.0885 0.1446 0.1198 0.1824 0.2016 0.0655 0.0740
8 42.9 0.0294 0.0352 0.0482 0.0507 0.0551 0.0603 0.0927 0.1265 0.0510 0.0526
9 58.3 0.0183 0.0195 0.0314 0.0306 0.0361 0.0321 0.0506 0.0462 0.0294 0.0294

For predictions of the action potential protocol currents, Table F12 demonstrates that the cell-375

specific modeling approach yields predictions that are very close to or better than the average model.376

Additionally, for the predictions of the steady-state activation protocol the cell-specific approach377

generally yields very good and more accurate (for 4/5) predictions of validation data when the378

highest quality data is used (cells #1–5). This benefit is absent when lower quality experimental379

data is used where the average model provides very similar, but slightly better, predictions (cells380

#6–9).381

We also compare cell-specific and average predictions for each of the 9 cells for the deactivation,382

recovery from inactivation and instantaneous inactivation time constants as were shown for one383

cell in Figure 5. We show this comparison for each cell in Figure F12 and F13 for 8/9 cells and in384

Figure F14 for all cells. Cell #6 was omitted in the first two plots because this cell had a particularly385

low current and it was difficult to accurately fit exponential curves to the experimental data for this386

cell. We also note that we have not plotted the time constant values for −90 mV in Figures F12 &387

F13 for the same reason; we could not confidently fit an exponential decay curve to determine an388

accurate time constant value for this voltage step.389

We see in Figures F12–F14 that the same observations that were made for the results shown in390

Figure 7 generally hold: for lower cell numbers #1–5, we see enhanced predictions of the experi-391

mental time constants from the cell-specific model rather than the averaged model. i.e predictions392

are better in the cells with lower percentage changes in leak current resistance, which correspond393
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Figure F12: Cell-specific model predictions of time constant/voltage relationships for deactivation
(Pr5). Each plot represents a different cell, with cell-specific model prediction depicted by the bold
line, and the dashed line showing the cell’s experimental data. Black lines on each plot represents
the average model prediction. Cells are ordered as in Table F12.
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Figure F13: Cell-specific model predictions of time constant/voltage relationships for recovery from
inactivation in Pr5. Each plot represents a different cell, with cell-specific model prediction depicted
by the bold line, and the dashed line showing the cell’s experimental data. Black lines on each plot
represents the average model prediction. Cells are ordered as in Table F12.
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to better quality data.394

G Synthetic data study for an IKs model395

In order to demonstrate the wider applicability of our approach we also show its suitability for396

parameterising a model of a different ion current — the slowly activating delayed rectifier potassium397

channel (IKs). We tested the approach using a synthetic data study similar to that described in398

Section C2 for the model in the main text. The IKs model we used was taken from the Ten399

Tusscher et al. (2004) cardiac action potential model which (including a conductance parameter)400

has 8 parameters within the IKs model. The model, which we have rewritten to make all parameters401

a priori identifiable, takes the form shown in Equations (G.11)–(G.16):402

IKs = GKsX
2
s (V − EKs), (G.11)

Xs∞ =
1

1 + P1 exp(−P2V )
, (G.12)

αXs =
1

1 + P6 exp(P7V )
, (G.13)

βXs =
1

P5

√
1 + P3 exp(−P4V )

, (G.14)

τXs = αXsβXs, (G.15)

dXs

dt
=
Xs∞ −Xs

τXs
. (G.16)

In Table G13 we compare the parameters we used to generate the synthetic data and the403

parameters we identified as producing the best fit to these synthetic data (which included added404

noise). We see that the maximum likelihood parameters are very similar to those from which405

the synthetic data were produced, demonstrating the theoretical capability of this approach to406

parameterise a model of IKs. The practicality of this approach with real data is still to be explored.407

Table G13: Table comparing parameter values used to simulate the synthetic data for the IKs model
and the maximum likelihood fit to these data.

P1 P2 P3 P4 P5 P6 P7 GKr

Underlying Synthetic Data Value 0.6997 0.0714 0.1889 0.1667 0.0009 0.0498 0.05 0.1
Fitted Value 0.6967 0.0716 0.1964 0.1659 0.0009 0.0540 0.0486 0.0999
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H Testing with a five state Markov model408

In this section we test whether the sinusoidal protocol is capable of fitting a more complicated model409

of hERG kinetics with both more states and more parameters. We consider the five state model410

structure of Wang et al. (1997), as shown in Figure H15B. This model has 14 kinetic parameters,411

rather than the 8 in our Hodgkin-Huxley style model, we maintain the non-voltage-dependent tran-412

sition rates between states C2 and C1 (states and parameters labelled as depicted in Figure H15B)413

which was proposed by Wang et al. (1997), which was suggested as the most likely hERG model414

in Bett et al. (2011). Figure H15A shows the fit to the sinusoidal protocol Pr6 for Cell #5 data415

(analogous to Figure 4 of the main text).416

We see a very good fit to the training protocol with almost all parameters having narrow posterior417

distributions, as we did with the Hodgkin-Huxley (HH) model. The mean square difference in the418

fit with this five state model is 0.0164 nA as compared to 0.0203 nA when fitting the HH model419

(this is no surprise as we expect a model with more parameters to be able to get a closer fit), we420

can see the main difference is in better fits of the multiple time constants in the response to the421

‘closing’ voltage-step at 1.5–2 s and 6.5–7 s.422

The only parameter of particular note here is P2 (the voltage-dependence of the C1 to O tran-423

sition), it’s posterior distribution is ‘hitting’ the lower end of the prior, hinting that there may be424

no/low voltage dependence on this transition. We surmise that either: this voltage-dependence425

is not required to fit the sinusoidal protocol — there is insufficient information on this parame-426

ter revealed by the protocol (although note the posterior is heavily skewed towards zero, not just427

keeping the same shape as the prior, suggesting there is information and P2 needs to be small); or428

the channel really does have little voltage dependence here — perhaps even that the diagram could429

have a closed state removed and the channel function can be equally well represented with a simpler430

model.431

In Figure H16 we show the predictions of the parameterised five state model for the action432

potential protocol Pr6, akin to that shown in Figure 6 in the main text. We see that the five state433

model is quite predictive for this protocol, and has much less error than with its original parameters434

(shown in purple in panel E and quantified as 0.0764 nA in Table D6 above). Across the whole of435

Protocol 6 the mean square error for this five state model is slightly less than it was for the new436

HH model (0.0419 nA vs. 0.0453 nA respectively). We attribute this difference to the better fit of437

the multiple time constants in the channel closing after 0.73 s, because if we consider just the main438

action potential section (0.5702–7.3245 seconds of Pr6), the mean square error for five state model439

is slightly more than the model in the main text (0.0475 nA vs. 0.0471 nA respectively).440

The larger structure also makes slightly larger errors when predicting the standard voltage-441

step protocols, shown in Figure H17 below. We draw attention to the activation, inactivation and442

recovery from inactivation summary curves, all of which are slightly worse under the five-state model443

than under the HH model (see Figure 5 of the main text).444

Overall, despite an improvement in model fit (comparing Figure H15 in this response with445

Figure 4 in the main text), we see a slight deterioration in model predictions (a common pitfall when446

complicating a model, known as “variance bias trade-off” in statistical models), perhaps suggesting447

we are on the boundary of ‘over-fitting’ in terms of either the number parameters or complexity448

of the model structure. This finding emphasises the value of a simple model to optimise accuracy449

in model parameterisation and predictive power. In parallel work, we are exploring and extending450

the use of this methodology for both parameterising and selecting the most representative and451

predictive model of hERG channel kinetics. The findings here suggest that perhaps a compromise452

between a structure capable of multiple time constants in closing whilst retaining simplicity may453

be the most appropriate choice.454
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