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1 SI Methods

1.1 Introducing an initial configuration

Especially as population-scaled mutation rates grow large, it is important to relax the third
weak mutation assumption that the population starts with only one mutant allele, p = 1.
To do this, we allow an initial frequency distribution across the population, f(p), such that
a fraction of the population initially exists in each state, p, according to the probabilities of
generating p mutations in one generation under the Wright-Fisher Markov model. This can
be accomplished with
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with a forward mutation rate of . Each integration over p in equation [I] can be truncated
once the probability P(0,p) becomes small enough to be considered negligible. When us-
ing direct, sparse matrix methods(l), these computations take trivially longer than when
assuming p = 1, since the vast majority of computational time is spent computing the tran-
sition matrix and performing an LU decomposition, which do not change with p. Numerical
results from this approach match very closely to an exact computational approach, with
which the substitution rate can be calculated directly from the Wright-Fisher transition
matrix (Extended Data Fig. 2; see Methods, main text).

It is interesting to note that Kimura’s formulation uses the approximation 7, = 1/(2Np)
in place of the correct value under the Wright-Fisher model, which when p = 1 is (1 —
P(0,0))/P(0,1). While these quantities are close to each other for small mutation rates,
they become different as mutation rates are increased.



1.2 Recovering the weak mutation model as a special case of the
rate of observable evolution

As noted above, Kimura assumed that 7, = 1/(2Np) generations. By introducing this
assumption, equation 3 in the main text can be rewritten as

_ 2N/~LPPfix . (4)
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Here we see the weak-mutation substitution rate in the numerator (with the addition of
the effect of mutation incorporated in P, ), and a retardation factor in the denominator.
Compatible with Kimura’s assumptions, when 2NuT'y, . is small, the contribution of the
retardation factor will be negligible and the weak-mutation rate of evolution will agree
with the rate of observable evolution. We can now reintroduce Kimura’s weak mutation
assumptions that: 1) no additional mutations can be generated during the segregation of
an initial mutant by substituting Ppix for Pg,; and 2) that absorption times are negligible
compared to mutation times by making absorptions instantaneous and taking 7’3, to 0.
Doing this, we see the substitution rate simplifies to Kimura’s rate,
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1.3 Alternative derivation of the rate of evolution

Let M be the time until the first fixation, and F; be the event where the ith mutation-
absorption cycle is the first one to fix. We wish to derive an expression for E(M), since the
expected substitution rate will then be k = 1/E(M). To begin, we condition on when the
fixation occurs.

E(M) = ZE(M |F;)P(F;)

where E(M]|F;) is the expected time to fixation, given that fixation occurs on the cycle i.
In writing an expression for E(M|F;), we need to account for the time it takes ¢ mutations
to arise, the time it takes ¢ — 1 mutations to go extinct once arisen, and the time it takes
for 1 mutation to fix once arisen. Let T}, be the mean number of generations for a mutation
to arise. This yields

E(M|F;) = iTy + (i — )Tie + i

Since a single mutation fixes with probability Pp

P(FZ) = Pﬁ‘klx(l - Pl;kix)i_l

Using both of the above formulas in our earlier expression for E(M), we get
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Notice that the first summation is the expected value of a geometric random variable with
success probability P, which simplifies to 1/Pp;,. The second summation is the sum over
all probabilities of the same geometric random variable, which simplifies to 1. Therefore,
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and the expected substitution rate is k = 1/E(M).
Rearranging gives a more intuitive formulation.
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Let T, be the mean time to absorption, unconditional on the absorbing state. Since
the only absorbing states are extinction and fixation we have

szs = P;ixTF*ix + (1 - PP:kix)T];xt

and thus we can rewrite k, the expected substitution rate, as
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1.4 SLiM simulation code

initialize () {
// mu is the mutation rate, s is the selection coefficient
initializeMutationRate (mu);
initializeMutationType ("ml”, 0.5, 7{”7, s);
ml.convertToSubstitution = F;
ml. mutationStackPolicy = F;

// single locus
initializeGenomicElementType (" gl”, ml, 1.0);
initializeGenomicElement (gl, 0, 0);

initializeRecombinationRate (0);

)

// N is the population size
sim . addSubpop (" pl”, N);
writeFile (..., append=T);

}

1:5000000 late () {

muts = sim.mutations;
freqs = sim.mutationFrequencies (pl,muts);
if ( sum(freqs) = 1.0 ) {

// Return process
pl.genomes.removeMutations (sim.mutationsOfType (ml),T);
writeFile (... ,append=T);



2 SI Figures
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Figure S1: Effect of mutation on different rates of evolution.

Conditions are the same as in Fig. 1C. Modifying Kimura’s weak-mutation rate of evolution
to include mutation in the probability of fixation predicts a large acceleration in the rate
of evolution compared to Kimura’s model (“Kimura, plus mutation”) for larger values of
0. Similarly, including mutation and the expected time to fixation, as in Guess and Ewens
(“Guess Ewens biallelic”), predicts an acceleration in the rate of evolution. However, a
deceleration is predicted (and observed in simulation; Fig. 1C) when the absorption times
are included as in the rate of observed evolution. a. S = 0 (neutral). b. S = 50 (strong
positive selection).
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Figure S2: Relative error when assuming p = 1 and including an initial configura-
tion, f(p).

Relative error between direct computation of the rate of evolution and equation 3 (main
text). When integrating over f(p), the two calculations match closely, differing by only
about 10713, As expected, when p = 1 is assumed, the error is much greater.
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Figure S3: The molecular clock is not a Poisson process.

A Poisson process has often been used to model substitution processes, which requires that
the mean of the substitution rate be equal to its variance. Although we cannot easily
calculate the variance of the substitution rate, we can calculate the variance or coeffi-
cient of variation (CV) of the time between fixations. For a Poisson substitution process,
OV (Tgy) = 100%. Values other than 100% imply that the molecular clock is over- or
under-dispersed. Here we show that not only do mutation and selection cause substantial
over/under dispersion, the neutral molecular clock (S = 0) is not a Poisson process, in
general, in the Wright-Fisher model including mutation.



—  Weak-mutation
—— Observable evolution
—&—  Monte carlo (SLiM)
8 Monte carlo (Wright-Fisher)
©
o
8
o
o)
2
o
<
c
S 8 -
5 o
=
=
17}
o
>
w
[aV]
o
8
o
o
o
8
o

T T T T T T
0 200 400 600 800 1000

Selection (2N's)

Figure S4: Simulation versus theory for a more extreme parameter range.
Calculations and simulations were made assuming a modest value of §# = 0.1. For ex-
treme values of the population-scaled selection coefficient, SLiM simulations quantitatively
diverged but qualitatively agreed with standard Wright-Fisher simulations and theory. This
variation is expected to some extent, as SLiM implements an individual-based simulation
under Wright-Fisher like conditions, not the Wright-Fisher model itself.
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Figure S5: Time to absorption and time to mutation when mutation may not be weak.

The weak-mutation rate of evolution assumes 7}, > T, . Here it is shown that this assumption fails badly when 0 is as small as 0.05. All quantities were
integrated over f(p) as explained in the Supplementary Methods. a. h = 0 (recessive). b. h = 0.5 (additive). c¢. h = 1.0 (dominant).
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Figure S6: Fraction of time in the between fixations cycle spent waiting for different processes.

Following the logic of the main text, the mean cumulative time between fixations spent generating mutations was computed as T}, - 1/ Prix, the mean time
spent segregating prior to extinctions was Tj, - ((1/Pf,) — 1), and the mean time spent in the fixation phase was Tj;,. All quantities were integrated over
f(p) as explained in the Supplementary Methods, and were normalized by the mean time between fixations. a. h = 0 (recessive). b. h = 0.5 (additive). c.
h = 1.0 (dominant).
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Figure S7: Predicted deceleration for CpG and non-CpG transitions in large
rodent populations.

A. The non-CpG forward mutation rate from Uchimura et al.(2) (5.6 x 107Y) was used
over a range of effective population sizes relevant to rodents. Ancestral effective population
sizes of mice have been estimated to be 277,000(4), while other studies have suggested that
Mus musculus castaneus has a current effective population size over 700,000(3). B. Using
the CpG-transition forward mutation rate(2)) (6.73 x 1078). For reasonable values of the
effective population size (N ), these results predict a slowdown of CpG transitions that may
be detectable in natural populations.
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