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SI Section A: Network Simulation Details

Memory Area Architecture

For simplicity, we consider locally connected neurons in the memory area. For this, the neurons are
arranged on a 30x30-grid with indexes running from left-top to right-bottom (Figure S1 A). Each neuron
is connected to its neighbors, if the position of the neighboring neuron is within a circle of radius equals 4
(see two examples in Figure S1 B). Periodic boundary conditions are introduced to avoid boundary and
finite-size effects.
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S 1. Arrangement of neurons and recurrent connectivity: (A) The indexes of the neurons in the
memory area are running from the top-left to the the bottom-right. (B) Exemplary illustration of the
connectivity of two neurons (bigger black dots) in the memory area.

Measures

Average shortest path length

The average shortest path length (ASPL, Figure 1 D) is considered here as a measure to analyze the spatial
distribution of activation within the memory area. A high ASPL between neurons indicates that these
neurons are spatially broadly distributed across the memory area. By contrast, a low ASPL indicates that
the neurons are clustered. In particular, as strongly activated neurons are supposed to become part of a
memory representation, we focus on the distribution of highly activated neurons. For this, for each trial,
we identified the 10% of neurons with the highest activity level (index set P ) and calculated the shortest
path length (SPL; see 49 in main text citations); using the networkX package for Python) between them
and averaged over all those paths (denoted by 〈·〉):
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ASPL = 〈SPLi,j〉i,j∈P,i6=j. (1)

The average outgoing recurrent synaptic weight (Figure 1 E) is a measure of the interconnection within
a neuronal subpopulation in the memory area (index set Q). We therefore averaged the synaptic weight
over all the connections among neurons within the sup-population:

w̄rec = 〈wrec
i,j 〉i,j∈Q,i 6=j. (2)

The average incoming feed-forward synaptic weight (Figure 1 F,G) is the average synaptic weight of
connections between a subpopulation in the memory area (index set Q) and a specific stimulus pattern
in the input area (index set H):

w̄ff = 〈wff
i,k〉i∈Q,k∈H . (3)

Note that the synaptic weights determined by the interplay between Hebbian synaptic plasticity
and synaptic scaling are normalized according to the weight values ŵff, ŵrec resulting from maximum
activation levels. Thus, we calculated the fixed points of equations 5 and 6 in the main text given that
Fi = Fj = α and Ik = 130:

ŵff =
√

κffα·130
α−FT , (4)

ŵrec =
√

κrecα2

α−FT . (5)

Response disparity dependent on stimulus similarity

To analyze the response disparity, stimulus A is presented 10 times for 5 sec with 1 sec pause in between
to form a single CA. After that, plasticity is shut off and the system is presented variations of stimulus
A with increasing stimulus disparity (Figure 1 H). Stimulus disparity measures the relative amount of
non-overlap between two stimulus patterns, in this case stimulus A and its variation (in the following
called stimulus A′). Both stimuli are of identical size NS = 0.5 · N I, so that the stimulus disparity is
calculated as follows:

stimulus disparity (A, A′) = 1− 1

NS
·
N I∑
k

Sk(A) · Sk(A′) (6)

with binary stimulus patterns for a given stimulus X ∈ A,A′:

Sk(X) =

{
1, if Ik(X) = 130,

0, if Ik(X) = 0.
(7)

Thus, a stimulus disparity equal zero describes two identical stimuli, whereas a disparity equal one
indicates two non-overlapping stimulus patterns. The input area size of N I = 36 allows for 18 steps in
variation of 5.5̄% each. At the end of each presentation we compare the resulting response in the memory
area with the one at the end of the learning phase (i.e. the response to the original stimulus A). The
response vector overlap (RVO; Figure 1 H) describes the similarity between the response patterns in the
memory area due to the presentation of stimuli A and A′:

RV O(A, A′) =

NM∑
i

Ri(A) ·Ri(A
′) (8)
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with binary response of neuron i to a given stimulus X ∈ A,A′:

Ri(X) =

{
1, if Fi(X) > 0.5 · α,
0, else.

(9)

Parameter Dependency of CA Formation

The formation of a cell assembly in the neural circuit depends on the synaptic weight dynamics at two
sites: 1) the feed-forward synaptic connections from the input area to the memory area and 2) the
recurrent connections among neurons of the memory area. In the main text, both plasticities (feed-
forward as well as recurrent) act on the same time scale µff = µrec = µ (compare equations 5 and 6).
Here, we show that the formation of a CA is robust against parameter changes in a wide regime. In
general, we consider a CA to be a strongly interconnected subpopulation of neurons with highly correlated
activities, i.e. simultaneously high firing rates. Therefore, we show the resulting ASPL between the 10%
strongest active neurons in the memory area (Figure S2 A) and the average recurrent synaptic weight
the subpopulation receives (Figure S2 B) for variations of the time scale ratio of the feed-forward and

recurrent weight adaptation rµ = µrec

µff . The learning protocol is equivalent to the first learning phase
used for Figure 1 D in the main text. The ASPL and the average weight are evaluated after the last
stimulus presentation.

A low ASPL (≈ 1.8; Figure S2 A, red line) and a significant increase of the recurrent synaptic weights
above the initial mean value (0.25; Figure S2 B, red) indicate a proper formation of a CA. These two
requirements are fulfilled for a wide range of the learning ratio (rµ = 2−4 to rµ = 23.5).
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S 2. The parameter-dependency of different plasticity time scales on the CA formation. (A) The
average shortest path length (ASPL) between the 10% of strongest active neurons in the memory area
versus the time scale ratio rµ. (B) The average synaptic weight of all recurrent synapses this active
subpopulation receives versus rµ. Data points are means±standard deviation over 100 trials. For more
details see text.
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System Development

In this section, we show the development of the neural circuit in more detail. Figures S3 and S4 capture
key values of a learning trial for each neuron in the memory area at different points in time. For illustrative
reasons the learning protocol is split into two parts: Figure S3 shows dynamics during the the first learning
phase (stimulus A), while Figure S4 shows them during the second learning phase (stimulus B).

Each square represents the 30x30-grid of neurons in the memory area as indicated in Figure S1 A.
Thus, each point shows the average values of a neuron’s feed-forward synaptic weights (first row: from
all input neurons to corresponding neuron; second row: from stimulus A to corresponding neuron; third
row: from stimulus B to corresponding neuron), outgoing recurrent synaptic weights (fourth row) and
its neuronal activation (fifth row).
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S 3. System state of the memory area at different points in time during the first learning phase. For
details see text.

First learning phase: the system is initialized with zero activation in the memory area, recurrent
weights are at 0.25 · ŵrec and feed-forward weights are drawn from a uniform distribution between 0 and
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0.7 · ŵff. Presenting stimulus A to the memory area initially activates an increasing number of broadly
distributed neurons in the memory area (red dots in the fifth row of Figure S3; first presentation). The
ongoing activity increases recurrent synaptic weights (green; fourth row) and also feed-forward weights
from stimulus A (blue; second row), which, in turn, increases the activity. This positive feedback loop
between synaptic weights and neuronal activity leads to the emergence of clustered activity (second
presentation). This cluster spreads until inhibition limits its growth and, furthermore, suppresses sparse
activation in the periphery (fourth to tenth presentation). The recurrent weights among CA neurons are
increased until the equilibrium between Hebbian synaptic plasticity and synaptic scaling is reached. Note
that, if averaged over all of the input area’s connections (blue; top row), the synaptic weight changes of the
feed-forward connections to the CA are not significant. By contrast, the synaptic weights only from the
stimulus-A-neurons to the emerging CA-neurons are strengthened (blue spot; second row). Furthermore,
synaptic weights from stimulus-B-neurons to the CA-neurons are decreased (white spot; third row).
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Second learning phase: the first learning phase yields the encoding of a highly interconnected sub-
population of neurons in the memory area. However, due to the interplay between Hebbian synaptic
plasticity and synaptic scaling this CA cannot be activated by the second stimulus B. Instead, the pro-
cess of initially scattered activation (red dots in the fifth row of Figure S4; first presentation) and the
following clustering process (fourth to tenth presentation), as described above, are repeated yielding the
formation of a second CA representing stimulus B.
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S 4. System state of the memory area at different points in time during the second learning phase. For
details see text.
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Cell Assembly Topology

Some of the parameters of the population model are extracted from the full network simulations. Average
values are given as mean±standard deviation.

Figure S5 A shows the distribution of numbers of neurons within the first CA with average N̄CA =
120± 4. Furthermore, the average number of feed-forward connections per CA-neuron n̄ff is calculated.
Figure S5 B shows the distribution for n̄ff from stimuli A to the corresponding CA. Stimulus A consists
of half the input population being active. Thus, with an exact number of four randomly assigned feed-
forward connection per memory neuron, every stimulus-A-neuron should on average project with two
feed-forward connections on each neuron in the memory area. Due to the random connectivity, however,
stimulus-A-neurons project to the corresponding CA-neurons with n̄ff = 2.37± 0.07. We also determined
the average number of recurrent connections n̄rec each neuron within the first CA receives from other
CA-neurons (Figure S5 C; n̄rec = 33.8± 0.4).
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S 5. Different distributions of CA properties for 1000 trials. (A) Distribution of number of neurons in a
CA, (B) of the average number of incoming feed-forward connections per CA neuron from the
corresponding stimulus, (C) and of the average number of incoming recurrent connections per
CA-neuron.
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SI Section B: Population Model Details

Nullclines and Equilibria

The equilibrium values w̄rec,∗
i and w̄ff,∗

i of the recurrent and feed-forward weights can be obtained as a
function of the equilibrium values of the population activities F̄ ∗i from equations 10 and 11 of the main
text:

w̄rec,∗
i (F̄ ∗i ) =

√
κrec(F̄ ∗i )2

F̄ ∗i − FT
, (10)

w̄ff,∗
ik (F̄ ∗i ) =

√
κffF̄ ∗i Īk
F̄ ∗i − FT

. (11)

The equilibrium value ū∗inh of the membrane potential of the inhibitory population can be formulated as
a function of F̄ ∗1 and F̄ ∗2 based on equation 8 in the main text:

ū∗inh(F̄ ∗1 , F̄
∗
2 ) = Rinhτinh(winh,1N1F̄

∗
1 + winh,2N2F̄

∗
2 ). (12)

By inserting equations 10, 11 and 12 into equation 7 in the main text and using F̄ ∗i = F (ū∗i ), we obtain a
system of the two population nullclines that only depends on the equilibrium values ū∗1 and ū∗2 (i ∈ {1, 2}):

0 = − ū
∗
i

τ
+R

(
n̄rec
i w̄rec,∗

i (F̄ ∗i )F̄ ∗i + wi,inhF̄
∗
inh(F̄ ∗1 , F̄

∗
2 ) +

∑
k

n̄ffw̄ff,∗
ik (F̄ ∗i )Īk

)
.

We solve this system numerically to receive the equilibrium values ū∗1 and ū∗2 and, in consequence, by

means of equations 10, 11 and 12, also w̄rec,∗
1 , w̄rec,∗

2 , w̄ff,∗
1A , w̄ff,∗

1B , wff,∗
2A , w̄ff,∗

2B and ū∗inh.

Stability

The stability of an equilibrium is determined by the sign of the eigenvalue with the largest real part of
the system’s Jacobi matrix evaluated at the equilibrium. The nonzero terms of the Jacobi matrix are
(i ∈ {1, 2}, k ∈ {A,B}):

∂ ˙̄ui
∂ūi

= −1

τ
+Rn̄rec

i w̄lat
i

∂F̄i
∂ūi

,
∂ ˙̄ui
∂ūinh

= Rwi,inh
∂F̄inh

∂ūinh
,

∂ ˙̄ui
∂w̄rec

i

= Rn̄rec
i F̄i,

∂ ˙̄ui
∂w̄ff

ik

= Rn̄ff
i Īk,

∂ ˙̄uinh

∂ūi
= Rinhwinh,iNi

∂F̄i
∂ūi

,
∂ ˙̄uinh

∂ūinh
= − 1

τinh
,

∂ ˙̄wrec
i

∂ūi
= µrec ∂F̄i

∂ūi

(
2F̄i −

(w̄rec
i )2

κrec

)
,

∂ ˙̄wrec
i

∂w̄rec
i

=
2µrec

κrec
(FT − F̄i)w̄rec

i ,

∂ ˙̄wff
ik

∂ūi
= µff ∂F̄i

∂ūi

(
Īk −

(w̄ff
ik)2

κff

)
,

∂ ˙̄wff
ik

∂w̄ff
ik

=
2µff

κff
(FT − F̄i)w̄ff

ik

with

∂F̄i
∂ūi

= βF̄i

(
1− F̄i

α

)
and

∂F̄inh

∂ūinh
= βF̄inh

(
1− F̄inh

α

)
.

The eigenvalues of the resulting matrix are determined numerically.
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Feed-Forward Synaptic Weight Change

For constant pre- and postsynaptic activities (Figure 2 D), equation 11 in the main text can be solved
analytically by separation of variables. The resulting time-course wff

i (t) depends on the given parameters
and initial conditions:

w̄ff
i (t) =



w̄ff,∗
i coth

(√
F̄iĪi(F̄i−FT)

κff (t− t0)µff + arcoth
(
w̄ff

i (t0)

wff,∗
i

))
for w̄ff

i (t0) > wff,∗
i ∧ F̄ff

i > FT ∧ Īi > 0,

w̄ff,∗
i tanh

(√
F̄iĪi(F̄i−FT)

κff (t− t0)µff + artanh
(
w̄ff

i (t0)

wff,∗
i

))
for w̄ff

i (t0) < wff,∗
i ∧ F̄ff

i > FT ∧ Īi > 0,

w̄ff,†
i tan

(√
F̄iĪi(F̄i−FT)

κff (t− t0)µff + arctan
(
w̄ff

i (t0)

wff,∗
i

))
for w̄ff

i (t0) < wff,∗
i ∧ F̄ff

i < FT ∧ Īi > 0,(
1

w̄ff
i (t0)

− FT−F̄ ff
i

κff (t− to)µff
)−1

for F̄ff
i = 0 ∨ Īi = 0

with

w̄ff,†
i (F̄ ∗i ) =

√
κffF̄ ∗i Ī

FT − F̄ ∗i
.

Recruitment Basins

For determining the recruitment basins (Figure 2 E and Figure 3), we exploit the symmetry of the system
and that, in general, only one of the two stimuli (A or B) is active. Accordingly, we approximate the
second, inactive input to zero and neglect the respective feed-forward synapses. The population model is
integrated with the given initial values of the feed-forward and recurrent weights and ū1 = ū2 = ūinh = 0
for 100 s. At t = 100 s, we evaluate which of the two populations is active. Table S1 provides the exact
used initial values.

S 1. Initial values for Recruitment Basin Plots

Figure ū1 ū2 ūinh w̄ff
1A w̄ff

2A w̄rec
1 w̄rec

2

2E left; 2E right†;
3B top left,
3B top right†,
3B bottom right*†,
3D top left,
3D top right†

0 0 0 0,∆wff
1A, . . . , ŵ

ff
1A 0.35 ŵff

2A 0,∆wrec
1 , . . . , ŵrec

1 0.25 ŵrec
2

3B bottom left* 0 0 0 0,∆wff
1A, . . . , ŵ

ff
1A 0.40 ŵff

2A 0,∆wrec
1 , . . . , ŵrec

1 0.25 ŵrec
2

3D bottom left* 0 0 0 0,∆wff
1A, . . . , ŵ

ff
1A 1.00 ŵff

2A 0,∆wrec
1 , . . . , ŵrec

1 1.00 ŵrec
2

3D bottom right*† 0 0 0 0,∆wff
1A, . . . , ŵ

ff
1A 0.00 ŵff

2A 0,∆wrec
1 , . . . , ŵrec

1 1.00 ŵrec
2

∆wff
1A = 0.001ŵff

1A, ∆wrec
1 = 0.001ŵrec

1

*) Using symmetry by commutating populations. †) Using symmetry by commutating inputs.

Comparison of Bifurcation Curve with Network Simulation

When comparing the equilibrium structure of the population model dependent on the input amplitude
(bifurcation parameter) with the equilibria reached in network simulations (Figure 2 C), the network
simulations are initialized close to the different expected stable configurations. For every input amplitude
I, we perform two simulations with different initial conditions:
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• wrec
ij = 0.25ŵrec for all realized recurrent synapses and wff

ij = ŵff for all realized feed-forward
synapses.

• wrec
ij = ŵrec for synapses in between 121 neurons in a circle-shaped population, wrec

ij = 0.25ŵrec for

all other realized recurrent synapses and wff
ij = ŵff for all realized feed-forward synapses.

In each case, the network is simulated for 50, 000 s. Every simulation is repeated 50 times with different
random connectivities. To avoid simulation artifacts related to absolute silence of input channels, we
assume a small background activity of 0.1α for inactive inputs. In the final state, we either consider all
neurons with activity higher than 0.5α or, if there are none, 120 neurons centered around the activity
center of the network as population 1. Population 2 is defined as the circular group of 120 neurons with
the highest distance (respecting the periodic boundary conditions) to population 1. Within these two
population, we evaluate the mean recurrent weight.

Large Input Amplitudes In the network simulation, the functional role of the inhibitory population
is two-fold: On the one hand, inhibition mediates the competition between different populations. This
role is also captured by the population model. On the other hand, it prevents an active cell assembly from
growing without limit by inhibiting neighboring neurons. This aspect is not reflected in the population
model as in the latter the size of the populations is approximated as being fixed. Due to this discrep-
ancy, the population model predicts equilibria also for very large input amplitudes while in the network
simulation these input amplitudes lead to full activation of the complete network. The respective area is
shown in gray in Figure 2 C and Figure S6.

Symmetrized Network Simulation As described before, the population model differs from the com-
plete network simulation by not capturing the two-fold role of the inhibitory population. Additionally,
as a mean-field-like approach, it cannot reflect small symmetry breaks due to the random feed-forward
connectivity. In combination, these two constraints are the source of a deviation of the population model
from the results of the network simulation: In the latter, simultaneous activity of two distinct populations
is not observed. This is due to the fact that the exact amplitude of inhibition, needed to balance the
recurrent excitation and thereby to stop the growth of a given cell assembly, depends on the random
feed-forward connectivity and is therefore different at every network location. As a result, the attractive
equilibrium 4 is never reached (Figure 2 C).

To illustrate that this is indeed due to the heterogeneity introduced by the random feed-forward
connectivity, we perform another set of network simulations with balanced feed-forward connections, i.e.
we make sure that every neuron receives exactly two synapses from each of the two input populations.
Apart from n̄ff = 2, this also slightly influences the other cell assembly topology parameters where we
now find N ≈ 121 and n̄rec ≈ 34.9. For every tested input amplitude I, we perform simulations with
three different initial conditions:

• wrec
ij = 0.25ŵrec for all realized recurrent synapses and wff

ij = ŵff for all realized feed-forward
synapses.

• wrec
ij = ŵrec for synapses in between 121 neurons in a circle-shaped population, wrec

ij = 0.25ŵrec for

all other realized recurrent synapses and wff
ij = ŵff for all realized feed-forward synapses.

• wrec
ij = ŵrec for synapses in between each of the 121 neurons in two circle-shaped populations,

wrec
ij = 0.25ŵrec for all realized recurrent synapses and wff

ij = ŵff for all realized feed-forward.

As expected, in this balanced configuration the attractive state 4 representing two simultaneously active
populations is reached (Figure S6).
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S 6. Input bifurcation diagram of the network with balanced feed-forward connections. In contrast to
Figure 2 C in the main text, an attractive state with two active populations is reached in the network
simulation with balanced feed-forward connections. The gray area indicates input amplitudes ĪA for
which the inhibition is no longer able to circumvent unlimited growth of cell assemblies.

Excitability Ratio Bifurcation Diagram

In Figure 4 B in the main text, we only show a schematic version of the bifurcation curve as a function of
the excitabilities of the two populations. Figure S7 shows the exact curve as obtained from the population
model.
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