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1 Mathematical Notation

When dealing with a function, round brackets, for example for f : R2 → R, then f(y, x)

denotes the function f evaluated at (x, y). Later, we also use f(y) and multi-index notation,

where for the same example in 2D, y = (x, y) and f(x, y) = f(y).

We consider a pixel image as the set generated from evaluating a function at a set of regularly

spaced collocation points. For example, we define a 1D image of size N with spatial resolution

h sampled from [a, b] from some function f : [a, b]→ R as

f{x̄} = {f(xi)|xi ∈ x̄} (1)

where x̄ = {xi|xi = a+ h(i− 1), i = 1, 2, .., N} are the evenly spaced collocation points, and

h = (b−a)/(N −1). The notation holds not just for pixel images, but also for arbitrary vectors
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and samplings with x̄ ∈ RN . To avoid ambiguity with vector norms, we denote the cardinality

of a set by #, so in the 1D image example we have #x̄ = #f{x̄} = N .

Pixel images in higher dimensions follow the convention as follows, with a 3D pixel im-

age, being defined for f : [ax, bx] × [ay, by] × [az, bz] → R, being defined as f{(x̄, ȳ, z̄)} =

{f(xi, yi, zi)|(xi, yi, zi) ∈ x̄ × ȳ × z̄}. Where the number of samples in each direction is

Nx, Ny, Nz, with hx, hy, hz, for the x, y, z directions respectively. Therefore, the total number

of samples in the pixel image N = #f{(x̄, ȳ, z̄)} = NxNyNz. When written as f{x, y, z},

where the arguments are not explicitly vectors, or defined constants, the expression can be in-

terpreted as to hold for any of sampled collocation points.

2 1D Reconstruction Condition and Resolution Bound

In this sub-section, we describe and explain the derivation of the main results stated above in

1D for simplicity of notation and explaining ideas. The following chapter presents the gen-

eral dimension case and provides the proofs of theorems referred to in this section. First, we

go through the derivation of the Resolution Bound, and how it relates to the Reconstruction

Condition.

Let us continue with the problem as outlined above, and consider the function represented

as

f̂(y) =
∑

xp∈N (y,R(y))

fpξp(y) (2)

where we do not assume any particular distribution of particles P , but assume there is at least

one p ∈ N (y, R(y)) for all y. We then consider the reconstruction error at each point y ∈ Ω as

ε(y) = f(y)− f̂(y), (3)

which by assuming the function has a continuous derivative can express this by taking Taylor
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series expansions of fp centered at y and using the integral form of the remainder (1) as,

ε(y) = f(y)−
∑

xp∈N (y,R(y))

fpξp(y)

= f(y)−
∑

xp∈N (y,R(y))

(
f(y)ξp(y)+

(y − xp)ξp(y)

∫ 1

0

∂

∂y
f(y + s(xp − y))ds

)
(4)

now by using that
∑

xp∈N (y,R(y))) ξp(y) = 1

ε(y) =
∑

xp∈N (y,R(y))

(y − xp)ξp(y)

∫ 1

0

∂

∂y
f(y + s(xp − y))ds. (5)

We can bound this exact expression of the error, using a uniform estimate, by bounding each

integral using the maximum gradient over the interval and using the triangle inequality and the

fact that by definition |(y − xp)| ≤ R(y) we get

|ε(y)| ≤

 ∑
xp∈N (y,R(y))

|ξp(y)|

R(y) max
x∗∈N (y,R(y))

|∂f(xi)

∂y
| (6)

and in now assuming1 also ξp > 0 therefore
(∑

xp∈N (y,R(y)) |ξp(y)|
)

= 1 so we get

|ε(y)| ≤ R(y) max
x∗∈N (y,R(y))

|∂f(x∗)

∂y
|. (7)

Now returning to the Reconstruction Condition, we can re-write the inifnity norm as a bound

on each y ∈ Ω as

|ε(y)| ≤ Eσ(y). (8)

So, using SEq 7, SEq 8 will be satisfied, if

R(y) max
x∗∈N (y,R(y))

|∂f(x∗)

∂y
| ≤ Eσ(y) (9)

1The procedure from here can be done without this assumption, however this leaves the sum of the coefficients
in the resulting expressions
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which we can formulation in terms of the Resolution Function as

R(y) ≤ Eσ(y)

maxx∗∈N (y,R(y)) |∂f(x∗)
∂y
|
. (10)

This we can then re-write as

R(y) ≤ σ(y) min
x∗∈N (y,R(y))

(g(x∗)) (11)

where g(x) = E

| ∂f(x)
∂y
|

which we can see is almost the Resolution Bound, only the local intensity

scale σ(y) is outside the max.

2.1 Restriction on Local Scale Function

To get SEq 11, into the form the Resolution Bound requires an assumption that

σ(y) min
x∈N (y,R(y))

(g(x)) = min
x∈N (y,R(y))

(σ(y)g(x)) (12)

this, therefore, provides a constraint for the information scale σ(y) to ensure this approximation

is valid. For this to approximately hold, σ(y) must be sufficiently slowly varying. That is it

must be approximately constant overN (y, R(y)). In general, this can not be guaranteed except

in the case where σ(y) = σ0 is a constant. However, in the resultspresented here indicate that

the reconstruction condition still holds when σ(y) is a smoothed local estimate of the range of

f(y). Further, the restriction is slightly relaxed for Implied Resolution Functions as discussed

in SMat 4.4.

3 General Dimension Reconstruction Condition and Resolu-
tion Bound

Here we present derivation of the Resolution Bound in general dimension, it differs little from

the one-dimensional case. We begin with the Reconstruction Condition state point wise as

|f(y)−
∑

xp∈N (y,R(y))

fpξp(y)| ≤ E

σ(y)
(13)
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which holds must hold for all y ∈ Ω. Therefore again we proceed by considering the exact

formulation of the error as

ε(y) = f(y)−
∑

xp∈N (y,R(y))

fpξp(y) (14)

now if we again assume function is C1 can express by taking Taylor series expansions of fp

centered at y and using the integral form of the remainder for the Taylor series (1)

ε(y) =
∑

xp∈N (y,R(y))

∑
|k|=1

(y − xp)
k

∫ 1

0

∂

∂xk
f(y + s(xp − y))dsξp(y) (15)

where k is using multi-index notation (See (1) for a brief description). In this case, it simply

denotes summing over each spatial direction. Which we note is equivalent to the fundamental

theorem of calculus and can be written as a path integral, and again using the triangle inequality

|ε(y)| ≤
∑

xp∈N (y,R(y))

|ξp(y)||(y − xp)|
∫ 1

0

|∇f(y + s(xp − y))|ds (16)

where∇f(x), represents the gradient operator. Now again given that |y − xp| ≤ R(y) then

|ε(y)| ≤

 ∑
xp∈N (y,R(y))

|ξp(y)|

R(y) max
x∈N (y,R(y))

(|∇f(y)|) (17)

and so then again given we assume ξp(y) > 0 then using this bound, SEq 13 will hold if

R(y) ≤ min
x∈N (y,R(y))

(
Eσ(y)

|∇f(x)|

)
, (18)

which then assuming sufficient smoothness of σ(y), such that the approximation

max
x∈N (y,R(y))

(
|∇f(x)|
σ(y)

)
= max

x∈N (y,R(y))

(
|∇f(x)|
σ(x)

)
(19)

holds then

R(y) ≤ min
x∈N (y,R(y))

(
Eσ(x)

|∇f(x)|

)
. (20)

which is of the required form

R(y) ≤ min
x∈N (y,R(y))

(L(x)) . (21)

where the local resolution estimate is L(y) = Eσ(y)
|∇f(y)| .
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4 Particle Cells Definitions

In this section, we introduce the general dimension treatment of Particle Cells. We begin with

several definitions that will be useful.

For our given domain Ω ⊂ Rn, with maximum side length Ω0. We begin by extending the

Ω to a square domain Ω∗ ∈ Rd, with edge length Ω0, such that Ω ⊆ Ω∗. Next we introduce

Particle Cells C that form a partition of the extended solution domain Ω∗ andR the range of the

possible resolution functions,R = {R : Ω→ R+}. Formally we enumerate the set C, as

C = {ci,l,∀(i, l) : l ∈ N, ik = 0, .., 2l − 1} (22)

where i = i1, .., in is multi-index notation for the spatial indices in each direction, and l indicates

the level of the Particle Cell resolution. These Particle Cells form a partition using divisions of

powers of 2, as follows,

γ(ci,l) = [
Ω0

2l
,

Ω0

2l+1
)×

∏
i

[ik
Ω0

2l
, (ik + 1)

Ω0

2l
) (23)

where the product is over all spatial indices and therefore,⋃
ci,l∈C

γ(ci,l) = Ω∗ ×R. (24)

Each Particle Cell forms regular elements, rectangles in 1D, a half-cubes in 2D, and half-

hypercubes in 3D. The 1D example is given in Figure 2. This partitioning is similar to those

often used in quad and octree data structures, and as used in adaptive particle cell lists (2).

We define further properties of Particle Cells, reflecting their spatial domain, and resolution

domain separately. The spatial domain of a Particle Cell is defined as,

s(ci,l) =
∏
i

[ik
Ω0

2l
, (ik + 1)

Ω0

2l
) (25)

SFigure 1 shows an example of s(ci,l) of different Particle Cells for a range of l in 2D. The

spatial domain of a Particle Cell s(ci,l) is the area of the domain Ω∗ of which it partitions.
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l = 0 l = 1

l = 2 l = 3

c0,0,0Ω0

Ω0

Ω0\21

Ωm\21

Ω0\22

Ω0\23

x

y

c1,0,0 c1,0,1

c1,1,0 c1,1,1

c2,0,0 c2,0,1 c2,0,2 c2,0,3

c2,1,0 c2,1,1 c2,1,2 c2,1,3

c2,2,0 c2,2,1 c2,2,2 c2,2,3

c2,3,0 c2,3,1 c2,3,2 c2,3,3

c3,0,0 c3,0,1 c3,0,2 c3,0,3 c3,0,4 c3,0,5 c3,0,6 c3,0,7

c3,1,0 c3,1,1 c3,1,2 c3,1,3 c3,1,4 c3,1,5 c3,1,6 c3,1,7

c3,2,0 c3,2,1 c3,2,2 c3,2,3 c3,2,4 c3,2,5 c3,2,6 c3,2,7

c3,3,0 c3,3,1 c3,3,2 c3,3,3 c3,3,4 c3,3,5 c3,3,6 c3,3,7

c3,4,0 c3,4,1 c3,4,2 c3,4,3 c3,4,4 c3,4,5 c3,4,6 c3,4,7

c3,5,0 c3,5,1 c3,5,2 c3,5,3 c3,5,4 c3,5,5 c3,5,6 c3,5,7

c3,6,0 c3,6,1 c3,6,2 c3,6,3 c3,6,4 c3,6,5 c3,6,6 c3,6,7

c3,7,0 c3,7,1 c3,7,2 c3,7,3 c3,7,4 c3,7,5 c3,7,6 c3,7,7

s(c0,0,0)=[0,Ω0)x[0,Ω0)

Figure 1: Four levels l of C showing how Particle Cells in 2D ci,l partition the domain Ω on
levels l = {0, 1, 2, 3}. Each square in the figure represents the spatial domain s(ci,l) of a given
Particle Cell ci,l.
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Effectively forming dyadic cubes of the domain Ω (3). The resolution domain of a Particle Cell

is defined as

r(ci,l) = [
Ω0

2l
,

Ω0

2l+1
). (26)

Further, we define l(ci,l) = l, gives the level of ci,l and i(ci,l) = i can be used to give the

spatial coordinate of ci,l. Now given these definitions we can now define relationships between

the Particle Cells considering them as constructing a tree structure as shown in Figure 2. We

define the set of descendants of a particle cell ci,l as

D(ci,l) = {cdi,l ∈ C : s(cdi,l) ⊂ s(ci,l)}, (27)

which is the set of all Particle Cells who’s spatial domain overlaps with ci,l but have a smaller

resolution than r(ci,l). The first set of descendants, called children, are shown for a cell in green

in Figure 2F. Formally, children of ci,l are those cci,l ∈ D(ci,l) such that l(cci,l) = l(ci,l)− 1. We

also then denote the parent of ci,l, as ci/2,l−1, where ci,l is simply then the child of ci/2,l−1.

We also define the set of neighbors of a Particle Cell ci,l, by first defining the interaction

Particle Set

I(ci,l) = {cni,l ∈ C : ∃x ∈ s(cni,l),y ∈ s(ci,l) : x ∈ N (y, R(y))} (28)

which is the set of all Particle Cells cni,l for which there is exists a x in its spatial domain and

also a y in the spatial domain of ci,l such that they could interact, i.e. x ∈ N (y, R(y)). Then

using the interaction Particle Cell set, we define the neighbor Particle Cell set as

B(ci,l) = {cni,l ∈ I(ci,l) : @cn′i,l ∈ I : s(cni,l) ⊂ s(cn
′

i,l)} (29)

which is the set of all neighboring Particle Cells of highest level that ci,l can interact with

(including ci,l). This definition and the theorems proven below hold across general definitions

of the interaction neighborhood N (y, R(y)). For simplicity of explanation, here we present

8



examples with the isotropic interaction neighbourhood N (y, R(y)) = {x ∈ Ω : |x − y| ≤

R(y)}, as introduced earlier. For the isotropic interaction neighborhood, the neighbor Particle

Cell set is simply the neighboring Particle Cells of ci,l on the same level. This is illustrated in

Figure 2F with a 1D example of a neighbor Particle Cell set B(ci,l) in blue.

Using these we define a set ND ∈ C that contains all descendants of a particular Particle

Cell ci,l and its neighbors as

ND(ci,l) =
⋃

cni,l∈B(cvi,l)

⋃
cdi,l∈D(cci,l)

cdi,l. (30)

Then any Particle Cell set V ⊂ C forms a partition of the spatial domain Ω∗ iff,⋃
cvi,l∈V

s(cvi,l) = Ω∗. (31)

Then we can also define the set of Particle Cell sets V that form a spatial partition as

S = {V : V ⊂ C,
⋃
cvi,l∈V

s(cvi,l) = Ω∗}. (32)

Lastly, we formally introduce an additional property of a Particle Cell called type, t(ci,l), dis-

cussed in the previous section for Particle Cells when compared to a Particle Cell set T in the

following way

t(ci,l, T ) =


1, ci,l ∈ T
2, ci,l /∈ T and ∃cni,l ∈ B(ci,l) : cni,l ∈ T
3, otherwise

where we name the three different Particle Cell types as seed, boundary, and filler respectively.

4.1 Implied Resolution Function

Now we define the Implied Resolution Function for a set of Particle Cells V that forms a spatial

partition. We begin by now defining a characteristic function in general dimension as

φ(y, ci,l) =

{
1 y ∈ s(ci,l)
0 otherwise

(33)
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then the Implied Resolution Function R∗(y) for a set of Particle Cells V that forms a partition

of the spatial domain is

R∗(y,V) =
∑
ci,l∈V

φ(y, ci,l)
Ω0

2l
(34)

where we often drop the dependence on V below, unless required. One can interpret this Res-

olution Function as being built out of cube blocks of length Ω0

2l
, as shown in Figure 2D for 1D.

In 1D the blocks are squares, 2D cubes, and 3D hypercubes. (Note: this is different from how

Particle Cells are used to partition the resolution domain)

4.2 Local Particle Cell set

Given these definitions, we can now represent the Local Resolution Estimate L(y) as Particle

Cells. We assume that we have the following inequality to satisfy

R(y) ≤ min
x∈N (y,R(y))

L(x). (35)

We introduce the general dimension Local Particle Cell (LPC) set L ⊆ C that has members such

that

L = {ci,l ∈ C
∣∣∣∃ (L(y),y) : y ∈ s(ci,l), L(y) ∈ r(ci/2,l−1)}, (36)

where ci/2,l−1 indicates the parent of ci,l. In words, this takes the Local Resolution Estimate

L(y) and finds those Particle Cells ci,l whose parents intersect with L(y) at locations inside

the spatial domain s(ci,l). An example was given is given for 1D in Figure 2G. We also define

another set we call the natural Local Particle Cell (nLPC) set

Ln = {ci,l ∈ C
∣∣∣∃ (L(y),y) ∈ γ(ci,l)}, (37)

in words takes the Local Resolution Estimate L(y) and finds those Particle Cells that the func-

tion intersects. The second definition comes in use slightly later for the equivalence optimization
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and is called ’natural’ due to its simpler definition. In all except special cases, L does not form

a partition of the spatial domain.

4.2.1 Maximum resolution level

In practice it is useful to specify a minimum level lmin and maximum level lmax. In these cases

there then is effectively a minimum Lmin(y) = Ω0

2lmin
and maximum value Lmax(y) = Ω0

2lmax
.

Where for both L and Ln this effectively truncates any values with l below lmin to lmin and

above lmax to lmax. (See SMat 12 for a description of implementation and constructing these

sets).

4.3 Optimal Valid Particle Cell sets

Now we have a way to relate, a Particle Cell set to a Resolution Function, if now we re-formulate

SEq 35, in terms of this Implied Resolution Function we have

R∗(y) ≤ min
x∈N (y,R(y))

L(x). (38)

we can now use the Implied Resolution Function and present the following theorem:

Theorem 1. V will define an Implied Resolution Function R∗(y) thats satisfies SEq 38 for all

y ∈ Ω∗, for a given L, and called valid iff it forms a spatial partition and

1. ∀cvi,l ∈ V then {L ∩ ND(cvi,l)} = ∅

In words, for all Particle Cells ci,l in V , the set is valid, if and only if, there are no Particle

Cells that are descendants of ci,l or its neighbors in L.

Proof :

Given a valid Particle Cell set V , we suppose there exists at least one combination of y ∈ Ω∗

and y∗ ∈ N (y, R(y)), such that

L(y∗) < R∗(y) (39)
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is true and therefore condition SEq 38 is violated. In addition, there must exist cvi,l ∈ V such

that y ∈ s(cvi,l). From SEq 34, we have

R∗(y) =
Ω∗

2l(c
v
i,l)

(40)

and therefore if L(y∗) < Ω∗

2
l(cc

i,l
) then there must exist some c∗i,l ∈ L, for which l(c∗i,l) < l(cvi,l)

and y∗ ∈ s(c∗i,l). Now since y∗ ∈ N (y, R(y)) and l(c∗i,l) < l(cvi,l) it implies that

c∗i,l ∈ ND(cvi,l) (41)

and therefore

∃cai,l ∈ V : {L ∩ ND(cai,l)} 6= ∅ (42)

and proves Theorem. 1 by contradiction. �

Now we consider conditions on V that would define it as optimal. Consider V to be the set of

all Particle Cell sets V that satisfy Theorem 1 and are valid. Then a Particle Cell set V will be

optimal if it satisfies

arg max
V∗∈V

∫
Ω∗
R∗(y,V∗)dΩ∗. (43)

which is equivalent to finding the largest everywhere R∗(y) that satisfies SEq 38. Which is

equivalent to

arg max
R∗∈R∗

∫
Ω∗
R∗(y)dΩ∗. (44)

whereR∗ is the set of all Implied Resolution Functions defined as SEq 34 (R∗ : Ω∗ → R+) that

satisfy SEq 38. We can now state the following theorem for satisfying SEq 43,

Theorem 2. Given V ⊂ C, that is valid, V will satisfy SEq 43 and be optimal, iff, there does not

exist aW ⊂ C whereW 6= V and is valid for L and where V can be formed from the elements
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(c(10,10),6) (c(20,20),5)  for        ={c(10,10),6 ,c(20,20),5}

Figure 2: Example of the optimal particle cell set V (right) for L = {c(10,10),6, c(20,20),5} in 2D,
and the individual optimal solutions V∗(c(10,10),6) (left) and V∗(c(20,20),5) (right) that can be used
to combined using the separability property to construct V . The particle cells are colored in the
following way, a particle cell is blue if its type is a seed if it is in the local particle cell set,
ci,l ∈ L, a cell is green if it is of type boundary and therefore has a neighbor that is in the local
particle cell set and is grey if it as of type filler.

ofW and its descendants. Formally, V is optimal, if there does not exist any validW such that

for any cwi,l or cvi,l the following holds

(
cwi,l ∈ W , cvi,l ∈ V

)
: cvi,l ∈ D(cwi,l). (45)

In words, V , is optimal, if there does not exist another arrangement of Particle Cells that

form a spatial partition and is valid while having a larger resolution anywhere in the domain.

Proof :

Lets consider two Particle Cell sets V and W , where both are valid with respect to L, and

W 6= V , and V is optimal. Now we suppose that, SEq 43 is violated, that is∫
Ω∗
R∗(y,V)dΩ∗ <

∫
Ω∗
R∗(y,W)dΩ∗, (46)
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that we can re-write as∫
Ω∗

∑
ci,l∈V

φ(y, ci,l)
Ω0

2l
dΩ∗ <

∫
Ω∗

∑
ci,l∈W

φ(y, ci,l)
Ω0

2l
dΩ∗. (47)

Given the above inequality to hold, there must exist y ∈ Ω∗ where the following holds for some

cvi,l ∈ V and cwi,l ∈ W ,

0 < φ(y, cvi,l)
Ω0

2l(c
v
i,l)

< φ(y, cwi,l)
Ω0

2l(c
w
i,l)

(48)

which implies that l(cwi,l) < l(cvi,l) and further that s(cvi,l) ⊂ s(cwi,l) and hence

cvi,l ∈ D(cwi,l), (49)

which violates Theorem 2, and thus concludes the proof through contradiction �.

Therefore a Particle Cell set V is an Optimal Valid Particle Cell (OVPC) set if it satisfies

both Theorem 1 and Theorem 2.

4.4 Particle Cells and smoothness of the Local Intensity Scale

In practice, the use of an Implied Resolution Function relaxes the smoothness assumption on

the Local Intensity Scale σ (SMat 2.1). For a continuous Resolution Function an equality for

the expression

σ(y) min
x∈N (y,R(y))

(g(x)) ≈ min
x∈N (y,R(y))

(σ(y)g(x)) (50)

would require a constant σ(y) for general f . However, we note when using an Implied Reso-

lution Function as in the APR we only will detect changes that would change the Particle Cell

level l. Now for a given problem the Particle Cell level can be calculated as,

l = dlog

(
|Ω|σ(x)

g(x)

)
e (51)
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with a −1 if the equivalence optimization is being used. We find that SEq 50 is then equivalent

to

dlog

(
|Ω|

σ(x)g(x)

)
e = dlog

(
|Ω|

σ(y)g(x)

)
e (52)

for all x ∈ N (y,R(y)) and y ∈ Ω. This is a weaker bound then SEq 50 potentially allowing

non-constant σ(y). Hence, the situation is not quite as restrictive as SEq 50 implies when using

an Implied Resolution Function.

5 Pulling Scheme

Here we present the additional results based on the above that are used by the Pulling Scheme.

These are the general definitions of the three properties from the previous chapter. We begin by

defining

Definition 1. V∗(ci,l) is the optimal Particle Cell set for L = {ci,l}

That is the OVPC set for a LPC set with only one Particle Cell ci,l.

5.1 Self-similarity and production of individual solutions

The first is an observation that the solution V∗(ci,l) is highly predictable and shows self-similarity

regarding its relative local structure. This is shown for two different ci,l in 2D in SMat 2, where

the Particle Cells are colored by their type. The solutions are defined by a central seed Particle

Cell, surrounded by a layer of boundary and then filler cells. The remainder of the domain is

then filled with Particle Cells increasing by one level across neighbors, adding particle cells on

the same level to maintain a spatial partition. An illustrative example in 1D is given in SMat 3.

5.2 Separability

We present Lemma 1, that is the basis of the separability property used in Pulling Scheme.
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L = c6,38E H

Seed Particle Cell 
Boundary Particle Cell
Filler Particle Cell

1. 2. 3.

1.) Add neighbours of seed pc as boundary pc
2.) Add neighbours of boundary pc as �ller pc
3.) Continue adding neighbours as �ller pc, at lower 
level, or same level if it would create an overlap, to �ll 
domain

Figure 3: Schematic how an OVPC set V can be generated whenL = {ci,l} has only one Particle
Cell. We give Particle Cells an additional property called type, based on how the Particle Cell
was added to the set V . Particle cells that are in both V and L are of type seed. Particle cells that
are neighbors to a seed cell are type boundary. All others, are of type filler. V is created by first
adding ci,l (1.), and its neighbors (2.) on the same level and their neighbors (3.). The domain is
then filled, allowing only one level change at once, and ensuring the resulting set forms a spatial
partition.
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Lemma 1. Given V ⊂ C is optimal, with respect to L, and let V∗(ci,l) ⊂ C be optimal for the

local set L∗(ci,l) = {ci,l}. Then,

V = minhull

 ⋃
cli,l∈L

V∗(cli,l)

 (53)

where for T ⊆ C,

minhull(T ) = {csi,l ∈ T : {D(csi,l) ∩ T } = ∅}. (54)

In words, Lemma 1 states that the optimal solution V , for a given LPC set L, can be con-

structed by forming the valid and optimal set for each Particle Cell in L separately V∗(ci,l), and

then forming a set with the Particle Cells ci,l at each point y with the smallest Implied Resolu-

tion Function R∗(y,V∗(ci,l)) (highest level l). We call the above property, separability. SMat 2

shows the property in 2D and Figure 3A in 1D. One can intuitively confirm that the configura-

tions are optimal, by replacing any Particle Cell by its parent, and then checking if Theorem. 1

holds.

Proof :

Lets consider V , which is optimal for L, and V̂ = minhull
(⋃

cli,l∈L
V∗(cli,l)

)
. Now propose

that, there exists some ĉi,l ∈ V̂ such that

∃c∗i,l ∈ L : c∗i,l ∈ ND(ĉi,l) (55)

and therefore V̂ would not be valid by Theorem 1. However, given that V∗(c∗i,l) is valid, it forms

a spatial partition, and ĉi,l /∈ V∗(c∗i,l), therefore

∃c̄i,l ∈ V∗(c∗i,l) : c̄i,l ∈ D(ĉi,l) (56)
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and since V∗(c∗i,l) ⊂
⋃
cli,l∈L

V∗(cli,l) then,

D(ĉi,l) ∩
⋃
cli,l∈L

V∗(cli,l) ⊇ c̄i,l (57)

6= ∅ (58)

therefore violating Lemma 1 as ĉi,l ∈ V̂ . Therefore, by contradiction, given Lemma. 1 holds, V̂

will be valid.

Now, let us propose, that V̂ is not optimal, that is there exists someW such that∫
Ω∗
R∗(y, V̂)dΩ∗ <

∫
Ω∗
R∗(y,W)dΩ∗, (59)

following the arguments for the proof of Theorem 2 above this implies there would exist some

cwi,l ∈ W and some ĉi,l ∈ V̂ such that

ĉi,l ∈ D(cwi,l). (60)

Given that ĉi,l ∈ V̂ there exists some c̄i,l ∈ L such that ĉi,l ∈ V∗(c̄i,l). However, given cwi,l /∈

V∗(c̄i,l) and V∗(c̄i,l) is optimal then,

(
ND(cwi,l) ∩ V∗(c̄i,l)

)
⊇ ĉi,l 6= ∅. (61)

Since c̄i,l ∈ L, thenW cannot be valid. Implying that V̂ must be optimal for L and given the

optimal solution is unique implies

V̂ = V (62)

�.

5.3 Redundancy of Particle Cells

The third property relates to the redundancy of Particle Cells in L that have descendants in L,
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Lemma 2. Given any two Particle Cells ci,l and cpi,l, where ci,l ∈ D(cpi,l) then

minhull({V∗(ci,l),V∗(cpi,l)}) = V∗(ci,l). (63)

In words, the optimal valid solution of Particle Cells for which one is the descendant of the

other will be the individual valid solution of the descendant Particle Cell.

Proof :

Lets suppose that,

∃ĉi,l ∈ minhull({V∗(ci,l),V∗(cpi,l)}) : ĉi,l /∈ V∗(ci,l) (64)

and then

ĉi,l ∈ V∗(cpi,l) (65)

and Lemma 2 is violated. However, given the definition of the minhull operation, and the fact

that V∗(ci,l) must form a spatial partition this implies that

∃c∗i,l ∈ V∗(ci,l) : ĉi,l ∈ D(c∗i,l). (66)

However, given that V∗(cpi,l) is optimal by definition, then if c∗i,l /∈ V∗(c
p
i,l), then by Theorem 2

cpi,l ∈ ND(c∗i,l) (67)

and since ci,l ∈ D(cpi,l) by construction then also

ci,l ∈ ND(c∗i,l) (68)

but this results in a contradiction, as then V∗(ci,l) would not be valid by Theorem. 1 �.
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5.4 Equivalence Optimization

The following results show that the OVPC set V can be obtained, by solving for a smaller set of

Particle Cells with a maximum level one less than L and then directly replacing some Particle

Cells in the produced sets with their child cells. First, let us define

Definition 2. Let Vn be the optimal Particle Cell set for the natural Local Particle Cell set Ln

formed from L(y) as in SEq 37

Then we have the following result,

Lemma 3. Given Vn is optimal and valid for Ln then

V =

{
ci,l ∈ C

∣∣∣∣ (ci,l ∈ Vn, t(ci,l,Ln) = 3) or
(
ci/2,l−1 ∈ Vn, t(ci/2,l−1,Ln) < 3

)}
(69)

where V is the optimal valid Particle Cell set for L and ci/2,l−1 denotes the parent Particle Cell

of ci,l.

In words, V is constructed by taking all those Particle Cells that have type filler in V , and

taking the children of all Particle Cells in Vn that are of type seed or boundary (Where type is

defined relative to Ln). Which means that finding for Vn with respect to Ln is equivalent to

V for L. This is useful because, #L > #Ln and the maximum level lnmax in Ln is one level

less than lmax of L by construction (See SMat 5.7). See SFigure 4 provides an example in 2D.

Proof :

Here we need to show that if Vn is the OVPC for Ln and we define

V̂(Vn) =

{
ci,l ∈ C

∣∣∣∣ (ci,l ∈ Vn, t(ci,l,Ln) = 3) or
(
ci/2,l−1 ∈ Vn, t(ci/2,l−1,Ln) < 3

)}
(70)

then V̂ = V where V is the OVPC for L. We do this by relying on Lemma 1. That we can

decompose our solution of

Vn = minhull

 ⋃
cli,l∈Ln

V∗(cli,l)

 (71)
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VVn

Figure 4: Example of the Equivalence property and how the natural Local Particle Cell Ln set
can be used to form Vn, that can then be directly used to compute the OVPC V for L using
Lemma 3.
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and

V = minhull

 ⋃
cli,l∈L

V∗(cli,l)

 (72)

then since by construction for c∗i,l ∈ L there exists a c∗ni,l ∈ Ln such that c∗i,l ∈ D(c∗ni,l ), and

l(c∗i,l) = l(c∗ni,l ) + 1 that if we can show that V̂(V∗(cn∗i,l )) = V∗(c∗i,l) then

V = minhull

 ⋃
cli,l∈Ln

V̂(V∗(cli,l))

 (73)

= V̂

minhull

 ⋃
cli,l∈Ln

V∗(cli,l)


= V̂(Vn)

the operations can be taken out of the union and minhull, due to the operation always taking the

smallest Particle Cell and the direct correspondence between the two sets.

Therefore, we consider such a L = {c∗i,l} and Ln = {c∗ni,l } and consider Vn = V∗(c∗ni,l ) and

V̄ = V̂ (V∗(c∗ni,l )). Now lets assume that Vn is valid and optimal solution with respect to Ln, and

assume that V̄ is not valid with respect to L.

If V̄ in not valid, then there must exist cvi,l ∈ V̄ such that

c∗i,l ∈ ND(cvi,l). (74)

Given this holds, then we consider the validity of Vn with respect to Ln. We treat this in two

cases.

First, suppose that l(c∗i,l) < l(cvi,l)+1, and cvi,l ∈ Vn which implies that l(cn∗i,l ) < l(cvi,l). Also,

given c∗i,l ∈ D(cn∗i,l ) then

cn∗i,l ∈ ND(cvi,l). (75)
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If cvni,l ∈ Vn, where cvi,l is the child of cvni,l , then since ND(cvi,l) ⊂ ND(cnvi,l ) then also

cn∗i,l ∈ ND(cnvi,l ). (76)

This leads to Vn violating Theorem 1 with respect to Ln.

Now in the second case, l(c∗i,l) = l(cvi,l) + 1, implying that l(cn∗i,l ) = l(cvi,l). However, this

implies that cvni,l ∈ Vn as otherwise t(cvi,l,Ln) = 1 and l(cvi,l) = l(c∗i,l). Therefore again since

ND(cvi,l) ⊂ ND(cnvi,l ) then also

cn∗i,l ∈ ND(cnvi,l ) (77)

and Vn is invalid with respect to Ln.

Therefore, given we assume Vn is valid w.r.t Ln then V̄ must also be valid w.r.t L.

The second step is to show that when V̄ is optimal w.r.t L then also Vn is to Ln. So again

we assume that Vn is optimal, but V̄ is not. We follow on from the proof of Theorem 2 which

gives us that therefore there exists someW such that cvi,l ∈ V̄ and cwi,l ∈ W and s(cvi,l) ⊂ s(cwi,l)

and hence

cvi,l ∈ D(cwi,l). (78)

For this there are again two cases, one where cvi,l ∈ Vn and the other where cnvi,l ∈ Vn where

cvi,l ∈ D(pnv) and l(cnvi,l ) = l(cvi,l)− 1.

First, let us consider the case of cci,l ∈ Vn. We then have that cvi,l ∈ D(cwi,l). However, since

c∗i,l ∈ D(cn∗i,l ) and cwi,l /∈ V̄ means that

c∗i,l ∈ ND(cwi,l) (79)

which directly implies that

cn∗i,l ∈ ND(cwi,l). (80)
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However, this would make Vn not valid.

Now in the second case we have cnvi,l ∈ Vn, and hence t(cnvi,l ,Ln) < 3. So we know that,

c∗ni,l ∈ B(cnvi,l ) (81)

such that

c∗i,l ∈ ND(cwi,l). (82)

This now contradicts thatW can be valid for L. Hence given Vn is optimal for Ln, V̄ must also

be optimal for L.

Now given there is a unique optimal solution then necessarilly,

V̂ (V∗(c∗ni,l )) = V∗(c∗ni,l ) (83)

for any c∗i,l ∈ D(c∗ni,l ), and l(c∗i,l) = l(c∗ni,l ) + 1, and from our arguments above this leads to

V̂(Vn) = V and concludes the proof. �

5.5 Additional Algorithm Description

The Pulling Scheme uses all these properties to directly construct V by propagating solutions

from individual Particle Cells in L using property 1, one level at a time starting from the highest

level of the Particle Cells in L. SFigure 5 shows a schematic of two solutions being propa-

gated from two Particle Cells. When two solutions meet at a Particle Cell, the precedence of

one solution depends on the Particle Cells type where they meet. Precedence is ordered from

seed>boundary>filler. This order represents the solution that provides the ’tighter’ constraint

on the resolution function. Then only the solution with precedence needs to be propagated. The

Pulling Scheme can be implemented in many different ways here we use an implimentation that

uses a data structure that explicitly stores C the full Particle Cell tree. This is the form of Pulling
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R * (y)

Figure 5: The basic idea of the Pulling Scheme. R∗ is propagated outwards from higher levels
to lower levels utilizing property 1 and property 2 of OVPC sets. When two solutions meet,
only one needs to be propagated. Therefore, by propagating solutions from lmax to lmin and
propagating the solution to higher levels using the filler type Particle Cells, the solution can be
constructed directly, without checking the validity.

Scheme used in this paper. However, other forms are possible that do not require the explicit

storing of the tree structure. SAlgorithm 1, gives more explicit pseudo-code of the algorithm

given in the main text.

Data: Local Particle Cell set L
Result: Optimal Valid Particle Cell set V
Function pulling scheme(L)

levelc = levelmax
/* Loop over the resolution levels, from finest to

coarsest (from the maximum level l) */
while levelc >= levelmin do

if levelc! = levelmax then
set ascendant neighbours(levelc);
set fillers(levelc);

fill boundary(levelc);
levelc −− Level done, move to next;

end
V ← L
return V

Algorithm 1: Generating a Optimal Valid Particle Cell set V from Local Particle Cell set L
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Function fill boundary(levelc)
foreach cell in L[: levelc] do

if cell.type ∈ {SEED, PROPOGATE} then
foreach neighbour of cell do

if neighbour.type == EMPTY then
neighbour.type← BOUNDARY

end
cell.parent.type← ASCENDANT

else if cell.type == PARENT then
cell.parent.type← ASCENDANT

end
Algorithm 2: Filling BOUNDARY and ASCENDANT cells

Function set ascendant neighbours(levelc)
foreach cell in L[: levelc] do

if cell.type == ASCENDANT then
foreach neighbour of cell do

if neighbour.type == EMPTY then
neighbour.type← ASCENDANT NEIGHBOUR

else if neighbour.type == SEED then
neighbour.type← PROPOGATE

end
end

Algorithm 3: Filling neighbors of ASCENDANT Particle Cells

Function set fillers(levelc)
foreach cell in L[: levelc] do

if cell.type ∈ {ASCENDANT NEIGHBOUR, PROPOGATE} then
foreach child of cell do

if child.type == EMPTY then
child.type← FILLER

end
end

Algorithm 4: Add FILLER Particle Cells
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l c - 1

l c

l c - 1

l c

l c - 1

l c

l c - 1

Step 1 

Step 2 

Step 3 

Step 4 

Figure 6: Schematic illustrating the four different steps in Algorithm 1 for the Pulling Scheme.
The colour of the dots, identifies the type of Particle Cell. Blue dots represent seed, boundary in
green, filler in grey, ascendant in red, ascendant neighbour in yellow. These four steps occur on
each level from the highest level lmax to lowest lmin. Step 1, seed Particle Cells, or propogate,
add neighbour Particle Cells as boundaries on level lc. Step 2, seed and ascendant Particle Cells
set their parents (lc − 1) to ascendant. Step 3, the ascendant particles on lc − 1 set their vacant
neighbours to ascendant neighbours. Step 4, Particle Cells of type ascendant neighbours and
propogate on level lc − 1 set empty children in lc to filler.
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{V,P}
Integal 
NeighbourhoodVn

Figure 7: Left the nOVPC Vn generated usingLn and the corresponding V and particle sampling
P (right) for the integral neighborhood optimization that has been used in for the results in this
paper.

5.6 Integral neighborhood optimization

From SFigure 8, we observe that a single ci,l results in a large, high-resolution area in the

solution. If we instead take Vn and create Vi in the following way

Vi =

{
ci,l ∈ C

∣∣∣∣ (ci,l ∈ Vn, t(ci,l,Ln) > 1) or
(
ci/2,l−1 ∈ Vn, t(ci/2,l−1,Ln) = 1

)}
(84)

where now boundary Particle Cells are also kept at their original resolution, then, if we use the

alternative neighborhood of

N (y, R(y))i = {x ∈ Ω : |(y − x)|
∫ 1

0

1

R(y + s(x− y))
ds ≤ 1} (85)

for the representation of the function as in SEq 13, instead of the isotropic neighborhood, then

R∗(y,Vi) will also satisfy the Reconstruction Condition. This then results in a smaller P∗ as
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shown in SFigure 2. In practice this results in a ≈ 10 − 30% reduction in #V , and is used for

the 3D APR implimentation used in this paper.

As in the isotropic neighborhood case, we can sample directly using Vn, with only slight

adjustment

xp(ci,l) =

{ ∏
i

{Ω∗

2l
(ik + 1/4), Ω∗

2l
(ik + 3/4)} t(ci,l) = {1}

{Ω∗

2l
(ik + 1/2)} t(ci,l) = 2, 3

(86)

5.6.1 Fulfillment of Reconstruction Condition

Now we briefly show that Reconstruction Condition is satisfied for the integral neighborhood

definition and R∗(Vi,y).

We have the integral interaction neighborhood

N (y, R(y))i = {x ∈ Ω : |(y − x)|
∫ 1

0

1

R(y + s(x− y))
ds ≤ 1} (87)

and show that if we are using the local resolution estimate L(y) = Eσ(y)
|∇f(y)| that this neighbor-

hood guarantees satisfaction of the Reconstruction Condition, given that R(y) ≥ L(y) and the

assumption on the Local Intensity Scale σ(y) being sufficiently smooth over the integral path

that σ(y) ≈ σ(x) can be used.

Starting from the following bound as presented above,

ε(y) ≤
∑

p∈N (y,R(y))

|(y − xp)|
∫ 1

0

|∇f(y + s(xp − y))|dsξp(y) (88)

which we wish to satisfy the Reconstruction Condition, so

Eσ(y) ≥
∑

p∈N (y,R(y))

|(y − xp)|
∫ 1

0

|∇f(y + s(xp − y))|dsξp(y) (89)

which we can re-write as

1

Eσ(y)

∑
p∈N (y,R(y))

|(y − xp)|
∫ 1

0

|∇f(y + s(xp − y))|dsξp(y) ≤ 1 (90)
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and substituting for L(y) and assuming σ(y) is O(1) over the interval gives∑
p∈N (y,R(y))

|(y − xp)|
∫ 1

0

1

L(y + s(xp − y))
dsξp(y) ≤ 1 (91)

now given our reconstruction kernel conditions, this will hold if for every point,

|(y − xp)|
∫ 1

0

1

L(y + s(xp − y))
ds ≤ 1 (92)

now given the assumption thatR(y) ≤ L(y) then the above will hold if the following also holds

|(y − xp)|
∫ 1

0

1

R(y + s(xp − y))
ds ≤ 1 (93)

which is the integral interaction neighborhood stated above.

5.7 Computational and memory complexity

Here we address the computational and memory complexity of the Pulling Scheme using ex-

plicitly storage of C as described above. We will discuss the equivalence optimized version

described in the previous section as this is used in practice.

First we consider the size of C, for a given problem with lmin and lmax, where N = 2dlmax ,

then storing C requires a data-structure with

NC =
lmax−1∑
l=lmin

2dl

=
2d(lmax+1) − 2dlmin

(2d − 1)
(94)

entries, because the highest level in the structures is lmax − 1. If we then consider the ratio of

the size of the data-structure to the original data size N , we get

NC
N
≤ 1

2d − 1

(
1− 1

N

)
(95)

where we have set lmin = 0 as a worst case. Therefore, in the large N limit, we get NC
N
≈ 1

2d−1
.

Which gives us upper bounds of N in 1D, N
3

in 2D, and N
7

in 3D for the size of the required
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data-structure. Given there are only seven unique values that are needed for the algorithm, then

each only requires 3 bits of information to be stored. Although this is not likely in practice, due

to available data types, the Pulling Scheme requires at most 3N
2d−1

bits in memory.

For the worst-case computational complexity, we can consider L∗ = C∗, where C∗ is C

restricted to lmax − 1. That is every Particle Cell is in L∗. Now each, step requires iteration

over the data-structure givenO(NC) operations. All parent and neighbour operations scale with

dimension d, and therefore for fixed d, have a fixed cost. Therefore, again we can get an upper

bound on all steps taken across the algorithm described in SAlgorithm 1 as O(NC). Therefore,

the whole algorithm is worst-case O(NC) which is O(N).

In practice, the performance of this algorithm is more complicated depending on N , L and

the spatial distribution of Particle Cells. From the steps above, we can see that the number

neighbor searches at the highest resolution are the number of seed Particle Cells at that level.

Further, if we ignore the PROPOGATE nodes, the most costly steps scale with the number of

seed Particle Cells (#(L ∩ V)). This is compared to the neighbor and filler Particle Cells that

incur proportionally fewer operations. Hence tentatively we would expect the performance to

scale asO(N + #(L∩V)), with the different term dominating depending on situation. Further,

the exact cost also would depend on the spatial distribution of L.

6 Particle sampling

As in the 1D case, the last step given V , is to determine the particle locations and sample them

forming P∗ and the APR. In general dimension, we take the identical approach to 1D. The set

of points in P = {xp}Npp=1 are chosen such that for each Particle Cell ci,l ∈ P a particle p is

added to P as

xp(ci,l) = {Ω∗

2l
(ik + 1/2)} (96)
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{V,P}Vn

Figure 8: Left the nOVPC Vn generated usingLn and the corresponding V and particle sampling
P (right).

for ik = 1, .., d and Np = #V . The function, is then sampled at locations fp = f(xp) to

form P∗ = {fp}Npp=1. Such a sample satisfies the requirement that #(xp ∈ N (y, R(y))) > 0.

SFigure 8, shows an example of Vn on the left and then V and P on the (right). #(xp ∈

N (y, R(y))) is in all cases greater then one, with maximum resolution areas, producing a local

grid identical to a pixel image representation. If, different constrainsts on the reconstruction

function are required, i.e. a different number of particles, or different layout, these could also

be used. Here, we again present the simplest case.

6.1 Optimality

Although simple, such a sampling is also in a sense optimal for a given Implied Resolution

Function. We define an optimal sampling of a given R(y) as the sampling that satisfies

#P =

∫
Ω

1

R(y)d
dy (97)
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and #(y ∈ N (y, R(y))) > 0 for all y ∈ Ω. Intuitively, if we consider 1
R(y)

d as the point-wise

required density (defined now for the ’hyper-volume’ dependent on the dimension d), then again

ignoring edge effects, this means that satisfying SEq 97 leads to this density being everywhere

exactly realized. Further, this integral is also satisfied for a constant regular sampling such as

pixels.

If we consider, the integral SEq 97 for the implied resolution function R∗(y), as∫
Ω

1

R∗(y)d
dy =

∫
Ω

1(∑
ci,l∈V φ(y, ci,l)

Ω
2l

)dd (98)

y

=
∑
ci,l∈V

1

= #V = #P (99)

as required, and therefore P∗ is optimal in the sense of SEq 97. Hence, the Pulling Scheme in

addition to providing an optimal Implied Resolution Function also provides an inherent ’opti-

mal’ sampling in general dimension.

6.2 APR as {Vn,P∗}

From SFigure 8 and Lemma 3, there is a redundancy in directly storing V , instead Vn could be

stored along with each t(ci,l) for each cell (w.r.t Ln). In this way, the particles could be sampled

from Vn using

xp(ci,l) =

{ ∏
i

{Ω∗

2l
(ik + 1/4), Ω∗

2l
(ik + 3/4)} t(ci,l) = {1, 2}

{Ω∗

2l
(ik + 1/2)} t(ci,l) = 3

(100)

where then the locations of P are still implicit now from Vn and their type t(ci,l). This repre-

sentation results in lower memory overhead, but at the cost of complexity, therefore depending

on the use-case the simpler combination of {V ,P∗} may be preferable. Such a formulation is

used for file-storage in this paper.
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7 Practical considerations

In the above, we have ignored particle considerations of, how do we estimate ∂f
∂y

and the impact

of noise. Here we will briefly discuss these issues, including a discussion on the continuous

resolution functions. The results here are presented in 1D but apply to the general dimension

case.

7.1 Discrete sampling

First, we consider the what the ideal sampling of ∂f
∂y
{x̄} would be that would allow reconstruc-

tion of all y ∈ Ω (at off particle locations) then the samples

∂f

∂y
{xi} = max

x∈[xi−h/2,xi+h/2)

∂f

∂y
(x) (101)

where h is the sampling distance between points for x̄. These estimates would guarantee the

APR reconstructs the function y ∈ Ω, and not just at sample locations. This follows from the

fact that this would produce an upper bound on the true derivative across every interval.

7.2 Impact of noisy Local Resolution Estimate L(y)

However, even in noise-free situations, we do not have the ability to sample the derivative

directly. Instead, we observe | ∂̂f
∂x
| = |∂f

∂x
| + ε. Therefore, it is interesting how errors from the

estimation of the derivative translate into the violation of the Reconstruction Condition for a

given relative error bound E.

Therefore, we consider how an error in L(y) translates into the error in the solution com-

pared to the user-set relative error bound E. That is we assume that instead of L(y) we observe,

L∗(y) =
Eσ(y)

|∇f |(1− α)
(102)

where α represents the maximum relative error in |∂f
∂x
| (We assume here the 0 ≥ α < 1). We

need only consider reductions of the magnitude of the gradient as increases will not impact
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the Reconstruction Condition (they simply increase the resolution wastefully). So then if we

consider what the worst-case observed E∗ is relative to the desired E for a given α (See below

SMat 7.2.1 for derivation) we get

E∗ − E
E

=
1

1− α
− 1 (103)

where the error is taken to occur at a local maximum of the derivative such that the error has an

impact on the solution. Interpreting this, we can see that if α = 0.1, i.e. ten percent absolute

error in the gradient, then the ratio E∗−E
E

= 0.111, and so if E = 0.1 then the observed relative

error worst case would be 0.111. So a ten percent error has been related to an eleven percent

increase in the realizable relative error.

This bound is insightful, as it tells us that if we have a given α and want to guarantee some

realized Ê, we can increase the user set E, to retain the bound despite the error (i.e. such that

E∗ = Ê). However, this is at the cost of a higher number of particles. Alternatively, we can

re-arrange the bound, as

α = 1− 1

1 + (E∗−E)
E

. (104)

which then tells us how large a relative error in our derivative we can tolerate if we wish to have

a set accuracy for the relative error bound.

The analysis above is based on relative errors. How do we then consider absolute errors

ε? For a given ε, the relative error will be greatest with the derivative is small. Interestingly,

these are the regions of our solution where it is likely R∗(y) ≤ L(y). That is, the large relative

error will not impact the solution. The y ∈ Ω that are most likely to contribute to V will have a

’relatively’ smaller α due to the larger magnitude of L(y).
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L(y) = (1+β)Ω/2l Ω/2l

Ω/2l

Ω/2l-1

Ω/2l-2

Ω/2l-1

βΩ/2l

(1-β)Ω/2l

L*(y) = (1+κ)L(y)

Figure 9: Analysis of errors in local resolution estimate L(y)

7.2.1 Derivation

Here we derive the above bound for the impact of error in the estimation of L(y) on the ability

of the APR to reconstruct the function within the Reconstruction Condition. Now if we suppose

that we have the following scenario, as shown in SFigure 9

L(y) = (1 + β)
Ω

2l
(105)

that is subject to some error, such that the observed local resolution estimate is

L∗(y) = L(y)(1 + κ) (106)

for this error to impact the solution such that it reduces the reconstruction error, the Particle Cell

level must decrease, giving a new Particle Cell level l∗ = l − φ which requires

L(y)κ > (1− β)
Ω

2l
(107)

which gives us

κ >
1− β
1 + β

(108)
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and that φ = dκe. Now we wish to consider the worse case change in the resolution that would

occur, given a particular relative error κ. That is we wish to consider when the error between

the true local estimate and the observed quantized value from the particle cell, given by

∆ =
Ω

2l−φ
− L(y)

=
Ω

2l
(2φ − 1− β) (109)

is at its largest, which occurs when

κ =
(2φ − 1− β)

1 + β
. (110)

Now for the APR we have L(y) = Eσ(y)
|∇f | , and then our observed local resolution estimate can

be written as

L∗(y) =
Eσ(y)

|∇f |
(1 + κ) (111)

and if we now assume that the error in the observed L(y) comes from a underestimate of the

gradient magnitude we can re-write this as

L∗(y) =
Eσ(y)

|∇f |(1− α)
(112)

where

α = 1− 1

1 + κ
. (113)

Now we wish to know how a change in α would impact our observed relative error bound E∗,

compared to our desired relative error bound E, that is

E∗ − E = |∇f |Ω
2l

(2φ − 1− β)
1

σ(y)
(114)

and therefore the relative error is

E∗ − E
E

= |∇f |Ω
2l

(2φ − 1− β)
1

Eσ(y)
(115)
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where we assume that the maximum gradient magnitude occurs at y within its neighborhood

N (y, R(y)). Substituting in for the true gradient magnitude |∇f | = Eσ
(1+β) Ω

2l

we have

E∗ − E
E

=
(2φ − 1− β)

1 + β

= κ

=
1

1− α
− 1 (116)

and similarly

α = 1− 1

1 + (E∗−E)
E

. (117)

This is derived for the error occurring occuring across a particle cell. How does this extend

to other Particle Cells? The above analysis has assumed that the error occurs at its maximum

value across the whole path. Any paths that cover more than one Particle Cell, will have con-

tributions proportional to the length of the path in each cell. The worst case, would be that this

largest relative error occurs everywhere. It is in this case, that this upper bound should hold.

Further development of this bound and analysis in the future seems warranted, in addition, to

the increase in cost for particles through increases in resolution.

7.3 Impact of noisy particles f̂(yp)

Now if we consider that we are only able to sample noisy estimates of the function for our

particles, f̂p = f(xp) + η(xp), where η is some noise process. If we assume that we are still

able to estimate L(y) such that R∗ is the true optimal solution we will find our observed error

is

E∗ =
|f(y)−

∑
xp∈N (y,R(y))(f(xp) + η(xp))ξp(y)|

σ(y)
(118)
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then given L(y) is the noise-free solution then the Reconstruction Condition holds and we get

E∗ = |A+
1

σ(y)

∑
xp∈N (y,R(y))

(xp)ξp(y)| (119)

where we have |A| ≤ E. Therefore as E → 0, A → 0 and therefore the infinity norm of the

observed relative error |E∗|∞ will tend to the maximum | 1
σ(y)

∑
xp∈N (y,R(y)) η(xp)ξp(y)| across

the domain.

Therefore, the noisy input data, provides an upper bound of the observed relative error E∗

regardless of adaptation, and user setE. Note, we provide a more detailed analysis of the impact

of noise in the following section SMat 7.4 showing that the APR converges at an optimal rate to

a bias estimate of the noise-free APR given a non-trivial Resolution Function that satisfies the

Resolution Bound. This is consistent with the simple analysis here.

7.4 Convergence rate of MSE of APR

Next we consider the case of again known R(y) and the convergence behavior of the MSE of

the APR as the number of input samples N that the APR can be estimated from is increased,

aligning with the analysis of wavelet thresholding in (4).

We first provide the results, and then the derivation follows. If we assume that R∗(y) satis-

fies the Reconstruction Condition for parameter E = ε and particles values are estimated by the

original Gaussian distributed noisy samples in R(y) of every particle, then the APR will have

the following properties as the total sampling N increases:

1. Reconstruction at particle locations from the image follows, |E[f̂{xp} − f(xp)]| < 1
21/d

and Var[f̂{xp} − f(xp)] ≤ σ
NCp

2. Reconstruction using the noisy particles at arbitrary locations follows |E[f̂(y)−f(y)]| <

(1 + 1
21/d )ε with Var[f̂{xp} − f(xp)] ≤ A0σ2

N
, i.e. an introduced error factor of 1

21/d ε
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3. The expected MSE of the reconstruction followsR(f̂ , f, N) ≤ A1σ2

N
+ ((1 + 1

21/d )ε)2

where Cp is a constant that depends on the size of R(xp), A0 a constant that depends on the

Resolution Function around y and the reconstruction method and sampling used. Lastly A1

depends on the Resolution Function and reconstruction method across the domain. It is worth

noting that the bound (1 + 1
21/d )ε is not tight and given assumptions on function within R(y) of

y, and better than worst-case reconstruction this could be reduced to be closer to ε. Effectively

the bias introduced into the representation is a result of the spatial average used to estimate the

particles.

Hence, we can see that assuming anR(y) that satisfies the Resolution Bound, guarantees op-

timal convergence to a solution that is within bounded distance of our noise-free reconstruction.

However, we have assumed that for the given APR that R∗(y) satisfies the Reconstruction Con-

dition and Resolution Bound. However, with noisy function input, this would not be guaranteed

to hold. However, if knowledge of the relative error bounds of estimation of L(y) are known,

then the above results could be adapted using to incorporate the results on noisy adaptation in

SMat 7.2.1.

7.4.1 Derivation

Lets consider a reconstruction of the APR, where we assume that R(y) is noise free, either a

continuous solution satisfying the Resolution Bound, or the implied Resolution Function R∗(y)

for an APR with σ(y) = 1 and relative error E = ε (to avoid confusion with the expectations

below), where we have estimated the particle intensity values f̂(xp) from some noisy sampling

g{x̄}, with N points, estimated as

f̂(xp) =
1∑

x∈N (y,R(y))

∑
x∈N (xp,R(xp))

g{x} (120)
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that is simply the weighted sum of all points in g{x̄} within R(y) of xp. As we have done in

the benchmark results above. We assume, as above, that each value of g can be decomposed as

g{x} = f(x) + η(x) (121)

where η(x) ∼ N (0, σ). That is, each value is normally distributed with zero mean and standard

deviation σ, and the process is independent of each x. For comparison with the wavelet results

in (4) we are interested in the statistical properties of the estimate f̂(xp) as N →∞.

First, let’s consider the expected value of the error in the estimated particle intensity,

E[f̂(xp)− f(xp)] = E[
1∑

x∈N (y,R(y))

∑
x∈N (y,R(y))

g{x} − f(xp)] (122)

now let us consider a further decomposition of this sum in the following way

E[f̂(xp)− f(xp)] = E[
1∑

x∈N (y,R(y))

∑
x∈N (y,R(y))

(f(xp) + h(x) + η(x))]− f(xp) (123)

where we use 121, and we define h(x) by decomposing the noisy function component in terms

of g{x} = f(xp) + h(x) + η(x). Now given that the expectation is linear, we can isolate the

random variable, giving us

E[f̂(xp)− f(xp)] =
1∑

x∈N (y,R(y))

∑
x∈N (y,R(y))

h(x)

+
1∑

x∈N (y,R(y))

∑
x∈N (y,R(y))

E[η(x)] (124)

now given that each η(x) is independent and identically distributed (i.i.d) with mean zero, then,

E[f̂(xp)− f(xp)] =
1∑

x∈N (y,R(y))

∑
x∈N (y,R(y))

h(x). (125)

here we relate the two as g(x) = h(x) + f(xp). Now, given that R(y) satisfies the Reconstruc-

tion Condition for ε, and let M = 1∑
x∈N (y,R(y))

(the inverse of the number of sample points used
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in the neighborhood), then we can then bound this as,

|E[f̂(xp)− f(xp)]| = |
1∑

x∈N (y,R(y))

∑
x∈N (y,R(y))

h(x)|

≤ ε

(
M − 1

M

)
(126)

where the factor comes from the assumption that h(xp) = 0. However, given we have also

that R(y) satisfies the Resolution Bound in addition to the Reconstruction Condition then the

maximum gradient is bounded across the interval. This allows us to get an upper bound on the

growth of h(x) by assuming the it is at the worst case the local minimum or maximum of a

piece-wise linear (in 1D) sections. Using this upper bound we get the tighter bound that,

|E[f̂(xp)− f(xp)]| = |
1∑

x∈N (y,R(y))

∑
x∈N (y,R(y))

h(x)|

≤ ε

21/d
(127)

where d is the dimension. Hence, our estimate will converge to a value within ε
21/d of the true

value as N →∞. Now lets consider the variance of this estimate, that is what is the asymptotic

behavior of the MSE of our estimate as again N →∞. So we have

Var[f̂(xp)− f(xp)] = Var[
1∑

x∈N (y,R(y))

∑
x∈N (y,R(y))

g{x} − f(xp)] (128)

which following the same steps as above we get,

Var[f̂(xp)− f(xp)] = Var[
1∑

x∈N (y,R(y))

∑
x∈N (y,R(y))

η(x)] (129)

which is the variance of the uniformly minimum variance unbiased estimator of the normally

random variable η and is therefore

Var[f̂(xp)− f(xp)] =
σ2

M
. (130)
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Now assuming that f has a bounded first derivative, then for sufficiently large M that M > 0

such that the above makes sense then

Var[f̂(xp)− f(xp)] =
σ2

C0N
. (131)

since R(y) defines an isotropic region representing a constant (hyper) volume fraction of the

domain, and C0 is some point dependent constant. Therefore, each estimate f̂(xp), converges

to within ε of f(xp), with assymptotic rate of 1
N

.

7.4.2 Pointwise approximation using R(y)

Next, we consider what we asymptotically get for the expected MSE that we align with (4) and

call the risk,

R(f̂ , f, N) =E[
1

N

N∑
i=1

(f̂(xi)− f(xi))
2] (132)

=
1

N

N∑
i=1

E[(f̂(xi)− f(xi))
2] (133)

now using the fact that E[X2] = Var[X] + (E[X])2, we get,

R(f̂ , f, N) =
1

N

N∑
i=1

(
Var[(f̂(xi) + f(xi))] + (E[(f̂(xi)− f(xi))])

2
)

(134)

and now using the same steps from SEq 126 and SEq 131 above,

R(f̂ , f, N) =
σ2

N2

N∑
i=1

1

Ci
+

1

N

N∑
i=1

 1∑
x∈N (y,R(y))

∑
x∈N (y,R(y))

h(x)

2

(135)

whereCi is a point dependent volume scaling constant. Now we using the fact thatR(y) follows

the Reconstruction Condition we have

R(f̂ , f, N) ≤ σ2

N2

N∑
i=1

1

Ci
+

ε2

22/d
(136)
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Now since Ci are non-zero constants, we can then bound them by 1
Ci
≤ A, such that we get

R(f̂ , f, N) ≤ Aσ2

N
+

ε2

22/d
(137)

therefore, we see that we have asymptotic convergence to a biased estimator that behaves as 1
N

,

which is the optimal rate with convergence that depends on A, which is a function of R(y).

7.5 APR reconstruction

In the above, we assumed that for every point in the domain we used R(y) to estimate the point.

What if instead we only estimate f(xp), and then reconstruct the intensities at the other points,

as in the APR. We now repeat the above steps. So now we have

E[f(y)− f̂(y)] = E[f(y)−
∑

xp∈N (y,R(y))

f̂{xp}ξp] (138)

= f(y)−
∑

xp∈N (y,R(y))

E[f̂{xp}]ξp

(139)

using our result from SEq 126 above, we have

E[f(y)− f̂(y)] = f(y)−
∑

xp∈N (y,R(y))

f(xp) +
1∑

x∈N (xp,R(xp))

∑
x∈N (xp,R(xp))

h(x)

 ξp

=
∑

xp∈N (y,R(y))

h1(xp) +
1∑

x∈N (xp,R(xp))

∑
x∈N (xp,R(xp))

h2(x)

 ξp (140)

where h is defined similarly as above. Now h2(x) is bounded by ε
21/d , for arbitrary particles and

worst case the Reconstruction Condition gurantees h1(x) ≤ ε. Hence we have

|E[f(y)− f̂(y)]| ≤
∑

xp∈N (y,R(y))

ε+
1∑

x∈N (xp,R(xp))

∑
x∈N (xp,R(xp))

ε

21/d

 ξp

≤ (1 +
1

21/d
)ε. (141)
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Therefore, any reconstruction will have a an expected value with bias smaller than (1 + 1
21/d )ε

at all points y ∈ Ω. What is the variance of our estimator? So we have

Var[f(y)− f̂(y)] = Var[
∑

xp∈N (y,R(y))

f̂{xp}ξp] (142)

= Var[
∑

xp∈N (y,R(y))

 1∑
x∈N (xp,R(xp))

∑
x∈N (xp,R(xp))

g{x}

 ξp]

= Var[
∑

xp∈N (y,R(y))

 1∑
x∈N (xp,R(xp))

∑
x∈N (xp,R(xp))

η(x)

 ξp] (143)

here we have to be careful because the η(x) are no longer all independent due to the overlap

of the neighborhood causing different original sample points enter the variance multiple times.

Therefore we have to take care of these by also considering the covariance between the samples,

Var[f(y)− f̂(y)] =
∑

xp∈N (y,R(y))

ξ2
pVar[

1∑
x∈N (xp,R(xp))

∑
x∈N (xp,R(xp))

η(x)]+

2
∑

(xp,xq)∈N (y,R(y)):xp 6=xq

ξpξqCov[
1∑

x0∈N (xp,R(xp))∑
x0∈N (xp,R(xp))

η(x0),
1∑

x1∈N (xq ,R(xq))

∑
x1∈N (xq ,R(xq))

η(x1)] (144)

which we evaluate, as the only terms that will be non-zero in the covariance will be for the cases

with x0 = x1. If we let γp,q be the number of shared points in the original noisy sampling for

the support particles p and q then we get,

Var[f(y)− f̂(y)] = σ2
∑

xp∈N (y,R(y))

1∑
x∈N (xp,R(xp))

ξ2
p+ (145)

2
∑

(xp,xq)∈N (y,R(y)):xp 6=xq

ξpξq
γp,qσ

2

(
∑

x1∈N (xq ,R(xq))
)(
∑

x0∈N (xp,R(xp)))
(146)

Next, we introduce the constants Cp such that NCp =
∑

x∈N (xp,R(xp)), (ignoring complications

due to the discrete nature ofN ) . We then note that γp,q is bounded by the smaller of the number
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of points in p or q, we shall choose p to be the larger, then we have,

Var[f(y)− f̂(y)] ≤ σ2

N

 ∑
xp∈N (y,R(y))

ξ2
p

Cp
+ 2

∑
(xp,xq)∈N (y,R(y)):xp 6=xq

ξpξq
Cp

 (147)

hence, our estimator converges to a biased estimate at the optimal rate of 1
N

for all y ∈ Ω.

So then lastly, we consider the Risk for our reconstruction, that is the expected asymptotic

behavior of the MSE, following the steps again as above,

R(f̂ , f, N) =E[
1

N

N∑
i=1

(f̂(xi)− f(xi))
2] (148)

=
1

N

N∑
i=1

Var[f̂(xi)] +
1

N

N∑
i=1

(
E[f̂(xi)− f(xi)]

)2

(149)

≤ 1

N

N∑
i=1

σ2

N

 ∑
xp∈N (y,R(y))

ξ2
p

Cp
+ 2

∑
(xp,xq)∈N (y,R(y)):xp 6=xq

ξpξq
Cp


+ ((1 +

1

21/d
)ε)2 (150)

again we can see that if we bound our constants that are independent of N by some constant A1

then we have

R(f̂ , f, N) ≤ A1σ
2

N
+ ((1 +

1

21/d
)ε)2 (151)

therefore, we again have that the MSE will converge with optimal rate 1
N

, to a value with bias

((1 + 1
21/d )ε)2 > ε2, where ε is the user set parameter E.

8 Comparison with continuous resolution functions

In the formulation of the APR, we have restricted the solution in two main ways. Firstly, by

satisfying the more restrictive Resolution Bound instead of simply the Reconstruction Condi-

tion, and also by using an Implied Resolution Function R∗(y) instead of a more generation

continuous Resolution Function. Below we provide a few results and discussion on the impact

of these added restrictions and their impact on the adaptivity of the APR.
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8.1 Reconstruction Condition vs. Resolution Bound

First, we consider the relationship between the optimal solution to the Reconstruction Condi-

tion Rc(y) and optimal solution to the Resolution Bound Rb(y). Since the Resolution Bound is

derived from an upper bound on the Reconstruction Condition (given the appropriate assump-

tions), a Resolution Function satisfying the Resolution Bound also satisfies the Reconstruction

Condition. Hence the Reconstruction Condition is a tighter bound on R(y) and Rc(y) ≤ Rb(y)

for all y. The difference between Rb and Rc is the results of bounding the error by taking the

uniform estimate of the maximum of the gradient across the interval SEq 17, instead of the exact

path integral in SEq 15. Without restrictions on bothE and the function f , unfortunately, I know

of no upper bound on this difference. However, if we consider f that is infinitely differentiable

and the limit asE → 0, we observe that either: f will be constant in some interval andR(y) will

also reach some lower bound with a constant zero derivative, or, Rb(y), Rc(y)→ 0. In the first

case trivially the two bounds are equal. In the second case, since f is assumed to be infinitely

differentiable from its Taylor series expansion the difference between |Rc(y) − Rb(y)| → 0 as

Rc(y), Rb(y)→ 0. Hence, given assumptions in the small E limit, the solutions converge.

8.2 Bounds for Implied Resolution Function

Next, we consider what the relationship between Rb(y) and the Implied Resolution Function

R∗(y) generated by the Optimal Valid Particle Cell set V . Given that Rb(y) and R∗(y) both

satisfy the Resolution Bound, but, R∗(y) is restricted to be piecewise constant then necessarily

Rb(y) ≤ R∗(y). The difference between these two solutions represents the loss in adaptation

resulting from constructing our solution of Particle Cells instead of allowing continuous adap-

tation. Since the solutions are both optimal (R∗ over restricted solutions) for the Resolution

Bound, we can bound the worst case difference between these two solutions.

Let us have some V that satisfies the Resolution Bound for L(y). We then ask, in the worst
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case how much larger could Rb be compared to R∗? That is, what is the bound on Rb(y)
R∗(y)

given

only knowledge of R∗.

We can evaluate this question by considering a bound for all particle cells ci,l ∈ V . Given

that ci,l belongs to the optimal set, from Theorem 2, we know that its parent ci/2,l must violate

Theorem 1. Explicitly, that is

{L ∩ ND(ci/2,l)} ⊇ cni,l. (152)

Now, there are many combinations of L(y) and Rb(y) that could results in that this situation.

However, the worst case, i.e. that allowing the largest Rb(y) over the spatial domain of the

particle cell is unique (ignoring equivalent configurations). The worst case occurs when L(y)

is the largest distance from the particle cell at y∗, and occurs exactly on the interval between

two particle cells i.e. L(y∗) = Ω
2l−1 and for y∗ ∈ s(cni,l). If we assume that L(y) is a dirac delta,

where y∗ is the only non-zero point (again worst case as it provide minimal restriction on the

solution). In this way the optimal continuous solution of the Resolution Bound for this is

R∗b(y,y
∗)

{
dist(y,y∗) dist(y,y∗) ≥ L(y∗)

L(y∗) dist(y,y∗) < L(y∗)
(153)

where dist(., .) is the Euclidean distance between two points. This can be trivially proven by

directly considering the solution for an R∗b(y,y
∗) + δ for δ > 0, and noting that the bound no

longer holds. We can use this then to consider the direct upper bound, i.e. within s(ci,l) how

large can R∗b(y,y
∗) be? If we consider the distance of the furthest point from y∗ that is in s(cni,l)

we get a worst case of R∗b(y,y
∗) ≤ (4 Ω

2l
)d1/2 and hence, we have

Rc(y)

R∗(y)
≤ 4
√
d (154)

where d is the dimension. Hence this corresponds to ratios bounded by 4, ≈ 5.65 and ≈ 6.93 in

1D, 2D and 3D respectively.
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Figure 10: The first plot shows the ratio of a numerical estimate of the ratio between the optimal
continuous solutions to the Resolution Bound Rb and Resolution Condition Rc for a Guassian
1D benchmark problem plotted against the relative error E. We note that smaller values of E
resulted in a prohibitive computational cost. The second plot shows the relative execution time
in 3D of a numerical estimate toRb and the execution time of the pulling scheme for a fixed ratio
content benchmark plotted against increasing number of pixels N . We note that the continuous
solution became computationally prohibitive beyond a maximum width of 128 (Beyond which
the continuous solution took over 2 hours to estimate compared to less than .01 seconds for the
pulling scheme).
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8.3 Bounds on particle sampling

Can we construct a similar bound on the Particle Sampling P . Here we consider samplings

restricted to those that satisfy

#P =

∫
Ω

1

R(y)d
dΩ. (155)

We note that if we assume an analytical form of R(y) then P that are far smaller then those

obeying the above bound can be constructed. However, we only consider samplings that follow

SEq 155. Given this assumption, we can then ask if we can also bound #P
#Pc , where Pc is some

sampling satisfying SEq 155 for Rc(y). If we consider the same worst case scenario as above

we get,

#Pc ≤ #P
∫
s(ci,l)

1

(dist(y,y∗))d
dy (156)

where ci,l and y∗ are as above, and we note that the argument is independent of the exact

level l, and so we consider the ratio of each individual particle cell to be the same giving the

multiplication factor. In one and two dimensions this has closed form, in 1D we have

#Pc ≤ #P
∫ 4

3

1

(y)d
dy

= log(
4

3
)#P (157)

and in 2D

#Pc ≤ #P
∫ 4

3

∫ 4

3

1

(
√
x2 + y2)d

dydx

= #P(−2G+
1

2
π log(

4

3
) + i

(
PolyLog(2,

−3i

4
)− PolyLog(2,

3i

4
)

)
) (158)

where G is Catalan’s constant and PolyLog is the PolyLogarithm. This corresponds to #P
#Pc

ratios being bounded by 3.47 in 1D, 24.3 in 2D, and using numerical integration in 3D 221.252.

However, with the exception of possibly 1D, I know of no methods to realize these ratios.

Further, there bounds are also not likely tight in practice, and I am unclear as to their utility.

50



8.4 Observed numerical bounds

To find more likely ratios of #P
#Pc in practice, we numerically estimated the continuous optimal

Resolution Functions using anO(N2) brute force approach. The brute force approach relies on

testing increasing sized R(y) for each location. The first plot in SFigure 10 shows the ratio of

Rc over Rb for the test function in SFigure 14 for decreasing E. We find that as suggested by

the discussion above Rc
Rb
→ 1 as E → 0. Unfortunately, the solving for smaller values of E than

0.01 was too computationally costly.

To illustrate this high computational cost, in the second plot SFigure 10, we show a com-

parison in 3D between the brute force solution to the Resolution Bound and the Pulling Scheme

for a fixed ratio benchmark. We find that the brute force solution takes between two and six

orders of magnitude longer to compute. This corresponds to the brute force solution taking over

2 hours for an image of N = 1283, compared to less than .01 seconds for the Pulling Scheme.

We note that efforts were undertaken to optimize the brute force scheme and reduce the com-

putational cost including acceleration using OpenMP to provide a ’fairer’ comparison with the

Pulling Scheme. This high cost placed a limit on the numerical analysis that could easily be

done comparing the two solutions. Next we provide numerical results on the relationship be-

tween the implied Resolution Function R∗ and the continuous estimate of Rb. We focus here on

3D. The first plot of SFigure 11, shows the mean ratio of Rb
R∗

, averaged over all pixel locations

against increasing number of objects for both noisy and noise-free original images. We find the

average ratio is less than 3.2 across both benchmarks, with a decrease in the mean ratio for an

increase in objects for the images. Therefore, on average we find the ratio is two to three times

less than the worst-case bound of ≈ 6.93.

We use the estimate ofRb to also estimate the #P
#Pc ratios. From the above analysis, we found

a worst case bound of 221.25. In the second plot of SFigure 11 we show the estimated ratios

against increasing information content for sampling based on both the isotropic and integral
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Figure 11: The first plot shows the mean ratio of the numerical estimate of the optimal contin-
uous Resolution Function Rb(y) over the implied Resolution Function R∗(y) using the integral
neighborhood sampling optimization in 3D against number of objects for both noisy and noise-
free images. The second plot shows the ratio of the number particles in the APR #P divided by
the theoretical sampling #Pc based on Rc. We plot the ratios for both the isotropic and integral
neighborhood sampling (SMat 5.6) in 3D against the number of objects.

neighborhood sampling used in the performance benchmarks (SMat 5.6). We find the ratio

becomes constant for increasing information content, with the isotropic sampling having a ratio

of approximately 11, and 5.5 for the integral neighborhood sampling. Although this is only for

one test example, we find a ratio that is much less than the worst case bound given above.

First, we found that the bound between Rc and Rb in 1D was close to one for reasonable

ranges of E << .3, and tends to one asE → 0. In 3D using the later discussed implementation,

we found the observed mean ratio of the implied and continuous resolution functions in 3D was

between 2 and 3, depending on the image content and level of noise. Further, we find that the

worst-case bounds for particle ratio #P
#Pc are do not appear to be tight in practice, finding ratios

of less than 11 in 3D benchmark examples (compared to the worst-case bound of 225.21).
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9 General (α,m)-Reconstruction Condition

In the previous derivations, we have placed conditions on the reconstruction of the function

value everywhere. Here we show that the same procedure allows bounds on arbitrary derivatives

of f .

So now we wish to calculate some high order derivative α, with orderm derivative operators.

This requires that f is m+ |α| times differentiable. Here, we replace the classic Reconstruction

Condition with the (α,m)-Reconstruction Condition, defined as

|
∑

xp∈N (y,R(y))

fpξα,p(y,xp)−
∂|α|f(x)

∂xα
| ≤ σα(y)Eα,m (159)

where α uses multi-index notation, to represent the desired derivative and ξαp (y) is the derivative

reconstruction kernel with convergence order m. Following the same steps as above, if we

require the following conditions

∑
xp∈N (y,R(y))

(xp − y)kξα,p(y,xp) =


1 if,k = α
0 elseif, |k| < m+ |α|
bounded otherwise

then we have the following,

εα(y) =
∑

xp∈N (y,R(y))

∑
|k|=m+|α|

(y − xp)
k |k|
k!

∫ 1

0

(1− t)|k|−1 ∂
|k|

∂xk
f(y + s(xp − y))dsξα,p(y,xp)

(160)

which we can bound by,

|εα(y)| ≤ γ(m+ |α|) max
|k|=m+|α|

max
x∈N (y,R(y))

|k|
k!

(∣∣∣∣∂|k|f(x)

∂xk

∣∣∣∣)R(y)m+|α||ξm+α,p| (161)

where |ξm+α,p| =
∑

xp∈N (y,R(y)) |ξα,p(y,xp)|. Now here, the coefficients, will be proportional

to of 1
R(y)|α|

, hence we replace this with the following global bound of |ξm+α,p| ≤ Cα
1

R(y)|α|
,

where Cα is some constant that depends on the reconstruction function and local particle orien-

tations, giving us now

|εα(y)| ≤ γ(m+ |α|) max
|k|=m+|α|

max
x∈N (y,R(y))

|k|
k!

(∣∣∣∣∂|k|f(x)

∂xk

∣∣∣∣)R(y)mCα. (162)
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Next, by making this reconstruction error satisfy our (α,m)-Reconstruction Condition SEq 159

we get

R(y) ≤

(
Eα,mσα(y)

Cαγ(m+ |α|) max|k|=m+|α|
|k|
k!

maxx∈N (y,R(y))|∂
|k|f(x)
∂xk |

)1/m

. (163)

which if we again apply a smoothness assumption on σα making the usual substitution giving

again

R(y) ≤ min
x∈N (y,R(y))

(Lα,m(x)) (164)

where now

Lα,m(y) =

(
Eα,mσα(y)

Cαγ(m+ |α|) max|k|=m+|α|
|k|
k!
|∂|k|f(y)

∂xk |

)1/m

(165)

which is again in the correct form for using Particle Cells and the Pulling Scheme. We can see

the condition in the previous section is simply the α = 0 case.

9.1 Multiple resolution conditions

Above we have shown that we can formulate the Resolution Bound for a range of (α,m)-

Reconstruction Conditions. What if we want more than one Reconstruction Condition? This

case is simply satisfied. If we consider we have a set of Local Resolution Estimates Li =

{Lαi,mi(y)} from i = 1, .., q associated with q different (m,α)-Reconstruction Conditions

(SEq 159), then we get one Resolution Bound of the form,

R(y) ≤ min
x∈N (y,R(y))

(
min
i
Lαi,mi(x)

)
(166)

using the fact that the minimum operation is associative. Hence, any combination of Recon-

struction Conditions can be solved finding the Implied Resolution Function R∗(y) using the

Pulling Scheme using the minimum across the different (α,m)-Local Resolution Estimates.

Hence, all of the results from the Particle Cells presented for the m = 1, α = 0 case, directly

extend without extra work to the multiple general (m,α)-Reconstruction Conditions case.

54



10 Reconstruction Methods

In the above discussions and main text, we have not specified a specific ξp(y). We have only

specified the two conditions any reconstruction must fulfill, specifically,

∑
xp∈N (y,R(y))

ξp(y) = 1, (167)

ξp(y) ≥ 0.

In essence, any average over points within the neighborhood N (y, R(y)) is valid. Here we

briefly describe three different approaches that are used in the following chapters, that produce

reconstructions f̂ that satisfy the Reconstruction Condition. Many other possible approaches

exist, including using B-Splines or Wavelets for reconstruction, however, we stick to the fol-

lowing three simple cases here.

10.0.1 Piecewise constant reconstruction

This first approach, is practically, the most simple and efficient. A piecewise constant recon-

struction f̂pc that satisfies SEq 167 can be constructed as

f̂pc(y) =
∑
ci,l∈V

fpφ(y, ci,l) (168)

where φ(y, ci,l) is defined as in SEq 33. Due to its simple structure, SEq 168 can be very

efficiently implemented and has low computational cost. Despite its simplicity, it seems to

produces subjectively ’high’ quality reconstructions. Because of these properties, we use it as

the default reconstruction throughout the rest of this work. The draw back of this approach is

not a ’smooth’ reconstruction.
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10.0.2 Smooth reconstruction

Instead, in the second approach, smooth reconstructions f̂s can be used by utilizing a kernel

function ψ(x) ≥ 0 in the following way

f̂s(y) =

∑
xp∈N (y,R(y)) fpψ(x− y)∑
xp∈N (y,R(y)) ψ(x− y)

. (169)

Such smooth reconstructions could be useful for visualization purposes, when piecewise con-

stant ’artifacts’ may not be wanted, or for processing applications requiring a smooth represen-

tation.

10.0.3 Smooth - seperable linear reconstruction

A further smooth approach includes use of the piecewise construct reconstruction f̂pc. This can

then be filtered consequentially in each direction using an average over each direction seperately

with a filter size set by R(y).

10.0.4 Worst-case reconstruction

For the analysis below, it is useful to be able to create the worst-possible reconstruction that

satisfies SEq 167, so we can show empirically that the Reconstruction Condition holds. If we

consider any point y ∈ Ω, let fmin = minx∈N (y,R(y))(fp) and fmax = maxx∈N (y,R(y))(fp), then

any reconstruction satisfying SEq 167 follows

fmin ≤ f̂(y) ≤ fmax (170)

therefore, we define the minimum f̂min and maximum f̂max, worst case reconstructions as

f̂min(y) = min
x∈N (y,R(y))

(fp), (171)

and

f̂max(y) = max
x∈N (y,R(y))

(fp) (172)

which represent upper and lower bounds on any reconstruction.
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Figure 12: Local Resolution Estaimte L(y) (blue) and Implied Resolution Function R∗(y)
(green) for the E = 0.05 (right) and E = 0.3 (left) examples from Figure 14.

11 1D Validation

In this supplimentary section, we verify the theoretical results of the APR using a simple an-

alytic 1D function. We use the most simple case where the Local Intensity Scale σ(y) is a

constant. First, we will briefly describe the algorithms that were used and then follow with a

discussion of various results.

11.1 Implementation

The results in this section were produced using scripts in Matlab. The code takes a function f

over a fixed domain Ω that can be queried at any point y ∈ Ω. Given a user-set relative error E

and the input function, the APR is then be computed.

The Pulling Scheme was implimented using the explicit tree storage method with a full rep-

resentation of the Particle Cell set C from lmin to lmax − 1, where Ω
2lmax

represents the smallest

distance between sampled particles. The equivalence optimization SMat 5.4 was used. How-

ever, the integral neighborhood optimization was not used. lmax was set by finding the numerical
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Figure 13: Particle Cell level l, for all ci,l ∈ V for the E = 0.05 (left) and E = 0.3 (right)
examples from Figure 14.
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Figure 14: The APR with E = 0.05 (left) and E = 0.3 (right) for f(y) = e
−(x−0.5)2

0.05 − e
−(x+0.3)2

0.001

with σ(y) = 1 on the domain Ω = [−2, 2]. The observed reconstruction errors (normalized
infinity norm) are given inset forE∗pc a piecewise constant reconstruciton, E∗wc worst case recon-
struction, and E∗lin piecewise linear reconstruciton. For E = 0.05, #P∗ = 176, and lmax = 12,
for E = 0.3, #P∗ = 51, and lmax = 9.
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Figure 15: Examples of three different reconstruction methods for the E = 0.3 APR from
Figure 14. The left plot shows the maximum f̂max (light blue) and minimum f̂min (green)
worst-case reconstructions (10.0.4) with the original function plotted in transparent blue. The
right plot shows piecewise constant interpolation f̂pc (green) and piecewise linear inteprolation.
The original function is plotted in transparent blue.

maximum of the absolute value of the gradient, computed using central differences, and finding

its associated particle cell level using l = max(lmin, blog2( Ω
L(y)

)c)) and lmin was set to one. The

natural Local Particle Set, Ln was then calculated by iterating over the domain at a sampling

defined by Ω
2lmax

. Ln was created by calculating L(y) and then determining the associated Par-

ticle Cells setting and then setting the values in the C structure to one (For more details see the

description of the 3D pipeline in SMat 12.4).

We tested this pipeline, using a numeric, and symbolic version. In the symbolic version, all

the function and gradient calls were symbolically evaluated. In the second, the numeric version,

the function sampled at a spacing Ω
2lmax

was the input of the function. L(y) was computed

either using central differences for the numerical version. The pulling scheme was then used

to calculate Vn and from this V . Lastly, the particle set P∗ = {fp} was formed by sampling

the function. As particle locations do not align with the sampling used in the previous steps
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Figure 16: The observed reconstruction errors for the APR and function as in Figure 14 for a
linear range of 200 values of relative error E from 0.001 to 1. In both plots the dotted dark
blue line indicates E∗ = E, the representing Reconstruction Condition that the APR recon-
struction should be below. The left plot shows the observed reconstruction errors for worst case
E∗wc (blue), piecewise linear E∗lin (light blue) and piecewise constant E∗pc (green). The right
plot shows the worst case reconstruction error E∗wc when the gradient is computed analytically
(green) and numerically using central differences (blue).
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Figure 17: The left plot shows the number of particles (Np = #V) for the APR and function
as in Figure 14 for a linear range of 200 values of relative error E from 0.001 to 1. Inset is the
same data (blue) on a log-log plot, with two linear fits (green). The first fit is for E ≤ 0.05, with
exponent −0.86 and R-Square: 0.994 and second for E > 0.05 with exponent −0.56 and R-
Square: 0.975. The right plot shows the observed reconstruction error of the gradient computed
on the same series of APRs. The observed reconstruction error of the gradient is the infinity
norm of the gradient normalized by the maximum absolute value of the gradient. The dotted
line shows the relative error bound, the light blue shows a first order gradient, and green second
order gradient.

61



when using the numerical computation, linearly interpolated values were used. Unless explicitly

stated, all results are shown for the numerical version.

11.2 1D example

Here, we explore the APR for a simple 1D function for a function composed of a narrow nega-

tive and broad positive Gaussian function. SFigure 14, shows the APR represented as particles

at fp in green, and a piecewise linear interpolation in blue, for a high relative error E = 0.05

and low relative error E = 0.3 (Function definition in caption). We only use this example here;

however, the results are consistent across general differentiable functions that have been tried.

From the two plots, we can see that the particles are adapting to the different length scales in

the problem, having a low density of particles in the flat areas and resolution increasing near the

two peaks. Further, we can see that the impact of increasing the relative error is an increase in

the resolution in the already higher resolution areas. In the inset, we show the observed recon-

struction errors E∗ of the two APRs for a range of different reconstruction methods. We define

the observed reconstruction error E∗ for a set of points x̄ as

E∗ = max
x∈x̄

(
|f̂(x)− f(x)|

σ(x)

)
(173)

where f̂ is the reconstructed value from the APR. A subscript is usually given to indicate which

reconstruction method was used, and x̄ is the set of all points sampled at a spacing of Ω
2lmax

.

For the 1D examples, we use three different constructions. E∗pc is based on a piecewise

constant nearest neighbor reconstruction f̂pc, E∗wc is the worst-case taking the maximum recon-

struction error for both f̂min and f̂max as described in SMat 10.0.4, and E∗lin is from a piecewise

linear (between particles) reconstruction. SFigure 15 shows the reconstructions for the three

cases for the APR with E = 0.3. For the case of E = 0.05 the reconstructions, except the

worst-case, are indistinguishable by eye from the function. From theory, this observed recon-

struction error should be less than or equal to E for all of these methods.
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Returning to the values in SFigure 14, we see that this is the case. As expected, the worst-

case reconstruction has the highest value, followed by the piecewise constant, and then piece-

wise linear reconstructions.

Next, we show details of the APR formation, and how the change of resolution between

the two relative error values arises. The increase in E, from 0.3 to 0.05, results in a scaling

of the Local Resolution function L(y), shifting it to a smaller value. The lower values then

result in a more constrictive Resolution Bound resulting then in a smaller Implied Resolution

Function. This is shown in SFigure 12 where the Implied Resolution Function R∗(y) (green)

and the Local Resolution Estimate L(y) (blue). However, across these figures, discerning the

changes in resolution in high-resolution areas (small R∗) is difficult. However, this is easily

done instead by directly visualizing the particle cell level l. SFigure 13, shows the changes in

resolution by particle cell level l for the two different relative errors. We note that the particle

cell level l for the higher relative error E = 0.05 seems to be more responsive to the features of

the function then E = 0.3.

11.3 Reconstruction Condition

Above we showed that the Reconstruction Condition holds for two values of relative error E.

What about the arbitrary E? To address this, we computed the APR and reconstruction errors

E∗ for 200 values from 0.001 to 1 for the three reconstruction methods. The results are plotted

in the left plot in SFigure 16. For small values of E the reconstruction errors show a linear

response to E, and for higher values show a piecewise constant response. Across all values, the

worst-case reconstruction, as predicted, is the highest. Further, although it comes close to the

bound, represented by the dotted line, it never crosses it. These results, therefore, confirm that

the Reconstruction Condition holds across E for our test function.
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11.4 Numeric vs. symbolic gradient

The derivation of the APR assumes full knowledge of the gradient of the function ∂f
∂x

. In

SMat 7.2, we briefly discussed some theoretical arguments on how errors in the gradient would

affect the observed reconstruction error E∗. To test the impact of this, we compared the worst-

case reconstruction error of the APR computed with exact knowledge of f through symbolic

evaluation of ∂f
∂x

and the numeric version computed from knowledge of f only at samples of

distance Ω
2lmax

. All previous results have been with the numeric version. The result is shown

in the right plot of SFigure 16. For small values of E the results appear identical, however,

for a few points at higher E, there are some differences. Indeed, the reconstruction error for

the numeric code is smaller, except at isolated points for E near 1. Arguably, since the bound

only requires E be below the bound, the lower value results from more particles being used,

and therefore the higher analytical solution is ’better’. However, in this example, the difference

between the two regarding the number of particles was small (1-2).

11.5 Number of particles

Intuitively, we should expect that the smaller E, the fewer particles that should be required

to form the optimal solution to the Resolution Bound with Particle Cells, and therefore the

number of particles should decrease with E. This is the case, and is shown in the left plot of

SFigure 17. The plot shows both the numeric and analytic version number of particles against

the relative error E. Only one curve can be seen because the differences are indistinguishable

when visualized this way. The plot shows that not only does the number of particles decrease

with E, that it does so in a non-linear way. To explore this, in the inset of SFigure 17 left

we show the same results in a log-log plot. We find what appears to be two different regimes,

corresponding to linear regions in the log-log plot. In the figure, we also show linear fits for

these two regions. For small values of E, the number of particles Np, appears to scale like
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E−0.86 and for higher values like E−0.56.

11.6 Gradient

Satisfying the Reconstruction Condition, only guarantees the reconstruction of the function f

at a specified relative error E, and does not bound the derivative. However, the error of the

gradient should still scale with E. We empirically explore the gradients reconstruction error,

defined as

E∗grad = max
x∈x̄

 | ∂̂f∂y (x)− ∂f
∂y

(x)|
σgrad

 (174)

where we set σgrad to be equal to the maximum absolute value of the gradient across the inter-

val. The normalization by the maximum absolute value of the gradient is to make the results

comparable to the E bound for f . The results are shown in the right plot of SFigure 17, where

the gradient is computed using both 1st order, and 2nd order in h DC-PSE (5) derivative esti-

mates. We find that in both cases as the error decreases in E. For the first order derivative, the

error is above the bound set by E, however, for the higher order 2nd derivative, we see that the

reconstruction error in the gradient is always below E.

11.7 Discontinuities

Lastly, for the 1D case, we explore the case where f is no longer in C1 and contains discontinu-

ities. We do this by adding two Heaviside step functions to the previously used example from

SFigure 14. The existence of discontinuities violates the assumptions of the formulation of the

APR. However, practically discontinuities can be handled when using the numerical version,

given the introduction of a fixed maximum level lmax for the initial sampling. We do this by

using sampling set by the previous example for the input f{x̄}, but letting lmax for the APR

be determined by the numerical computation of the derivative and L(y). We show the resulting

65



0 1 2

lin

-2 -1
y

-1

-0.5

0

0.5

1

1.5

f(y
)

E= 0.3
E*

pc= 0.10568

E*
wc= 0.50105

E* = 0.075

Linear Reconstruction
fp

0 1 2-2 -1
y

-1

-0.5

0

0.5

1

1.5

f(y
)

E= 0.05
E*

pc= 0.029929

E*
wc= 0.5

E*
lin= 0.0048709

Linear Reconstruction
fp

Figure 18: The APR withE = 0.05 (left) andE = 0.3 (right) for f(y) = e
−(x−0.5)2

0.05 −e
−(x+0.3)2

0.001 +
0.5 ∗Heaviside(x)− 0.3 ∗Heaviside(−.5− x) with σ(y) = 1 on the domain Ω = [−2, 2]. The
observed reconstruction errors (normalized infinity norm) are given inset for E∗pc a piecewise
constant reconstruciton, E∗wc worst case reconstruction, and E∗lin piecewise linear reconstruci-
ton. For E = 0.05, #P∗ = 200, and lmax = 18, for E = 0.3, #P∗ = 57, and lmax = 9.

APR’s for the same relative errors E = 0.05 and E = 0.3 in SFigure 18, with the observed re-

construction errors again inset. We find that the two piecewise constant reconstruction methods

still satisfy the Reconstruction Condition, but the worst-case method does not. The piecewise

reconstruction methods meeting the bound is the result of only computing E∗ at the sampling

points given by x̄, which coincides with the highest sampling distance in the APR. Therefore,

at the high-resolution regions, the reconstruction is simply the particle values fp for these meth-

ods. However, the worst-case reconstruction effectively uses all points within R∗(y). In this

case, the reconstruction fails at the discontinuity. However, the same would occur for any dis-

crete sampling across the discontinuity using an isotropic kernel with support greater than one

point.
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Figure 19: The schematic shows the idea behind the Local Intensity Scale we use in this paper.
The Local Intensity Scale should be slowly varying and reflect the range of intensities (from
highest to lowest) of objects within a set length scale set by the width of the blur kernel in the
image.

12 3D Flouresence Image APR Pipeline Implementation

In this supplementary section, we briefly outline how we have implemented the steps for form-

ing the APR for noisy 3D fluorescent images. We make use of the optimizations for the integral

neighborhood sampling (SMat 5.6) and equivalence optimization (SMat 5.4). For the Pulling

Scheme, we use explicit storage of C as described in SMat 5.5. Note, in this section as we are

now dealing with images, we will use I to represent the original noisy input image, instead of

f as previously used.

We have implemented the pipeline in a C++ library utilizing shared memory parallelism

across the pipeline using OpenMP (6). We have favored the use of shared-memory parallelism

over the use of GPU acceleration, due to the current larger availability of larger capacities of

RAM when compared to GPU-memory allowing the processing of larger images on a shared-

memory CPU implementation than one relying on fitting the whole pipeline into GPU memory.

However, testing has indicated that the use of hardware acceleration, such as GPUs or Intel

Xeon Phi’s, can provide significant speedups for particular steps.
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The main dependencies of the library, besides OpenMP, are for input and output of files. For

reading images we use LibTiff, and for output, and writing the APR, we use HDF5 (7) and the

HDF5 plugin for the BLOSC compression library (8). Also, a Java wrapper has been created

using SWIG.

When implementing the APR for 3D LSFM data, three main choices had to be made. First,

how to calculate the gradient magnitude |∇I(y)|, second, what form of Local Intensity Scale

σ(y) to use and how to calculate it, and last, how to sample the image intensity at particle

locations Ip = I(yp). A summary of these steps is shown in SFigure 20. All decisions have

been made with the objective of meeting the Representation Criteria through optimizing both

robustness to noise and computational efficiency.

12.1 Pipeline input and memory requirements

All input images used in this paper are read in from 16 bit unsigned int single channel tiff

images. The time taken to load the image is not accounted for in the timing benchmarks in this

paper. The pipeline requires approximately 25
8

times the memory of the original image, and the

maximum memory size is only restricted by the available RAM, and the global 64 bit unsigned

integer access key.

12.2 Smoothing B-splines

To be able to estimate function gradients in the presence of noise we fit cubic smoothing B-

splines as introduced in (9). This introduces a regularisation smoothing parameter λ that deter-

mines how closely the fit splines must fit the original sample points. We implement these filters

using the IIR approach described in (9), using the impulse response for setting the recursive

boundary conditions. A strength of this approach is that the algorithm isO(1) regarding param-

eter choice λ, and O(N) in pixels, therefore displaying consistent computational performance
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Figure 20: Flow chart showing APR pipeline for fluorescent images, first smoothing B-splines
are fit to the image, then the gradient magnitude |∇f | and local scale σ(y), is computed. The
Local Resolution Estimate L(y) is then computed and used to construct the input for the Pulling
Scheme that then computes the OVPC set V . The particles are then sampled from the original
image, forming the APR. Required parameters are given above the boxes in purple.

across parameter values.

The output of the B-spline coefficients is used for gradient estimation and the Local Scale

Function σ(y).

12.2.1 Gradient magnitude |∇I|

Using the computed smoothing B-spline coefficients, the gradient in each direction is computed

using the finite difference stencil (−1/2hi, 0, 1/2hi). Where hi is the sampling distance in that

direction. These are then squared and combined to form the gradient magnitude as below

|∇I| =

√(
∂I

∂x

)2

+

(
∂I

∂z

)2

+

(
∂I

∂y

)2

. (175)

For noise-free benchmarks, simple finite differences on the original image are performed instead

of smoothing B-Splines. Once calculated, the gradient magnitude is then downsampled by a

factor of two in each direction, taking the maximum value over each patch of 8 pixels. This is

done as the Local Resolution Estimate is only required at this resolution due to the equivalence

optimization and to satisfy the smoothness assumption.
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12.3 Local Intensity Scale σ(y)

In this paper we desire the Local Intensity Scale to be a smoothly varying function that cap-

tures the local range of the input image over a certain length scale, allowing the adaptation to

cope with changes in contrast across the image domain with varying sources. We set this length

scale as a function of the inherent length scale provided by the optical process through the Point

Spread Function (PSF). This length scale is then used to adjust the size of the windows for the

filters in the algorithm. The filter here is effectively a scaled smoothed estimate of the local

standard deviation of the image with filter size adjusted to the estimated standard deviation of

a Gaussian approximation to the PSF, PSFw in each direction relative to the sampling size,

and was inspired by (10). In practice, the PSF is usually anisotropic in the z direction, this

can be accounted for by an additional scaling parameter, but we do not explore this here. This

parameter PSFw in terms of pixels must be given by the user as input. As discussed below,

we find the results relatively insensitive to the exact value of PSFw. In an effort to satisfy

the smoothness assumption (SMat 4.4) and given the Local Resolution Estimate L(y) is calcu-

lated at spatial points downsampled by two, we directly calculate it on a downsampled by two

smoothed B-spline image.

The first step of the Local Scale Function is two calculate

σ(y)∗ = A0µ2(|I2(y)− µ1(I2(y))|) (176)

where A0 is a scaling constant set by the filter window sizes, µ1 and µ2 represents box, or mean,

filterers on the image with window sizes w1 and w2 respectively, and I2(y), is the smooth B-

spline image downsampled by a factor of 2 in each direction using averaging. The box filter

window sizes w in each direction and scaling factor has been empirically to minimize the under-

resolution to V ideal from the ”perfect” APR discussed in SMat 14.5 and set for integer values of
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the s = {1, 2, 3, 4, 5, 6} in terms of pixels as

w1 = {1, 1, 1, 2, 2, 3} (177)

w2 = {2, 3, 4, 4, 5, 6} (178)

where non-integer values are rounded to the nearest value. The constant normalisation factorA0

is required to normalize the estimate to that of the local intensities, and set empirically against

the implied ”ideal” σideal for the calculated σ∗ (again see SMat 14.5) in Particle Cells at l = lmax

for each filter size combination as

A0 = {25.15, 37.70, 60.82, 30.24, 35.35, 20.47}. (179)

The result is thresholded in the following way

σ(y) =

{
max(σ∗(y)), σth) σ∗(y) > σth

2

64000 otherwise (180)

where σth, is set to the scale of the smallest content in the image that is wanted to be captured,

e.g. the difference between the foreground and background of the dimmest object in the image.

Otherwise, for noisy flat regions, as in image background, σ → 0, resulting in the noise being

captured (SFigure 21).

The box filters, are performed in a separable manner, in each direction using summed area

tables (11), also known as integral images, to allow box filters computationally O(1) with re-

spect to the window size.

For real exemplar data SMat 16.2, an intensity threshold was also included, to allow the

exclusion of unwanted dim image content in the background of the image or image camera

defects. At this step any additional information, or filters, could be used to determine which

part of the image wish to be captured, this could include information from different channels in

an image, or from, different time-steps, such additions are use-case specific, but could yield a

significant reduction in particle numbers.
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Implied Resolution Function - No Scale Threshold Octopus Object  Template

Figure 21: The Resolution Function R∗(y) for the same image shown in Figure 3E, without the
use of any thresholds for local scale estimation (σth = 0). The color scale is identical to that
shown in Figure 3E. In the absence of a threshold, the Local Intensity Scale tends to zero in the
background areas, and therefore fully resolves the background noise. This is mitigated by using
a minimum local scale threshold σth. The original data is from exemplar data set 10 in Table 3.
The second pane shows a volume rendering used for the octopus template used to generate the
object function for synthetic images in SFigure 25
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12.4 Local Resolution Estimate L(y) and Local Particle Set L

The gradient magnitude |∇I| and Local Scale Function σ(y) are combined to create the Local

Resolution Estimate L(y) = Eσ(y)
|∇I| and then the Local Particle Cell set Ln. When using the

equivalence optimization SMat 5.4, L(y) is only required at locations that align with a down-

sampled by two image (the maximum of the gradient is used over the patch at the original

resolution).

The first steps requires setting the relation between the Particle Cells and the image do-

main. Given an image with N pixels, and image dimensions Nx,Ny and Nz, such that N =

Nx ∗ Ny ∗ Nz, with maximum dimension Nmax, and minimum dimension Nmin. We can

then set the minimum and maximum levels l for the APR as lmax = ceil(log2Nmax) and

lmin = max(2, lmax − blog2Nminc), and then our augmented domain length |Ω∗| = 2lmaxhmin,

set such that the maximum resolution coincides with the original pixel sampling.

Then for each downsampled pixel value we calculate, the level l, of the Particle Cell ci,l it

belongs to as

l = max(lmin, blog2(
|Ω∗|
L(y)

)c)) (181)

The spatial co-ordinates i of the particle can be calculated as i = {bx 2l

|Ω∗|c, by
2l

|Ω∗|c, bz
2l

|Ω∗|c}.

We wish to find all the unique ci,l that then form L.

Instead of directly computing the coordinates, we make use of the relationship between the

levels of the tree structure and parent-child Particle Cell relationships. Each full level l of the

Particle Cells corresponds to a down-sampled version of the full image a fixed number of times,

forming a classic image pyramid. To calculate Ln the image containing l for each downsam-

pled pixel is downsampled to lmin using the max operation. For all values where the level in

the structure, coincides with the down-sampled level the Particle Cell is added to Ln where the

coordinates in the downsampled image x, y, z also coincide with the Particle Cell spatial coor-
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dinates and with l define a unique Particle Cell c{xl,yl,zl},l. Although this down-sampling results

in missing ci,l that have higher level children in Ln however we know these Particle Cells do not

impact V from the redundancy property (SMat 5.3). Because the implimentation we use here

also uses the same pyramid structure, instead of outputting the set Ln, we simply set all values

for which l is the current level of the pyramid to 1 and all other 0 and use this as input to the

Pulling Scheme. This algorithm allows the construction of this reduced Ln in O(N).

12.5 Pulling Scheme V

Given the Local Particle Cell set, Ln stored in an image pyramid with non-zeros indicated the

present Particle Cells calculated from the previous step, we then run the Pulling Scheme using

the full explicit storage of the Particle Cell tree as described in SMat 5.5 using SAlgorithm 1.

Practically, this is achieved by (lmax − 1 − lmin) unsigned 8 bit arrays of the the size 23l (See

SMat 5.7 for the memory cost in terms of N .).

The output of the algorithm is also stored in an image pyramid structure, with non-zero

values aligning with SEED, FILLER, and BOUNDARY values representing the Particle Cells

in Vn.

Now that the valid Particle Cell set, Vn, is calculated we then choose our particle sampling.

This is done, as described in SMat 5.6, where Particle Cells of type boundary and filler, have one

particle placed in the center, and Particle Cells of type seed, are split into 8, higher resolution

Particle Cells with one particle again at the center of each. The highest resolution particles

coincide with the original image sampling, resulting in the construction of the particle sampling

P∗.
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12.6 Intensity estimation Ip

Any method of estimation of the particle intensities Ip = I(xp), could be utilized at this step.

In the case of noise-free images, the closest, or interpolated pixel value is used. However, in

the presence of noise, the use of information from V , to improve the estimate of the intensity

using an area of the original image would be more appropriate with Ip = Î(xp), where Î is

some de-noised image. Here, given each particle is sampled at the center of the particle cell,

we simply take the average of the intensity over all pixels within the Particle Cell. In the case

of particles at the image resolution, this average would simply be the original pixel.

12.7 Reconstruction methods

For the comparison of the APR with images, a reconstruction method must be used. In SMat 10

we discussed the reconstruction methods used in this section. Unless otherwise explicitly men-

tioned, it should be assumed that the piecewise constant reconstruction method (SMat 10.0.1)

is used. This was chosen for its computational efficiency, simplicity, and effectiveness.

12.8 Pipeline parameters

A summary of the algorithmic steps required to form the APR from an input image I{ȳ} are

shown in SFigure 20. The parameters that must be set are shown in purple. These are the

smoothing parameter λ for gradient estimation, the threshold parameters for the Local Inten-

sity Scale σTH , the point speed function width (standard deviation of guassian approximation)

PSFw, and the desired relative error E. A detailed discussion of all parameters, their inter-

pretation, and how they have been and can be, set is given in SMat 13 below. For all of the

benchmarks the parameters that have been used are described in SMat 15.1.

In this paper, we have discussed and implemented one particular implementation of a pipeline

for the APR optimised for large 3D images originally stored as tiffs. We have attempted to op-
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timise the steps to reduce memory overhead and computation time, and to reduce the number

of parameters and library dependencies. However, with the exception of requiring an estima-

tion of L(y), and an implementation of a pulling scheme, we imagine the possibility of use of

vastly different algorithms, implementations and definitions of the estimation of the local scale

function, gradient magnitude, and particle intensity.

13 Pipeline parameter Summary

The required parameters for the APR pipeline presented here can be grouped into two cate-

gories, those that reflect information on the properties of the original image, and those that

impact how and what the APR represents in the image.

13.1 Image parameters

The main parameters is the standard deviation of a Gaussian approximation to the point spread

function (PSF) in each direction in pixels, PSFw. This value is used to set the width of win-

dow functions used in calculating the Local Intensity Scale. We find the results are relatively

insensitive to the exact value, and for Exemplar data, have used a fixed width of 2 pixels.

13.2 Reconstruction parameters

These parameters impact how the APR is formed from the underlying image and includes the

relative error boundE, the gradient smoothing parameter λ, and the minimum local scale thresh-

old σth.

13.2.1 Relative error E

The relative error boundE, determines the allowed distance between the original image, and the

APR representation. From noisy synthetic data a value in the range of 0.08−0.15 seems optimal
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in terms of PSNR for a range of noise levels that coincide to typical fluorescence imaging. We

have found this reflected in qualitative experience with real data-sets as found in the exemplar

data sets. Further, we found that for highly anisotropically sampled datasets, a value in the

lower range of 0.08 − .1 was usually appropriate, likely compensating for the resolution loss

in one direction, where as for more isotropic data sets, higher values in the range of 0.1− 0.15

seemed optimal. However, in all cases, the results are insensitive to the exact value.

13.2.2 Smoothing parameter λ

The gradient smoothing parameter λ controls the how much smoothing is done in the fitting

of B-splines for local resolution function estimation. With a higher value resulting in greater

smoothing. This smoothing is required due to the amplification of noise properties of standard

gradient operators in the presence of noise (9). The absence of this smoothing would result in

erroneous high-gradients and over-sampling. How to set this parameter depends on the signal

to noise ratio of the original image. With values ranging from 0.5 to 4, seemingly optimal

over standard signal to noise ranges, with lower values for higher signal to noise ratios. Again,

results are not especially sensitive to this result, with a value too low, resulting in over-sampling

and likely fitting of noise, and a value set too high, resulting in the APR not adapting to the fine

grain structure.

13.2.3 Local Intensity Scale threshold σth

Lastly, the minimum Local Intensity Scale threshold σth represents the minimum local scale

that will be allowed across the image domain. This is required due to the behavior of the Local

Intensity Scale σ(y). In flat regions, the response tends towards the average noise range. Hence,

given the gradient will be non-zero in these regions it will result in the fitting of the noise by the

APR, due to the normalization of the small gradients as shown in the first pane of Figure 21. σth

is introduced to curb this effect. To reduce the impact of noise, the smoothed B-spline image
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is used as input to the local-scale function rather than the original. This results in a reduced

response of flat background areas in the Local Intensity Scale, allowing for the threshold to still

function at low signal to noise ratios. Further to a minimum bound, values at half this value are

then set to a maximum response. This is in effect to drive the L(y) to large values and result in

the APR ignoring these regions.

Setting this value is therefore subjective, and image dependent, as real-images often contain

dim signals from sample contamination or auto-fluorescence, that may or may not wish to be

captured. Corresponding to b in our image formation model (184). If the faintest objects that

wish to be captured can be identified in the image, the value can simply be set to the local

range between background and foreground for this object. Unlike the other parameters, the

setting of this parameter too high can result in significant changes in the properties of the APR,

due to it resulting in signal effectively being ignored. Therefore, a conservative underestimate is

suggested. For the exemplar benchmarks, this was set by simple visual inspection of the original

image. Alternatively, given assumptions on the minimum signal to noise ratio, this value can

be estimated using an estimate of the background noise level. We found setting the value to 6

times the average background noise level is effective across the Exemplar datasets. However,

this can still result in the inclusion of auto-fluorescence or background content, that may wish

to be removed by manual selection of the parameter.

An image intensity threshold can also be used, where the gradient is set to zero where the

intensity is below some level Ith. This was not used in the benchmark data but has proved useful

when dealing with real data, for removing unwanted background signal. Similarly, additional

information can be included in the APR formation, most simply this can be done using a bi-

nary mask. Providing a simple means for inclusion of information from other channels, prior

knowledge, or extra image processing steps.
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14 3D synthetic data

To test the properties of the APR for 3D Lightsheet Flouresence Microscope (LSFM) data

we use synthetically generated image data. We generate synthetic images following a Object

function and image formation model we describe below. Synthetic data is used as it allows

us to control image parameters, such as image size, content, and noise level in addition to full

knowledge of the noise-free, ground-truth image and Object function. We provide an overview

and some technical details below.

14.1 Object function

Here we model LSFM data as a set of labeled objects, e.g. cell nuclei, distributed in space

that are the input to an image formation process that produces images. We define our Object

function (ignoring time) defined on Ω ⊂ R3 with M objects as

O(x, y, z) =
M∑
i=1

Oi(x, y, z) (182)

where each object is a function of compact support Oi(x, y, z) and the function is set to zero

outside of Ω for simplicity. Further, we allow object is composed as

Oi(x, y, z) = BiO
∗(x− xi, y − yi, z − zi) (183)

where O∗(x, y, z) is a piecewise constant function of compact support, that we call the template

object, and Bi is a constant we call the brightness of object i. In all but one case, the template

object used below is a sphere of varying size.

14.2 Image formation

Given a particular Object funtion, we form an image I{y}, approximating the image formation

process. The first step involves the simplified version of the image formation process (12) and
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discrete approximation of

I∗(x, y, z) =

∫∫∫
Ω

(O(u, v, w)+

b)PSF (x− u, y − v, z − w)dudvdw

(184)

where b represents the background intensity is set to be a constant and PSF as set as a non-

spatially varying Gaussian with a standard deviation in each direction of PSFw. For efficiency,

the convolution is only done once over the template object, allowing a high sampling approx-

imation to the Object function, without explicitly storing it. The ground truth image is then

formed by integrating over the pixel (voxel) volume (hx, hz, hy) to create the pixel intensity for

each location as

Igt{x, y, z} =

∫ x+hx/2

x−hx/2

∫ y+hy/2

y−hy/2

∫ z+hz/2

z−hz/2
I∗(u, v, w)dudvdw (185)

for fixed locations ȳ, the spacing of pixels and pixel volumes does not need to be the same

(isotropic). However, this is the case for the benchmarks here. Note, we have also integrated of

z dimension as a simplification. Again a discrete approximation to the integral is used. The last

step involves the corruption of the image by noise as

I{x, y, z} = Igt{x, y, z}+ η(x, y, z, Igt{x, y, z}) (186)

where η(x, y, z, Igt{x, y, z}) ∼ N (Igt{x, y, z}, Igt{x, y, z}) a Gaussians noise with mean and

variance equal to the intensity of the pixel as an approximation to Poisson noise (13). In fluo-

rescence imaging, the image can be corrupted by multiple different noise sources with different

properties including components that have spatial structure (14). However, here we only con-

sider the case of Poisson, or shot, noise arising from statistical quantum fluctuations by using

a Gaussian approximation. The image I{x, y, z} at locataions ŷ we denote as I{ŷ}, it is this

image that is transformed into the APR.
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Object Function Ground Truth Image Original (Noisy) Image APR Reconstructed Image

O (y)

O (y) I gt {y} I {y} tI {y}

Figure 22: Flow chart showing the generation of synthetic images used for benchmarking the
APR. First template objects are generated of a certain size, given locations (xi, yi, zi) , and
brightness Bi, to define the Object function O(y) (left). The Object function is then blurred
through convolution with a Gaussian kernel PSF , and then sampled to produce the Ground
Truth Image Igt{y} (center left). This ground truth image is then corrupted by a Gaussian
approximation to Poisson Noise η, to generate the Original Image I{y} (center right). This
original image is then transformed into an APR. The APR can be then used to produce a recon-
structed image Î{y} that can be compared with both the original and ground truth image for
benchmarking.

14.3 Step Summary

SFigure 22 provides an example of 2D slices of the steps in the synthetic image generation

pipeline. Throughout the benchmarks below, we alter the synthetic images regarding image

size, information content, quality, and sampling. We will briefly describe how this is done for

each, relating to the parameters mentioned above. Figure 3C, provides examples of what the

original image of a fixed sphere template looks like under different conditions.

14.3.1 Image size

The image size can be changed by setting the appropriate size of the domain Ω, pixel locations

y and pixel size hx, hy, hz.
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14.3.2 Information content

Given our Object function model of the image, we can define the level of information content

to be proportional to the number of objects M in the image. Therefore, we can scale the image

content for a given size image and sampling, by increasing the number of objects M . The

objects are given random locations uniformly distributed across the domain and often have a

random uniform distribution of brightness Bi, within the range Bmin and Bmax. An example is

shown in the right image in Figure 4F.

14.3.3 Image blur

We alter the degree of image blur and its shape using the width of the Gaussian kernel and its

standard deviation parameters PSFw. Here, we show results for three levels of blur; we call

small, medium, and large blur. They correspond to a standard deviation in terms of pixels of 1,

3, and 6 respectively. Figure 4C in the left most column provides an example of how these blur

kernels impact the same template.

14.3.4 Image noise level

Here we consider either noise-free, that is η is set to zero, or the noisy case using a Poisson noise

approximation. The image quality can be then altered, by changing the relative magnitude

of the η compared to the object brightnesses Bi. The mean of η within any object i can be

approximated by a combination of b + Bi. Therefore, we can increase or decrease the image

quality by increasing or decreasing the ratio of Bi
Bi+b

. This is done by keeping a fixed average

object brightness Bi and then changing the background b. Hence, we are altering the average

Peak Signal to Noise Ratio (PSNR) of the image. We show results here for three levels of image

quality we call low, medium and high noise level. Figure 4C, third column gives examples for

these levels of image noise.
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14.3.5 Sampling

Lastly, the degree of sampling can be changed. This involves decreasing the pixel size hx, hy, hz

and sampling y while keeping all other variables fixed in real variables. Practically, this means

the blur width PSFw defined in pixels has to be appropriately increased. The increase in sam-

pling can be thought of as zooming in on the object, as with a camera lens.

14.4 Implementation Details

The synthetic image generation pipeline is implemented separately in a C++ library we have

named SynImageGen, this code available from the authors and uses the ArrayFire (15) Library

for GPU acceleration for generating the images. The use of the GPU limits the size of gener-

ated images to GPU memory, only allowing images up to 10003 to be generated. In fact, the

generation of synthetic images usually accounted for the largest component of benchmarking.

The pipeline is designed such that the parameters describing each synthetic image are sufficient

to recreate any of the images in the pipeline. Below we will describe additional technical details

of the synthetic image generation for producing the different image steps in SFigure 22.

14.4.1 Template image

The template images used here, are piecewise constant images, with objects of various intensity,

size, and location placed within a fixed 3D image size. The process begins with the generation

of a binary object template. This template is then used for multiple instances of the same object

within the image domain. Objects templates can be generated by simple algorithms as is the

case with the used sphere template. Alternatively, templates can be generated by a binarization

of 3D polygon model files (vrml, obj) using binvox (16, 17). This is the case with the more

complicated octopus benchmark shown in SFigure 21 and used for results shown in SFigure 25

which was downloaded from (18). However, as mentioned, for all other benchmarks provided
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here the generated sphere was used here due to its computational efficiency, and simplicity.

Objects were placed using a uniform random distribution within the volume, as not to over-

lap with the boundary, this is to reduce the impact of choice of boundary conditions for the

pipeline on the results. Object intensities were set again with a uniform random distribution

with a minimum and maximum intensity value set.

14.4.2 Ground truth image

The ground truth image is then generated by convolving the image with a blur kernel and adding

a fixed background intensity. The convolution was done using separable filtering using 1D

Gaussians of set sigma PSFw in each direction. This blurred image, then served as the ground

truth, as it represents the fluoresce distribution that we wish would observe if it was not cor-

rupted by noise.

14.4.3 Original (noisy) image

The last step of the synthetic pipeline is the corruption of the image by noise. For each pixel,

the following noise process is used and drawn from

Î(y) ∼ N(I(y), I(y)) (187)

where N(I(y), I(y)) is the normal distribution with mean and variance equal to the image

intensity.

14.5 Perfect APR and ideal Local Intensity Scale

Given the proposed Local Intensity Scale σ, for our implementation is only heuristically mo-

tivated. It is of interest, therefore what the ideal Local Intensity Scale σideal would be. Using

σideal, we could then test the appropriateness and performance of our choice. Although we have
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Original Piece-wise Constant Reconstruction Smooth Reconstruction

Figure 23: Comparison between original image (left) and APR piece-wise constant Recon-
struction (middle)and APR smooth reconstruction (right). The smooth reconstruction is using
all points within the integral interaction neighbourhood /n and normalized Guassian weighting
based on distance. Source: (Dataset number 10 STable 1)

no closed form of the ideal Local Intensity Scale, we can instead use synthetic data to numer-

ical compute a perfect APR and infer the σideal from this. This perfect APR is constructed for

a given synthetic image by generating an identical image with no-noise and with all objects of

the same object brightness, i.e. Bi = 1 (see SEq 183) and calculating its gradient magnitude

|∇I|normalized. Then σideal is defined as,

σideal(y) =

{
|∇I(y)|

|∇I(y)|normalized |∇I(y)|normalized ≥ .001

64000 otherwise
(188)

where |∇I| is the gradient magnitude of the noise-free image. The perfect APR can then be con-

structed using |∇I| and σideal for the calculation of the ”ideal” OVPC V ideal and henceR∗ideal(y).

Sampling of intensities can then be done from the original noisy image to isolate the impact of

any errors in adaptation.
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APR Reconstructed

Figure 24: Piecewise constant reconstructed APR shown in Figure 3E, with contrast adjusted
to show the lossy nature of the APR in the background regions. (Dataset number 10 STable 1)

15 Validation Benchmarks

In this section, we give details of the synthetic benchmarks used to evaluate the properties of the

APR with the results presented in the Validation section in the main text. For each data point

in the benchmarks, a synthetic image is generated and used as input to produce an APR that

is then reconstructed using the appropriate method (usually piecewise constant reconstruction)

and summary and image statistics are calculated. This analysis is then saved in an HDF5 file

that is then read, analyzed and plotted using Matlab. All scripts and data for the production of

the plots in this paper are available on request. Further, to aid reproducibility, each file contains

the git hash for the code commit used to produce the results (for the APR library), the command

line input parameters, and an exhaustive list of parameters used to generate the analysis. The
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parameters for the synthetic image generation are either as stated explicitly below, or as outlined

in 13.

15.1 Benchmark parameter selection

See 13 for a detailed discussion of parameters, and their use. For the synthetic datasets, all

image parameters are taken as known from the image generation process including the blur

sizes. For the reconstruction, parameters are set in the as described below, unless explicitly

varied as a parameter for the benchmark.

15.1.1 Relative error bound E

Default parameter set to E = 0.1, unless otherwise stated.

15.1.2 Minimum Local Intensity Scale threshold σth

Set to the minimum bound for the random distribution of template intensities. This is a limita-

tion of the results here and objectively should be set instead by an automated method. However,

there is a large range of values over which the results are insensitive for this parameter.

Gradient smoothing parameter λ To set this parameter in an automated fashion, we utilized

the fact that we knew the minimum standard deviation of the noise σnoise of the benchmark

image, being the
√
Ib, where Ib is the constant background intensity. We then ran parameter

searches across different noise levels σnoise, and parameter values λ, to find the minimum λ

required to be still able to get three levels of resolution change with an object with brightness

above the background set at the minimum local scale threshold σth. We then used the symbolic

curve fitting toolbox Eureqa (19) to fit the value λ given the input variables give us

λ = (
σth
σnoise

0.498763)
−1

0.6161 (189)
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which was used in the synthetic benchmarks, providing good results in both low and high PSNR

benchmarks.

In all cases with error bars have been given, they reflect the estimate of the standard error.

15.2 Noise-free image Reconstruction Condition

Parameter values for results presented in Figure 3. Images of fixed size and number of objects

are generated, and the required relative error bound E is varied. The Reconstruction Condition

requires that the observed reconstruction error E∗ is below E for all locations. Where the

observed reconstruction error is defined as in SEq 173.

15.2.1 Parameters

An image size of 1283 was used with five sphere templates randomly placed in the domain with

brightness Bi varying uniformly between 500 and 5000 with a background intensity b = 1000.

The blur kernels used have standard deviations of PSFw = {1, 3, 6}, in pixels, corresponding

to the low, medium and high blur, with isotropic sampling as hx = hz = hy = 0.1. The

minimum local scale threshold σth = 500. Due to the lack of noise, finite differences were used

to approximate derivatives instead of smoothing B-splines. The relative error bound E, was run

in two linear sections with 40 samples, from 0.001 − 0.1, then from 0.1 − 1.0, with 40 repeats

for each relative error bound.

15.3 Noisy image Reconstruction Condition

The same benchmark as above was repeated but with the introduction of Poisson noise with

results shown in SFigure 26.

15.3.1 Parameters

The image parameters and settings were set as in the no-noise case above.
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15.3.2 Image statistics

The average observed relative error for the noisy image was constructed by taking the average

of the infinity norms of the individual original images.

Also in SFigure 26 data was presented for the image quality, measured by the Peak Signal to

Noise Ratio (PSNR) and how it, varies with E, for noisy images. We do this for original images

with different initial image quality (PSNR), by varying the signal to noise ratio. Further, on the

right axis, a comparison between the reconstruction error from the APR, and the noise level in

the original image is given as measured by the Mean Squared Error (MSE).

15.3.3 Parameters

Different noise level images were created by fixing the background intensity Ib = 1000, and

varying the brightness of the sphere templates, giving an estimated SNR of σnoise
Iobj

, where Iobj ,

is the intensity of the original object template. Due to the Poisson noise corruption, the effec-

tive standard deviation of the noise level will be at-least σnoise =
√
Ib =

√
1000. Therefore,

we run the benchmark with 3 different object intensities Iobj =
√

1000, 10
√

1000, 30
√

1000,

corresponding to the high, medium low noise images respectively.

An image size of 1283, was used with 5 sphere templates randomly placed in the domain,

with intensities and background set as discussed above. The medium blur kernel (PSFw = 3)

was used and isotropic sampling with hx = hz = hy = 0.1. The minimum local scale threshold

σth, was set to the object intensity set for the original image. The relative error bound E, was

run in two linear sections with 40 samples, from 0.001 − 0.1, then from 0.1 − 0.4, with 10

repeats for each relative error bound.
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15.3.4 Particle Intensity Estimation

In the benchmark, we compare two different methods of estimation of the particle intensities

from the noisy input. In both cases, for Particle Cells with a larger resolution then pixel resolu-

tion an average of particles in the spatial domain of the Particle Cell is used. For those Particle

Cells at pixel resolution in SFigure 26, we compare results for using the original pixel value

or instead using a median filtered value. For all other results in this section, we use a median

filtered value.

Also, in the second plot of SFigure 26, we also compare the results for the APR where the

Particle Cells are computed from the noisy input, but the particle intensity values are computed

from a noise-free image.

15.3.5 Image statistics

To measure image quality we use both the Peak Signal to Noise Ratio (PSNR), calculated as

PSNR = 10 log10(
64000

MSE
) (190)

where MSE is the mean squared error and is calculated as

MSE =
1

N∗

∑
y∈Ω̂

(I∗(y)− Ī(y))2 (191)

where I∗ is the ground truth image, Ī is the image being compared (either the original image,

or reconstructed image).

15.4 Increasing information content

In this benchmark we assess how well the APR is adapting to the image content. This is done

by increasing the number of objects in the image and comparing both the image quality and the

number of particles, with results given for the same low, medium, high levels of image quality

as for the reconstruction image quality benchmark.
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15.4.1 Parameters

The number of sphere templates randomly placed in the image was increased from 1 − 100 in

steps of 4, with 5 repetitions.

An image size of 3003, was used, with a blur kernel between the low and medium used

(PSFw = 2) and isotropic sampling with hx = hz = hy = 0.1. With the object intensity and

background set as for the noisy image reconstruction benchmark. The relative reconstruction

error was set to E = 0.1.

15.4.2 Image statistics

The ratio of the PSNR for the APR reconstructed image, PSNR(APR), and the PSNR for the

original image PSNR(Original) is given, showing the relative image quality of the reconstruc-

tion to the original image. Computed as described for the reconstruction image quality bench-

mark.

To measure image quality we use the PSNR∗, calculated as

PSNR∗ = 10 log10(
64000

MSE∗
) (192)

where MSE∗ is the mean squared error and is calculated as

MSE∗ =
1

N∗

∑
y∈Ω̂

(I∗(y)− Ī(y))2 (193)

where I∗ is the ground truth image, Ī is the image being compared (either the original image, or

reconstructed image), and Ω̂ is the those pixels in the domain for which the local scale function

is less then 60000. This effectively excludes the calculation of statistics of background areas in

the image due to the action of the minimum local scale threshold σth.
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15.5 Increasing image size

In this evaluation benchmark we assess the impact of the original image size, by holding the

number of objects fixed, and increasing the image dimensions.

15.5.1 Parameters

The benchmark was run at three different levels of information content, using 10, 50 and 200

sphere objects placed randomly within the image domain. For each level of information, the

image size was increased from 503 to 10003 in steps of 50, with 5 repetitions.

A blur kernel with PSFw = 2 was used and isotropic sampling with hx = hz = hy = 0.1.

The template intensity and σth were set as described from the medium PSNR original image.

15.6 Increase sampling

In this benchmark with results shown in SFigure 27, the sphere template object was held con-

stant and in a fixed position in the center of the image. The sampling resolution was then in-

creased while keeping all other variables fixed in real terms. Relative error was set to E = 0.12,

and the PSFw = 10.75. The sampling hi ranged from a minimum of 0.027 to a maximum

value of 0.3583 that corresponded to 200 different image sizes ranging from 503 to 6503. The

smoothing parameter λ = 20
(
hi
50

)2
was heuristically set.

15.7 Evaluate Local Intensity Scale

To explore the limitations of the Local Intensity Scale σ used in our 3D pipeline, we use the

perfect APR as defined in SMat 14.5. For each benchmark the APR can then be generated using

the pipeline, and then compared to the perfect APR, which is calculated using exact knowledge

of both the gradients and proposed ground truth Local Intensity Scale σideal. The perfect APR

approach provides the ideal OVPC set V , but then samples particles from the noisy original
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Figure 25: The first plot shows the medium level of blur benchmark, now showing the observed
reconstruction error for three different reconstruction methods. The worst-case (green), piece-
wise constant (purple) and smooth reconstruction (blue) methods (See SMat 10). Each cross
represents an individual APR and Image comparison. The second plot is a repetition of noise-
free benchmark in Figure 3 with octopus template image (see SFigure 21) used instead of the
sphere template for the Object function.

image. Therefore, we can then evaluate how well the used σ performs in different scenarios.

Further reconstructions from the perfect APR, give a limit on the reconstruction accuracy under

perfect adaptation.

The results are shown in STable 1 and STable 15.7.3. In STable 2, the results are shown

for differing number of objects and image noise level. Whereas STable 15.7.3, shows a fixed

number of objects (20), with changing image noise level and blur.

15.7.1 Parameters

For the benchmark image size of 803 was used with three different levels of objects {1, 10, 20}

(sphere with size = 20 pixels), and low, medium, and high image noise and blur set as in bench-

marks above (SMat 15.2 & SMat 15.3). Each set of parameters was repeated 10 times and the

results presented are the arithmetic mean. The Relative Error was set to E = 0.1. Each objects
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Figure 26: The first plot shows the observed reconstruction error E∗ for piecewise constant
reconstruction for a noisy image when for particles at pixel resolution the original noisy pixel
values are used (blue) or a median filtered pixel value in purple (Medium image noise and blur).
The dashed lines show the mean observed reconstruction error E∗ of the original image (blue)
and median filtered image (purple). The Reconstruction Condition E = E∗ given by dark blue
dotted line. The second plot compares the E∗, for the piece-wise constant reconstruction in the
first plot (blue line) with particle values computed from noisy pixel values, with E∗ of the same
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Figure 27: The two plots show the number particlesNp, and PSNR of the APR for an image with
fixed image content and blur size, but increased sampling, and hence width W . The benchmark
is equivalent to choosing the resolution of a natural image for a fixed scene. (See SMat 15.6 for
parameters)

brightness Bi varied randomly over an order of magnitude.

15.7.2 Statistics summary

For each image, the perfect APR, and APR are calculated, both sampling from noisy intensities.

For each image, the ratio of the number of particles (Particle Cells) in the two representations is

calculated Np

Nperefect
p

. Where Np is the number of particles in the normal APR, and Nperfect
p the

perfect APR.

To evaluate reconstruction accuracy, the ratio of the PSNR of different image reconstructions

from the APR where compared to the PSNR of the original noisy input image (where PSNR has

been calculated as defined in SMat 15.3). PSNR(Ipc)

PSNR(Ioriginal)
is the PSNR of the piecewise constant

reconstructed APR image (SMat 10.0.1) divided by the PSNR of the original normal image.
PSNR(Iperfectpc )

PSNR(Ioriginal)
instead is the ratio of the PSNR of the piecewise constant reconstructed perfect

APR image divided by the PSNR of the original normal image. PSNR(Ismooth)
PSNR(Ioriginal)

is the PSNR of

95



the linear smooth reconstructed APR image (SMat 10.0.3) divided by the PSNR of the original

normal image. E∗pc represents the observed reconstruction error for the APR using piecewise

constant reconstruction.

Given the two different OVPC sets V ideal and V we can compare the difference in particle

cell resolution between the two. δ+ and δ− represent the ratio of Particle Cells in V that are of

higher (+), or lower (-), level then the ideal case. That is by how much in different regions is the

APR over, or under, resolving the image. Lastly, σ
σideal

gives the mean ratio of the calculated σ

and the ground truth ideal σideal calculated over the Particle Cells at the highest level (lmax)

15.7.3 Result summary

A small image size was chosen (803), as at 20 objects, the confinement results in ’effective’

objects that can have brightness levels that vary from ≈ 1000 to ≈ 60000, almost two orders

of magnitude. This is the result of objects being placed randomly and in smaller domains over-

lapping between objects being common. (Beyond this level of objects the observed intensities

consistently were above 64000, hence not being outside the scope of our u16bit pipeline used

here).

In STable 1 we find that across image noise level and the number of objects the reconstruc-

tion quality using the piecewise constant reconstruction of the APR is greater than the original

image, except for low noise images with 20 objects. In contrast, for the perfect APR, it is always

higher. However, for the APR using the piece-wise linear, smooth reconstruction we find the

PSNR is again always higher. Regarding the number of particles, we find that for high noise

images the APR uses more particles on average, whereas for medium and low noise images

this depends on the number of objects. This coincides, with the values of δ+ and δ− indicating

that for lower quality images the APR is over-resolving the image and for the 20 objects of

medium and low noise level under-resolving. Therefore, it seems the APR is performing well,
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with exceptions of the 20 object case.

To further explore the behavior in STable 2 we show additional results for the 20 object

case showing the impact of the level of image blur. Here we can see that the performance is

impacted by the level of image blur. With the medium and high blur scenarios resulting in the

under-resolution of the solution. Interestingly, we find that in this case where the reconstruction

quality is lower, the Reconstruction Condition, reflected by E∗ has been met, as all values

are below 0.1. This indicates that it is the Local Intensity Scale that is likely the cause of

the reduction in quality when compared to the perfect reconstruction. This is further backed

up by the comparison of ideal Local Intensity Scale given by σ
σideal

, being high in situations

across all cases of 20 objects, and worst for high blur images. We note that in the high noise

images, the errors occurred by any under-sampling are within the noise-level and therefore to

not largely impact the results. It is only in the high image quality regime, where the errors

in under-resolution result in a loss in image quality when measured by PSNR using piecewise

construction.

In conclusion, these results indicate that the simple σ used here, although effective in many

cases, is in-effective in crowded environments with large intensity fluctuations. Therefore, more

sophisticated Local Intensity Scales, would likely be ideal. One approach that would seem well

suited, would be application specific learning of the functional form using deep learning (20).

16 Performance Benchmark data

In this section, we give additional technical details regarding the CR and exemplar benchmark

data.
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Computational Ratio (CR5) Computational Ratio (CR20) Computational Ratio (CR100)

Figure 28: Maximum intensity projection of examples of the Computational Ratio (CR) bench-
mark data that are used to represent low (CR100), medium (CR20) and high (CR5) levels of
information content (N = 4003).

16.1 Computational Ratio (CR) benchmark data

To assess the performance of the APR for different levels of image content, we choose three

different CRs for our synthetic benchmark data and then vary the original image size N . To

represent low, medium, and high image content relative to image size, we generate data sets for

varying image size N and number of objects M that approximately correspond to CRs of 100,

20, and 5 respectively. In SFigure 28, we show the maximum projection for examples of a CR5,

CR20, and CR100 synthetic data sets with image size N = 4003 (We use this CR’X’ notation

in figures and the remaining text). However, we could not determine a procedure for generating

a precise CR for a given image. Instead, the datasets were generated using a linear estimate of

the number of objects required to reach a certain ratio (see below). Generated in this way, the

CR does vary across N , and the average CR values for N = 2003 to N = 10003 are 5.8, 19.3,

and 89.4 for the CR5, CR20, and CR100 cases respectively. The values of CR were set as to

span realistic values as seen in the Exemplar benchmark data.
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Original Image APR (Particles Coloured by Intensity) APR (Reconstructed)

ZoomZoom Zoom

Figure 29: A 2D slice showing the original image I (left), particles of the APR coloured by
intensity (middle), and reconstructed image Îpc (right) of labelled cell nuclei for a developing
Zebrafish (Images courtesy of Gopi Shah, Huisken Lab, MPI-CBG Dataset number: 7 Table 3)
The insets show a close up of the same region. The particle rendering was created by rendering
all particles from Particle Cells from which the image plane intersects.

16.1.1 Parameters

To achieve a certain CR, the number of objects must be changed with the image size N . The

number of objects in the benchmarks was set as N
33400CR

, that was determined empirically. The

actual CR will not exactly be the ratio, but the above formula was found to provide good results

for images of a width greater than 200. The images were isotropically sampled, and medium

blur and medium PSNR setting were used as described in the benchmark evaluation section.

The relative error bound E = 0.1, the gradient smoothing parameter λ = 3.098, as set by the

automated scheme.

16.2 Exemplar datasets

To assess the performance of the APR on real datasets, 19 fluorescent microscopy datasets

were also benchmarked. The datasets are across a range of image sizes, labels, specimen,

and microscopes. A summary of the datasets, their properties, are given in STable 3 and the
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parameters used in STable 4 to create the APR. The CRs for the exemplar data sets range from

a minimum of 5.6 to a maximum of 180, with a mean of 42.1 and median of 28.5. Parameters

were set by experience and inspection of the original image. As mentioned in the discussion

of parameters (SMat 13), the parameter that can most greatly alter the result is the setting of

the minimum local scale threshold σth, and the intensity threshold Ip. In all cases, parameters

were set conservatively, including all content we could consider relevant to try and give lower

bounds on the CR. In particular, the presence of auto-fluorescence influences this decision, and

given the ability of the user to discriminate auto-fluorescents in many cases significantly higher

computational ratios could be achieved.

17 Data structures

Given the Optimal Valid Particle Cell set V and particlesP∗, that form the APR, the last step is to

store this information in memory in a data-structure that allows its efficient use in a wide range

of tasks. The optimal data-structure will be dependent on the particular use-case, or algorithms,

with which the APR is being used. Given the Particle Cells being a subset of a full oct-tree

decomposition of the domain, for some tasks, a tree decomposition may be optimal. However,

the majority of image processing algorithms have been designed to be implemented over pixel

images stored as large contiguous arrays of pixels. This format has the advantage of fast and

cache-efficient local neighbor access, and the implicit coding of each pixels spatial coordinates

from the pixel data layout, providing performance and memory benefits. Therefore, we have

opted to use data-structures that attempt to mimic these efficient properties of pixel images,

namely, the implicit coding of spatial and resolution information, and fast neighbor access.

Here, we use the Sparse APR (SA) data structure. It is similar to compressed row storage for

sparse matrices, in that only the y coordinate is stored in a sparse manner per level. The SA data

structure separates the storage of the spatial coordinates and neighbor access in an Access Data
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Figure 30: Schematic showing the construction of the data structure, using a 2D APR example
for illustration. The Sparse APR (SA) data structure contains an access structure, utilizes an
std::map data structure that stores a key for every contiguous block of particles in the y direction,
and is used for determining the y spatial coordinate of the particle and global index. Each
contiguous block is identified by its first y-coordinate as the key, and its global index and final
y coordinate. The other spatial coordinates (x, z) and resolution level (l) are implicit in the data
layout. Particle properties such as intensity are then stored in a contiguous array.

class, from the storage of the particle properties such as intensity stored as a large contiguous

array and is summarized in SFigure 30. The figure is in 2D but directly translates to 3D, where

z is treated in the same manner as x. For every non-empty level and x and z spatial index, a red-

black tree, using std::map, stores a key-value pair for each contiguous block of Particle Cells

in the y spatial index direction. On average, there are usually twenty times less key-value pairs

then Particle Cells in the APR. The structure allows random access by finding the closest key

by a tree search, from which the co-ordinate and global index can be directly calculated. The

search cost, is worst case O(log(G)), where G is the number of key-value pairs for the given x,
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z, level row. Across the Exemplar benchmark datasets, there was on average 7 key-value pairs

per row.

17.1 Neighbor Access

Neighbours are accessed by utilizing the random access of the SA data structure, and the fact

that all neighboring Particle Cells can only differ by one level, and that Particle Cells form a

spatial partition. The neighbors in a particular direction are obtained by first querying the same

Particle Cell level, then one lower level, and finally the higher level is searched if the Particle

Cell exists. Once the Particle Cell is found, the global index can be directly calculated and

therefore all particle properties accessed. The neighbor access is further aided by the storage

of the location of the last key-value pair that was accessed in each direction and level. This

allows for the searches in the tree only to be needed when a new neighboring contiguous block

is required.

17.2 Memory Cost

The storage of the SA data structure requires both the Access data and any particle properties.

The memory cost of particle properties directly scale with the number of particles, with negli-

gible overhead and therefore reflects the CR of the dataset. The cost of the Access data is less

transparent and depends on the original size of the image, the spatial structure of the given APR,

and the given compiler and hence the implementation of the red-black tree. The storage cost can

be split into the cost of storing the x, z and level of the Particle Cells, and the cost of the std::map

and key-value pairs. The first cost scales only with lmax and the x and z dimensions, the sec-

ond is content dependent. Using memory profiling across the Exemplar benchmark datasets we

estimated the memory cost, finding that the overhead of the access data has a mean of 8.7 and

median of 5.4 bits per particle. Hence, the access data results in a roughly 50% over-head above
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the cost of storing particle intensities as 16-bit unsigned integers in memory.

18 Execution time

Here we provide additional information for the computational cost, or execution time, for form-

ing the APR from an original image with N pixels. The steps of forming the APR have been

summarized the schematic in SFigure 20 above. The pipeline can be broadly grouped into three

steps, first calculating the Local Resolution Estime L(y) using filtering operations on the orig-

inal image, then forming Ln and finding Vn using the Pulling Scheme and lastly constructing

an APR data structure. Below, we first address the overall cost and then provide more detailed

analysis for the Pulling Scheme. We have not included the time taken to load the image in

memory in the analysis here.

18.1 Full pipeline

The pipeline has worst-case linear complexity in N , as all steps, excluding the Pulling Scheme,

are linear complexity in N . Further, the pipeline cost is constant concerning choice of pipeline

parameters (λ and PSFw), with exception of the impact of E on the number of particles.

STable 6 summarizes the execution time of forming the APR using the Exemplar benchmark

datasets. The total pipeline takes on average 3.65 seconds to form the APR data structure from

an input image in memory. This translates to an average data rate of 507 MB/s per second on

our benchmark machine using 10 OpenMP threads. Across all steps, the computation of the

gradient magnitude is most costly taking on average 58.8 % of the pipeline total cost, while the

Pulling Scheme only accounts for 3.5 %. The gradient calculation step includes the calcula-

tion of the smoothing B-splines, and its relatively high cost is a result of it being the only step

performed on the full pixel image. We note that the Pulling Scheme and APR Data Structure

steps cost depends on the final number of total particles. STable 4 gives the Pulling Scheme and
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Total (s) Compute |∇I| Compute σ Initialize Pyramid Compute L Pulling Scheme Downsample Intensities APR Data Structure Data rate (MB/s)

Mean 3.658 58.8% 12.0% 0.4% 4.1% 3.5% 3.5% 4.0% 507.73

Median 2.198 60.6% 12.1% 0.3% 4.1% 3.4% 3.4% 3.5% 523.34

Standard Deviation 2.742 6.7% 2.0% 0.2% 0.5% 0.5% 0.5% 1.7% 45.86

Table 5: Timing summary of APR pipeline on Exemplar benchmark datasets. Summary of
the total time taken, and the percentage of each step in the pipeline, and the estimated data-rate
of the pipeline for forming the APR from an image in memory.

full pipeline time values for each dataset. Further, SFigure 31, shows the linear scaling of the

pipeline, and speed up through shared memory parallelization using OpenMP. From the above

values, we claim the implementation here is within the real-time values that have been given in

the literature ( (25), (26)), hence allowing potential calculation of the APR during acquisition.

18.2 Pulling Scheme

We also present additional benchmarks here using only serial execution. We tested the Pulling

Scheme for randomly generated L. This allows the ability to directly alter inputs to the Pulling

Scheme without having to consider the whole pipeline and how to generate the appropriate

synthetic image. In the first plot of SFigure 32, we show the scaling of the Pulling Scheme for a

fixed ratio of #L and N . In all benchmarks are run with Particle Cells in L sampled uniformly

and randomly from level lmin to lmax with a set probability. First, we find confirmation of the

worst case linear scaling represented by the Worst-case curve. This benchmark corresponds to

the largest #L for a given image sizeN . We also ran three other ratios, .1, .01, and .001, finding

linear scaling for all. Each of these benchmarks corresponds to scaling together both the image

size and the number of particle cells in L.

In the second benchmark, we fix the image size and increase the number of Particle Cells in

L that are randomly generated. In the second plot of SFigure 32, we plot the number of seed

Particle Cells in V for three different image sizes N . The number of seed Particle Cells is the

number of Particle Cells given by #(L ∩ V). We find this is the appropriate variable when

compared to V because the number of neighbor search operations is directly proportional to
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Figure 31: In the first plot, we show the linear scaling in N of the total processing time to
generate the APR on 12 images ranging from 120x120x120 (4 MB) up to 3600x3600x3600
(88.9 GB) using 20 cores. The results were averaged over 5 repetitions. In the second plot, we
show a strong scaling of the pipeline, showing the speed up of the total processing time using
an increasing number of CPU cores for fixed images of size 3.17 GB and 63.4 GB. The datasets
were generated by tiling Exemplar dataset 17. For both datasets, Amdahl’s law was fit (Speed
up = 1

p+ 1−p
n

, where n is the number of CPU cores used), with the parallel fraction p reported in
the inset legend. The benchmarks were run on a server node with two CPUs with in total 48
Intel(R) Xeon(R) CPU E7-4830 v3 @ 2.10 GHz cores, and 1 TB RAM
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Figure 32: In the first plot, we show the Pulling Scheme execution time against image size for
four different fixed ratios of #L

N
. The Particle Cells in L where randomly generated and the

results averaged across 10 realizations. All ratios showed linear scaling that was confirmed in
a log-log plot. The yellow line corresponds to L containing all particle cells between lmin and
lmax, representing the worst-case performance. The second plot shows the average execution
time for three different fixed image sizes N , plotted against the number of seed Particle Cells
in V . The number of seed Particle Cells is simply #(V ∩ L) and hence increases linearly with
#L. The relationship does not represent a polynomial scaling.
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Figure 33: In the first plot, we show the average execution time againstN four sizes of #L. The
values were set at fixed ratios of the number of Particle Cells in the N = 1003 case. The arrow
notes the direction of increasing #L. The second plot shows the same data on a log-log plot.
Linear regression shows sub-linear scaling for all plots for largeN . We find that the polynomial
scaling coefficient appears to decrease with increasing #L. The yellow line for the smallest
value of #L for the highest five N values had a gradient of 0.975 and Rsquare of 1, and the
purple curve representing the largest value of #L had a gradient of 0.667 and Rsquare again of
1.

the number of seed Particle Cells, and not simply the absolute #V . For all image sizes N we

find non-polynomial scaling. With the rate of increase in execution time decreasing as #(L ∩

V) increases. We note that the same relationship is seen for #L (they are proportional), but

arguably its is the number of seed cells that is the relevant variable. Empirically the relationship

does not seem to be a polynomial nor logarithmic. In the last benchmark, we instead fix the total

number of Particle Cells in L and consider the execution time as the image size N is increased.

The results are shown in the first plot of SFigure 33 for four different numbers of Particle

Cells. The four levels were set at ratios of 0.001, 0.01, 0.1 and 1 of the maximum number of

Particle Cells in the N = 1003 image. For all four levels, we find sub-linear scaling in N . That

is, the execution time increases at a decreasing rate as N increases. This is confirmed in the

second plot, that shows the log-log plot of the same data. Interestingly, the polynomial growth
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coefficient decreasing as the number of Particle Cells in L increases. With the smaller number

of Particle Cell benchmark being almost linear, scaling at ∼ N0.975, and the largest number of

Particle Cells at ∼ N0.667.

From the fixedN benchmark we find that the dominant component of the computational cost

comes from the number of seed Particle Cells in V . However, the number of seed Particle Cells

is constant across N . Therefore, as N increases only the ’cheaper’ steps of adding boundary

and filler Particle Cells are increased.

18.2.1 Pulling scheme summary

In summary, we have confirmed that the Pulling Scheme has worst-case linear scaling in N .

Further, the computational cost for fixed N is proportional to the level of information content

through the number of seed Particle Cells. However, we have no exact form for this scaling

behavior, but it is sublinear. Further, for a fixed size of L and increased N we find sublinear

relationship, with a scaling rate that is inversely proportional to the number of Particle Cells in

L.

19 File-storage of the APR

We store the APR using the HDF5 file format (7) and BLOSC HDF5 plugin (8) for lossless

compression. For BLOSC, the Zstd compression algorithm is used with compression level 2

and shuffling activated. The required information for reconstruction of the SA data structure

is stored. The storage of the Access data requires the storage of the key-value pairs and the

locations of the non-empty rows. Particle properties are stored in a single contiguous array.

Stored in this way the Particle Cell spatial and resolution information is highly compressed.

The high compression is reflected in that on average 89% of the bytes are used storing the

particle intensities. Further, in the limiting case where the number of particles is equal to the
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number of input pixels, the particle intensities account for 99.99 % of the storage cost.

19.1 Lossy Compression

In the basic lossless storage method, the particle intensities are stored in a lossless manner.

In particular, those intensities at pixel resolution (accounting for the majority of particles), are

directly sampled from the noisy pixels. Hence, additional lossy compression can be done to

reduce the cost of storing these particles. Here we also present the results of using the within

noise lossless compression strategy presented in (27), for those particles at pixel resolution. We

find that this can achieve an additional compression factor of 1.5-4 times on top of the lossless

APR storage, while not visibly degrading the quality.

20 APR particle graph

Many processing tasks on images require the formulation of pixel images as a graph, for exam-

ple, graph-cut methods (28). Pixels are set as the nodes, and edges are created between adjacent

pixels. Although the APR has changing resolution across the domain, a similar symmetric par-

ticle graph can be constructed from the APR by using adjacent particle cells, or formally, an

integral interaction neighborhood. SFigure 34, shows such a graph restricting neighbors across

the faces of particle cells, analogous to a Von Neumann (or face-connected) neighborhood. In a

classical pixel image graph, each node (pixel) would have the same number of neighbors. How-

ever, due to the adaptive sampling in the particle graph, the number of neighbors can vary as

the resolution adapts. However, the maximum number and the minimum number of neighbors

is bounded. The minimum number of neighbors is 2d, as in the comparable pixel graph, and

the maximum n2d where d is the dimension (However, empirically in 3D benchmark data the

average number of neighbors is less than 6.3).

In the face connected particle graph, particle p0 and p1 are neighbors if the line integral of
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Figure 34: The APR paritcle graph, shown in 2D. This aligns with connecting the particles that
are in face-connected Particle Cell neighbours of the current Particle Cell.

the inverse of the Implied Resolution Function is below a certain threshold

|(xp1 − xp0)|
∫ 1

0

1

R∗(xp0 + s(xp1 − xp0))
ds ≤ 1

3

√
9 + d− 1 (194)

where d is the dimension. In 1D this bound is 1, and ≈ 1.054 in 2D and ≈ 1.105 in 3D. Particle

neighbors in the particle graph can be interpreted as those particle pairs for which the difference

between the two value will be approximately E
σ(y)

where y is a position on the line segment

between the points. Note, that these points in dimension greater than 1 exceed the integral

neighbor bound by a small factor. If it is wished that the neighbours be guarantee a Reconstruc-

tion Condition Ê, the APR can be construction with E = 3̂E√
9+d−1

. Due to the isotropic nature

of the Implied Resolution Function, this will guarantee that extending the neighborhood, the

particles on the edge can be used for any reconstruction, within E.
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21 Performance Benchmarks

All examples are intended as a proof of principle and to indicate performance. Further devel-

opment would be required to make these algorithms usable to the community, and this is left

for future research. An effort was made to optimize both the APR and pixel code in the same

fashion to provide reasonable comparisons. The impact of optimization is also motivation for

the simple nature of the examples presented here. Shared memory parallelism was used in all

steps cases where it was easily achieved using OpenMP (6). As for the evaluation benchmarks,

all performance benchmarks code and analysis data is available on request and are intended to

be released open source.

21.1 Neighbor access

A core operation in many image-processing algorithms is access to the values of neighboring

pixels. For this benchmark, we contrast the time taken to access the values of all face-connected

neighbors of each pixel, or particle. In a pixel image, excluding boundaries, there are always

6 face neighbors. When the pixel image is stored as a contiguous array, accessing these pixels

is simply a fixed memory offset for each pixel. However, for the APR, due to the adaptive

sampling, the number of face connected neighbors can vary per particles from 6 to 24 (However,

in practice, the average number of neighbors per particles in the CR = 5 benchmark data sets

was 6.23). Neighbour access of face connected neighbors is achieved as described in SMat 17.1.

In this benchmark, for each pixel, and particle, the face-connected neighbor’s intensities are

averaged and stored in with another pixel image, or APR data-structure of float datatype. For

performance, the order in which pixels, or particles, are accessed heavily impacts performance

through the impact of the various caches of the processor. Therefore, here we run two bench-

marks, one where the pixels, or particles, are iterated over in memory order, and the second

where random pixels, or particles, are itearted over with a random ordering. The first case we
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call the Linear Neighbour Iteration, and the second Random Neighbour Iteration benchmarks.

The two examples represent the two extremes of neighbor access in image processing algo-

rithms, with linear iteration on a pixel image corresponding to arguably optimal memory access

patterns, and random iteration, the worst case.

21.1.1 Linear neighbor iteration

For the pixel linear benchmark, the pixels are iterated over in memory direction. For each pixel,

the neighbors are looped over, again in memory direction, checking for boundary conditions,

accumulating the value in a temporary variable that is then stored in a second array.

For the particle linear benchmark, the particles are iterated over, level by level, in memory

direction of the SA data-structure. For both pixels and particles, the results were averaged over

10 consecutive runs.

21.1.2 Random neighbor iteration

For the pixel random benchmark, instead of iterating over pixels in memory direction, a pixel

is chosen randomly from the dataset, and the neighbors are summed. For the particle random

benchmark, similarly, a random particle is chosen, and then the neighbors are summed. In both

cases the random pixels and particles are first pre-computed, then iterated over. In both cases,

10000000 random accesses where timed.

Memory overhead For the pixel benchmarks, the memory overhead is the original image and

an array of the same size. The data-type of the input images was unsigned 16 bit integers and

the output single precision float. Therefore the memory cost MC = 6N Bytes for an image

with N pixels. For the particle benchmark the SARA data-structure, with unsigned integer 16

bit intensity plus an additional single precisionfloat particle property was used. The memory

cost is as described in SMat 17.2.
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21.2 Separable pixel filtering

In the pixel separable filter, the 1D filter is convolved successively in each direction. This is

done by iterating over the particles in memory direction, checking the boundary conditions,

then looping over the neighbor offsets, multiplying by the coefficient and accumulating this in

a temporary variable. The temporary variable is then assigned to the output image array.

In the particle separable filter, first, a 2D image slice is interpolated using piecewise con-

stant interpolation, with the slice translated such that the filter operation could be done in the

contiguous memory direction. Due to the placement of particles at intervals at powers of 2, only

the highest resolution aligns with a pixel layer, with other being between the intersection of two

layers. All particles that are either aligned with the slice, or intersect, the slice are iterated over,

calculating the filter value through accumulating in a temporary variable as for the pixels, and

then assigning this to the output particle property. In the case of when the particle intersects

between two layers, the output is then the average of the two filter values.

For the benchmarks given here a large filter 1D constant filter stencil of length 21 was

used. Relative performance results are relatively insensitive to the size of the filter. For the

particle filter, each direction was repeated 10 times to get the timing values. However, for

each benchmark image, the filter on pixels was only run once. This was due to the higher

computational cost restricting a higher amount of repetitions. However, for each CR and N

combination, at least 20 independent repetitions were performed.

21.2.1 Memory overhead

For the pixel benchmarks, the memory overhead is the original image and an output array of

the same size. For both the used data-type of the images was float. Therefore the memory cost

MC = N8 Bytes for an image with N pixels.

For the particle benchmarks, the computation required the SA data-structure, an additional
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particle property for the output, and an array for the temporary 2D image slice used. Therefore

the memory cost is MC = 6Np + 1622lmax−1

3
+ 4N2/3 Bytes. If we ignore the over-head of the

SA, and temporary array, the relative memory cost RMC ≈ 0.8 ∗ CR.

21.2.2 Comparison between approaches

However, the results from these two approaches are different and do not present a fair com-

parison. To evaluate differences we compared the result of the pixel filter, and the APR filter

interpolated to an image, to the ground truth image filtered by the pixel filter for 100 realizations

for a fixed image size (2503, CR5). For comparison, we also computed the result of the pixel

filtering on a piecewise constant reconstruction from the APR. We did this for a small σ = 0.5

and larger σ = 2 blurred kernel.

Examples of the results are shown in SFigure 35. For the small blur kernel, the mean

APR PSNR was 30.68 with a standard deviation of 1.49, for the original image 23.38 with a

standard deviation of 0.395, and for the reconstructed APR 30.71 with standard deviation 1.26.

Therefore, the APR filter provided accurate results. However, in the large blur kernel, the mean

APR PSNR was 31.883 with a standard deviation of 2.89, for the original image 42.93 with a

standard deviation of 0.6, and for the reconstructed APR 42.56 with standard deviation 1.14.

These results indicate that the APR filter no longer produces accurate results. The poor

performance can also evident in the bottom right image in SFigure 35 where distinct artifacts can

be seen. This is the result of the Implied Resolution Function not being valid for the intermediate

filtering results in the separable scheme. In such cases, it seems it would be necessary to result

to pixel filtering on a reconstructed APR, as those results are equivalent for larger filters. This

also indicates that the failing is not due to the piece-wise constant reconstruction. The poor

performance is not a pure function of filter size, but depends on the spatial scales of the resulting

function, with large filters designed for edge detection not showing similar issues (not shown).

118



  Ground Truth Filter σ = .5   Pixel Filter σ = .5   APR Filter σ = .5

  Ground Truth Filter σ = 2   Pixel Filter σ = 2   APR Filter σ = 2

Mean PSNR: 23.38 Sd: .39 Mean PSNR: 30.68 Sd: 1.49 

Mean PSNR: 42.56 Sd: .6 Mean PSNR: 31.88 Sd: 2.89 

Figure 35: Example images of the validation for separable filtering benchmark. The APR and
pixel algorithms were run using a narrow Gaussian (top) and broad Gaussian (bottom), for the
pixel filter for noise-free ground truth image (left), the original image (center) and the APR filter
the reconstructed to an image (left). The mean and standard deviation of the PSNR compared
to the ground truth filter over 100 for a CR5 image of size 2503 is provided at the bottom of the
images. The results show that the APR filter works well for small blur kernels. However, as the
kernel gets larger the APR filter no longer produces accurate results, reflected in the low PSNR
compared to comparable the pixel filter.
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Hence we conclude, that the above approach is only of specific use, and does not represent

a direct replacement for pixel filtering. The example also illustrates the care that must be taken

when adapting algorithms from pixels to the APR.

21.3 Graph cuts segmentation

For the last performance benchmark, we perform a binary segmentation with graph cuts using

an external library. Here, we show how the APR can be used with existing techniques and

libraries while still realizing computational and memory benefits due to the reduced number

of computational points. For this, we use the maxflow-v3.04 library implementing the min

cut-max flow algorithm presented in (28).

Further, we use an energy function that is defined using the information inherent in the APR,

as an example of how it could be used. Because of this, then to compare with the same algorithm

on the original pixel image, we first compute the energy on the particles and then interpolate

them to original images to be then used for the energies for the pixel image.

To use the max-flow algorithm for segmentation, we must define two energy values for each

pixel or particle, Es, giving a likelihood of belonging to the foreground, and Et, the likelihood

of belonging to the background. Additionally, an energy is specified between neighboring pixels

or particles in the graph. Here, we use again the face-connected pixel or particle neighborhoods,

where we define a symmetric energy between the two neighbors p and p′, as Ep,p′ .

As discussed we first define the energy on particles, and then to form the graph for pixel

image, we interpolate these energies to a pixel image. For the background and foreground

energy, we use the following

Es = 2000|Ip − Iminp | (195)

Et = 2000|Ip − Imaxp | (196)
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where Iminp and Imaxp are estimates of the local min and max scaled by the resolution of the

particle. This is by treating the APR as a tree structure. Maximum and minimum values are

propagated up the tree, taking the respective min or max of children values. The value is then

averaged over the neighbors at each level in the tree. Then for each particle, the value in the

tree k resolutions above is taken as the value for Imin or Imax respectively. The algorithm

essentially creates an adaptive min or max. As the purpose of this benchmark is to focus on the

computational and memory characteristics of the algorithm and not propose a new segmentation

algorithm or energy, we do not go into further details here.

The edge energy between any two particles, or pixels, is taken as

Ep,p′ = 100
(spsp′)

2

81
. (197)

As discussed, once the energy has been computed over particles, those were then used to also

create a pixel image with the same energies interpolated. Then the appropriate data structures

for the max-flow algorithm were generated, the max-flow algorithm run, and the binary labeling

of background or foreground extracted from the result.

In the benchmark performance analysis, we assess only the computational time, and memory

cost, of the max-flow algorithm, and not the including the generation of the energy or setting up

the graph.

21.3.1 Memory Cost

Due to the use of an external library, we estimated the memory cost by performing memory

analysis on the code with different particle and pixel sizes and empirically evaluating the value.

For the performing max-flow on the pixel graph, we found the memory cost MC = 411.6N

and for the particle graph MC = 436Np. Providing very similar results, this is although the

particles can have up to 24 neighbors, on average for the benchmark data sets there is only

approximately 6.3.
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Original Image Ground Truth Binary Mask

Segmentation APR Segmentation Pixels

Mean DSC APR : 0.88 Sd: 0.069 Mean DSC Pixels : 0.87 Sd: 0.087 

Figure 36: Validation for segmentation performance benchmark. The same energy function
was used for both pixel and APR segmentation. The ground truth binary image is creating
using the binarization of the Object function (SMat 14.1). The APR and pixel segmentation
give near identical results as shown by the computed Dice Similarity Coefficients (DSC (29))
mean and standard deviation over 100 repetitions for CR5 images of width 250 given in the
figure.

122



21.3.2 Comparison between approaches

To validate that the APR segmentation, we compared the APR and pixel image segmentations

to ground-truth and calculated the Dice Similarity Coefficient (DSC) (29) for 100 repetitions of

a CR5 image of width 250. We define the DSC in our case as,

DSC =
#(Sgt ∩ Sp)
#Sgt + #Sp

, (198)

where Sgt is the set of pixels in the support of the Object function and Sp, is the estimated

set of pixels from the segmentation algorithm, and # indicates the size or cardinality, of a

set. To allow direct comparison with the pixel result, for calculation of the DSC a piecewise

constant reconstruction from the APR segmentation was used. Figure 36, shows an example

segmentation, with the original image, ground-truth segmentation, and segmentations results

for the APR and pixel algorithm given. The calculated DSCs of both approaches are statistically

identical, with the APR having a mean of 0.88 and a standard deviation of 0.069 and the pixel

segmentation a mean of 0.87 and a standard deviation of 0.087. The closeness of the results

can be seen in a visual comparison, with only isolated pixels being different. From above, we

conclude that the results of the two approaches are comparable.

21.3.3 Alternative energy for Exemplar datasets

For applications to exemplar data, we developed a slightly altered energy function. The back-

ground and foreground energy were altered by using one iteration of APR adaptive smoothing

(See Section Below), on both the intensity and adaptive min and max. The edge energy between

particles was changed to be asymmetric to the following

Ep→p′ = 100 exp
Ip − Ip′

d(p, p′)(Imaxp − Iminp )
, (199)

where d(p, p′) is the distance between the two particles. We found that this energy appeared

to give reasonable results across a wide range of the exemplar data-sets with no adjustment
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of parameters except an intensity threshold for removal of background objects. Hinting that

the information gained in the APR allows for regularization of the problem that may help with

designing future algorithms with stable parameters across a range of problems.

21.4 Adaptive APR Filters

Although smoothing and gradient operations are not well suited to the separable filtering ap-

proach shown earlier, a more natural approach for the APR is to define filters not over pixels

as for traditional filtering, but over particles. With the filter coefficients acting on the particle

neighbors. Using particle neighbors results in the filter adapting its neighborhood size across

the domain to the resolution set by the Implied Resolution Function R∗ of the APR.

21.4.1 Smoothing filters

As a first example, we show benchmark results for an adaptive smoothing filter. As for the

classic separable filters, each direction is filtered separately with a 1D filter {0.1, 0.8, 0.1}, and

in succession with a 1D filter. In the case where the neighbor is of higher resolution, an average

of the neighbor particles is used.

Adaptive APR filters are the APR equivalent of the separable pixel filters benchmarked

above. Defining the filter over neighboring particles from the particle graph, instead of equally

spaced pixels. As the distance between neighboring particles varies across the image, com-

puting an adaptive APR filter is analogous to a spatially adaptive pixel filter with filter size

changing to the content of the image.

We also tested an adaptive APR smoothing filter that involves taking a weighted average

over neighboring particles. Multiple passes were made for greater smoothing. Comparative

results for the same data as the gradient example are shown in SFigure 37. The adaptive APR

smoothing filter showed a higher PSNR (37.8) increase than any fixed kernel Gaussian smooth-
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ing on the original image (maximum 33.42). This held for from one to seven passes. We have

shown the results for four taps, as that was the best result for the adaptive APR smoothing filter.

Therefore the adaptive APR smoothing filter provides an alternative for smoothing other than

using a pixel filter approach discussed above.

21.4.2 Gradient filters

As a second example we define adaptive gradient filters, similar to standard finite differences,

with the coefficients adjusted for the distance between the particles. The gradient filter used here

is {− 1
2h−

, 1
2h−
− 1

2h+
, 1

2h+
}, where h+ and h− are the distances between particles in the positive

and negative directions respectively. In the case where a neighbor is of higher resolution, an

average of the neighbor particles is used.

The gradient in each direction is calculated by taking the average of one-sided differences

between neighboring particles in each direction (as a particle can have up to 8 neighbors in

one direction, i.e. x,y, or z). SFigure 38, shows the results for benchmark data, where we

compare the result with the gradient magnitude calculated using central finite differences on the

original and ground truth images for 100 CR5 images of width 250. The adaptive APR filter

had an average PSNR of 34.6 and standard deviation of 1.2394 while the average PSNR for the

original image approach had an average PSNR of 16.78 with a standard deviation of 0.1802.

Hence, the adaptive APR filter shows significantly more robustness to noise for our benchmark

data. The algorithm also provides nice denoising properties for the exemplar datasets, as shown

in SFigure 39 for one slice of an LSFM dataset.

21.5 APR visualization

A key processing task using LSFM data is visualization. Both for display of the original image

data and any processed results. Visualization is a processing task, as the raw data can not be
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  Ground Truth Image   Original Image

 APR (reconstructed) APR Adaptive Smooth (4 Passes)

PSNR Mean: 17.93

PSNR Mean: 30.42 PSNR Mean: 37.80

Figure 37: Evaluation of APR Adaptive Smooth filter with synthetic data, obtained by filtering
in each direction with {0.1, 0.8, 0.1} directly with particle neighbors generating an adaptive
filter, with multiple particles on one face being averaged. Top left, shows the original ground
truth image, Top right shows the original image, bottom left APR reconstructed image, and
bottom right shows an example result of four passes with the filter in each direction. For each
image, the mean PSNR with reference to the ground truth image is shown over 200 repetitions
for CR5 images of width 250. Four passes achieved the maximum PSNR for the APR. However,
any number of passes of those tested (up to 7) exceeded the PSNR of any Gaussian filter on the
original or reconstructed image (maximum PSNR of 34.4).
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  Original Image   Ground Truth Gradient Magnitude

Original Gradient Magnitude (Finite 
DI�erences)

  APR Adaptive Gradient Magnitude

Mean PSNR: 16.75 Mean PSNR: 34.60

Figure 38: Evaluation of Adaptive APR filter used to compute the gradient magnitude with
synthetic data, obtained by filtering in each direction with {− 1

2h−
, 1

2h−
− 1

2h+
, 1

2h+
}, where h+

and h− are the particle spacings in the positive and negative direction respectively, and multiple
particles on one face being averaged. Top left original noisy image, top right ground truth
gradient magnitude using finite differences, bottom left original image gradient magnitude using
finite differences, and bottom right APR Adaptive gradient magnitude. The mean PSNR with
respect to the ground truth gradient magnitude is given averaged over 100 repetitions, for CR5
N = 2503 images.
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 Adaptive APR Gradient MagnitudeOriginal Gradient Magnitude (Finite DI�erences)

Figure 39: Evaluation of Adaptive APR filter used to compute the gradient magnitude on an
exemplar dataset 10 in Table 3. The right image was generated using central finite differences
to compute the gradient magnitude on the original image. The left image was obtained by using
adaptive APR filtering in each direction with {− 1

2h−
, 1

2h−
− 1

2h+
, 1

2h+
}, where h+ and h− are the

particle spacings in the positive and negative direction respectively, and multiple particles on
one face being averaged, and then the image formed using piecewise constant reconstruction.
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viewed directly, and must be processed ’in some way’ to provide a visual representation. For

3D visualization, this is evident, as the image data represents an opaque 3D cube of integers.

However, even for visualization of the original 2D image slices usually requires calculation, or

manual setting, of a visual contrast range.

The APR, rather than restricting the visualization possibilities, extends them when com-

pared to the original image data. Given, as that a pixel image representation can be constructed

from the APR, this is not surprising. Here, we discuss three different avenues of APR visual-

ization that can be achieved without returning to the full pixel image. We do not benchmark the

relative computational or memory performance below, showing the results as proof of principle.

We leave the development of efficient implementations and studies of relative performance to

future work.

21.5.1 2D slice reconstruction

The first visualization method we present, is visualization by reconstruction, on a slice by slice

basis. If we only wish to view one slice at a time, the reconstruction can be done on a slice

by slice basis. Hence, this does not require having to reconstruct the whole image (as used

in the pixel filtering above). In addition to the multiple examples throughout the thesis above,

Figure 6A gives examples of the APR reconstruction and comparison to the input image. In

practice, we find that the piecewise constant reconstruction has been sufficient for visualization

purposes. This could easily be implemented in real time per slice, as on a 2013 laptop, recon-

structing a 1000× 1000 slice took approximately .002 seconds. Although, given correct setting

of the contrast control, such piecewise constant representations do show significant ’artifacts’

as shown in SFigure 24. If these are not desired more smooth reconstructions could be used as

described in SMat 10 at an additional computational cost.
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Memory overhead Memory cost for 2D slice reconstruction is the memory cost of the Sparse

APR data structure (SA) plus the cost of storing the 2D slice. In comparison standard viewing

of a standard pixel image in software such as Fiji (30) requires the storage of the full image in

memory.

21.5.2 Perspective ray-cast

A perspective ray-cast allows for the visualizing 3D content by constructing a 2D image by

simulating rays that would be seen by an observer from a particular location. However, be-

cause an image volume is just intensity values, an algorithm must be specified for turning the

intensities seen by each ray into an observed value. The most common algorithm is simply to

take the maximum value along the ray, the basis of the maximum projection. This technique

is used in current state of the art visualization software such as (31). Here we have imple-

mented a maximum intensity perspective ray-cast algorithm for the APR. For comparison, we

also implemented the comparable algorithm for a pixel image.

Following we describe the principle of the pixel algorithm and then use this as a reference

for the description of the APR algorithm. The pixel algorithm involved rastering over each

pixel, then calculating which ray this pixel would intersect with, and then updating this ray with

the value if it is greater than its current value. This is in contrast to the alternative approach

where the image volume is traversed individually for each ray. Each ray corresponds then to a

pixel in the final viewed image.

For the APR algorithm, the main difference is that we assign each particle to a ray corre-

sponding to its level l, effectively creating an image view at each resolution level. Once all

particles have been traversed, the maximum operation is then propagated between levels from

lower resolutions to the highest resolution. Resulting in a final highest resolution image that is

viewed. We find that the APR algorithm has moderate overhead, with a PP ratio of approxi-
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Pixel Raycast

APR Raycast

Figure 40: Comparison for the same view perspective of an APR (bottom) and Pixel (top)
maximum intensity ray cast of exemplar dataset 17 in STable 3.

mately 0.75, when compared to the pixel algorithm.

The algorithms compute different results, however as discussed in the main text, they pro-

duce in most cases perceptively identical results in normal contrast ranges.

SFigure 40, shows an example of a maximum perspective ray-cast computed on the original

image, and direct on the APR for an LSFM data set. Shown at the given contrast levels the two

are virtually indistinguishable. However, there are still distinct differences, with SFigure 41

highlighting them using a different contrast range. The APR ray cast is done by casting multi-

resolution rays through the image, level by level, and then combining the results in a final step.

The algorithm has a computational and memory complexity that is O(Np), only requiring the

SA data structure. Such an algorithm could form the basis of useful visualization software, as

currently in for the largest images (approximately > 10003) can not be visualized at the full

resolution in the current state of the art software (31) due to memory constraints.
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APR Raycast

Pixel Raycast

Figure 41: Reproduction of the pixel and APR ray-cast example for the same view shown in
Figure 40. Contrast has been adjusted to highlight the differences and loss of information for
the APR ray-cast resulting from an intensity threshold. (Dataset number: 17 in STable 3)
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Memory overhead When computing the ray-cast on a pixel image, the memory required is

that of the original image and the ray-cast result. This memory cost is similar to that of the APR

ray-cast. The APR ray-cast requires the Sparse APR data-structure, and the ray-cast result, plus

the down-sampled by two results. For reasonably sized data-sets in both cases the memory cost

is dominated by the original image, and APR data-structure respectively. Therefore, the memory

reduction for a particular dataset will be approximately CR
1.5

(reflecting the cost of storing the

access data).

21.5.3 Direct particle rendering

The last visualization method involves direct visualization of the APR. We have given various

examples of this in 1D and 2D throughout the thesis above. Not only can the intensity be

visualized, but also the particle cell level, location, and type. In the main text, Figure 5 shows

an example of this for a small portion of LSFM data in 2D. With the use of thresholding or

variable opacity, particles can also be directly rendered in 3D.

Memory overhead Ideally direct renderings memory overhead should only reflect the cost

of the SA data-structure, however memory efficient algorithms for rendering have yet to be

developed and depend on a GPU implementation and are thus left for future work. The cur-

rent visualizations, are relatively memory inefficient, requiring the direct storage of the spatial

coordinates as floats, in addition to the particle information.
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