
Supplementary material for ‘DISSECT: an assignment-free

Bayesian discovery method for species delimitation under the

multispecies coalescent’

Graham Jones

2014-02-17

Contents

1 Notation 2

2 Figures and tables 2
2.1 Varying epsilon . 3
2.2 Varying w . 5
2.3 Single species . 7
2.4 Thomomys data set . 8

3 Cluster analysis for systematists 9
3.1 Online resources . 9

4 Calculations 9
4.1 Node height density . 9
4.2 Origin height density . 10
4.3 Distance between similarity matrices . 11

5 Usage 11
5.1 Running a Dissect analysis . 12
5.2 Using SpeciesDelimitationAnalyser . 13

6 Obtaining a development version of BEAST 14
6.1 Linux and Mac OS X instructions . 14

6.1.1 Check out the code . 14
6.1.2 Build BEAST . 15
6.1.3 Copy some ‘properties’ files from source directory to build directory 15

6.2 Windows instructions . 15
6.3 Test BEAST is working . 15

7 R code 17
7.1 R code for density of origin . 17
7.2 R code for prior probabilities of number of species 17
7.3 R code for displaying the similarity matrix . 19

8 Distribution on partitions from prior 21

1

1 Notation

Notation Description
General

1A the indicator function for set A.
Bn Bell numbers.

Evolutionary model
n the number of individuals, and therefore the maximum possible

number of species.
k the number of species.
t the origin time.
f() the node density.
m() the ‘mixin’ density.
q() the prior density for t.
λ the speciation rate.
µ the extinction rate.
α, β α = λ− µ and β = µ/λ.

User-chosen speciation parameters
w the ‘collapsing weight’.
ϵ the ‘collapsing height’.
τ the speciation threshold.

Simulations, results
G the number of loci.
T the mutation rate in substitutions per site per generation.
Ω the table of clusterings Z1, Z2, . . . Zz with corresponding posterior

probabilities p1, p2, . . . pz.
Z⋆ the true clustering.
M an estimated similarity matrix.
M⋆ the true similarity matrix.

Rand index definition
S = {o1, . . . , on} a set of n objects.
X = {X1, . . . , Xx}, a clustering of S into x subsets (clusters).
Y = {Y1, . . . , Yy}, a clustering of S into y subsets (clusters).
f1(Z, i, j) defined as 1 if i and j are in the same cluster in the clustering Z

and 0 otherwise.
f2(X,Y, j, k) defined as 1 1 if f1(X, i, j) is equal to f1(Y, i, j), else 0.

2 Figures and tables

These include some figures in the main text as well as extra ones, for convenient comparison. We
define an alternative point estimator to be the clustering Z̄ in Ω which minimises Dmat(Z̄,M(Ω)).

2

2.1 Varying epsilon

Note that the scales of the x-axes differ between Figs 2 and 3.

G9T1eps10

G9T1eps3

G9T1eps1

G9T4eps10

G9T4eps3

G9T4eps1

G3T1eps10

G3T1eps3

G3T1eps1

G3T4eps10

G3T4eps3

G3T4eps1

0.00 0.05 0.10 0.15

Figure 1: The boxplots show the values of the error metric D(Ω, Z⋆) over ten replicates as G, T,
and ϵ vary. In the labels, G3T4eps1 means the number of genes G is 3, the mutation rate T is 4e-8,
and ϵ is 1e-5 = 0.00001. The other values of ϵ are 0.00003 and 0.0001. A beta prior with shape
parameters 8 and 2 was used for w which is estimated.

G9T1eps10

G9T1eps3

G9T1eps1

G9T4eps10

G9T4eps3

G9T4eps1

G3T1eps10

G3T1eps3

G3T1eps1

G3T4eps10

G3T4eps3

G3T4eps1

0.00 0.05 0.10 0.15 0.20 0.25

Figure 2: Rand metric between point estimate Ẑ and true clustering, as G, T, and ϵ vary.

G9T1eps10

G9T1eps3

G9T1eps1

G9T4eps10

G9T4eps3

G9T4eps1

G3T1eps10

G3T1eps3

G3T1eps1

G3T4eps10

G3T4eps3

G3T4eps1

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Figure 3: Rand metric between point estimate Z̄ and true clustering, as G, T, and ϵ vary.

3

G9T1eps10

G9T1eps3

G9T1eps1

G9T4eps10

G9T4eps3

G9T4eps1

G3T1eps10

G3T1eps3

G3T1eps1

G3T4eps10

G3T4eps3

G3T4eps1

0.0 0.2 0.4 0.6

Figure 4: Posterior probability of true clustering, as G, T, and ϵ vary.

eps10 eps3 eps1
G3T4 2 5 4
G3T1 0 0 2
G9T4 0 0 1
G9T1 0 0 0

Table 1: Number of times out of 10 that the true clustering failed to be in the 0.95 credible set from a

MCMC run over 20 mlliion generations with the first 10 million discarded as burnin., as G, T, and ϵ vary.

4

2.2 Varying w

G9T1k3

G9T1k5

G9T1k8

G9T4k3

G9T4k5

G9T4k8

G3T1k3

G3T1k5

G3T1k8

G3T4k3

G3T4k5

G3T4k8

0.00 0.05 0.10 0.15

Figure 5: D(Ω, Z⋆) as G, T, and w vary. The numbers after the ‘k’ in the label are the prior mean
values for the number of species which are affected by the value of w The value of ϵ is 0.0001.

G9T1k3

G9T1k5

G9T1k8

G9T4k3

G9T4k5

G9T4k8

G3T1k3

G3T1k5

G3T1k8

G3T4k3

G3T4k5

G3T4k8

0.00 0.05 0.10 0.15 0.20 0.25

Figure 6: Rand metric between point estimate Ẑ and true clustering, as G, T, and w vary.

G9T1k3

G9T1k5

G9T1k8

G9T4k3

G9T4k5

G9T4k8

G3T1k3

G3T1k5

G3T1k8

G3T4k3

G3T4k5

G3T4k8

0.00 0.05 0.10 0.15 0.20 0.25

Figure 7: Rand metric between point estimate Z̄ and true clustering, as G, T, and w vary.

5

G9T1k3

G9T1k5

G9T1k8

G9T4k3

G9T4k5

G9T4k8

G3T1k3

G3T1k5

G3T1k8

G3T4k3

G3T4k5

G3T4k8

0.0 0.2 0.4 0.6 0.8

Figure 8: Posterior probability of true clustering, as G, T, and w vary.

k3 k5 k8
G3T4 4 3 2
G3T1 2 0 0
G9T4 1 1 0
G9T1 0 0 0

Table 2: Number of times out of 10 that the true clustering failed to be in the 0.95 credible set, as G, T,

and w vary.

6

2.3 Single species

Note that all the Rand metrics between Ẑ and true clustering, and Z̄ and true clustering, were
zero, and the true clustering was always in the 0.95 credible set.

G9N16

G9N8

G9N4

G3N16

G3N8

G3N4

0.0 0.1 0.2 0.3 0.4

Figure 9: The true clustering is a single cluster. The plot shows D(Ω, Z⋆) for varying number of
individuals n and genes G. The value of ϵ is 3e-5. A beta prior with shape parameters n-1 and 1
was used for w which is estimated.

G9N16

G9N8

G9N4

G3N16

G3N8

G3N4

0.4 0.5 0.6 0.7 0.8 0.9

Figure 10: Posterior probability of true clustering, as n and G vary.

7

2.4 Thomomys data set

Figure 11: Similarity matrices for Thomomys data set under various ϵ (e), τ (t) and collapse weight
(w) values.

8

3 Cluster analysis for systematists

Species delimitation is a type of cluster analysis. Cluster analysis is used in many areas of science,
including machine learning and data mining, as well as various areas within bioinformatics, but it
may be unfamiliar to some systematists. Different areas of science use different terminology, and
one potential confusion seems worth pointing out. In most areas of science a sharp distinction is
made between classification and cluster analysis. ‘Classification’ is used to mean only the
assignment of new specimens to one of a fixed set of known classes. The assignment of a
handwritten symbol to one letter in an alphabet is a typical example of classification. Cluster
analysis means the discovery or invention of clusters among specimens. These clusters might later
be regarded as classes into which new specimens can be classified, but this is no longer cluster
analysis.

There is a huge variety of clustering algorithms, and also many ways of evaluating clusterings, and
measuring the differences between them. In this paper, we use one of the simplest, the Rand
index [6]:

Given a set of n elements S = {o1, . . . , on} and two partitions of S to compare,
X = {X1, . . . , Xr}, a partition of S into r subsets, and Y = {Y1, . . . , Ys}, a partition of
S into s subsets, define the following:

• a, the number of pairs of elements in S that are in the same set in X and in the
same set in Y

• b, the number of pairs of elements in S that are in different sets in X and in
different sets in Y

• c, the number of pairs of elements in S that are in the same set in X and in
different sets in Y

• d, the number of pairs of elements in S that are in different sets in X and in the
same set in Y

The Rand index, R, is:

R =
a+ b

a+ b+ c+ d
=

a+ b(
n
2

)
This comes from Wikipedia where more information can be found.

3.1 Online resources

http://en.wikipedia.org/wiki/Cluster_analysis

http://en.wikipedia.org/wiki/Rand_measure

A book by Jain and Dubes [5]:
homepages.inf.ed.ac.uk/rbf/BOOKS/JAIN/Clustering_Jain_Dubes.pdf

4 Calculations

4.1 Node height density

Conditioned on k, t, λ, and µ the density of an unordered node height s is given by Theorem 2.5 of
[3] as

f(s|k, t, λ, µ) = (λ− µ)2e−(λ−µ)s

(λ− µe−(λ−µ)s)2
λ− µe−(λ−µ)t

1− e−(λ−µ)t
1[0,t] (1)

9

Setting α = λ− µ and β = µ/λ so that µ = βλ and λ = α/(1− β), this can be rewritten as

f(s|k, t, λ, µ) = α(1− β)e−αs

(1− βe−αs)2
1− βe−αt

1− e−αt
1[0,t] (2)

where s is a node height. Note that k does not appear on the right hand side.

4.2 Origin height density

Usually an improper uniform prior on [0,∞) is assumed for the origin time t of the tree, which is
then conditioned on the number of species k. This conditional density for t is shown in Theorem
3.2 of [3] to be

q(t|k) = kλk(λ− µ)2
(1− e−(λ−µ)t)k−1e−(λ−µ)t

(λ− µe−(λ−µ)t)k+1

= kα(1− β)e−αt (1− e−αt)k−1

(1− βe−αt)k+1
(3)

Using the probabilities from expression (3) in the main paper (the one starting (|C(k)|)...), the
prior density for t is

q(t) =
n∑

k=1

(
n− 1

k − 1

)
(1− w)k−1wn−kq(t|k) (4)

This can be expressed as

q(t) =

n−1∑
j=0

(
n− 1

j

)
(1− w)jwn−1−jq(t|j + 1)

=
n−1∑
j=0

(
n− 1

j

)
(1− w)jwn−1−j(j + 1)α(1− β)e−αt (1− e−αt)j

(1− βe−αt)j+2

= α(1− β)e−αt(1− βe−αt)−2
n−1∑
j=0

(j + 1)

(
n− 1

j

)
wn−1−j

(
(1− w)(1− e−αt)

1− βe−αt

)j

= a
n−1∑
j=0

(j + 1)

(
n− 1

j

)
wn−1−jbj

where
a = α(1− β)e−αt(1− βe−αt)−2 and b = (1− w)(1− e−αt)(1− βe−αt)−1. (5)

Then

q(t) = a

n−1∑
j=0

(
n− 1

j

)
wn−1−jbj +

n−1∑
j=0

j

(
n− 1

j

)
wn−1−jbj

= a

(
(w + b)n−1 +

n−2∑
i=0

(i+ 1)

(
n− 1

i+ 1

)
wn−2−ibi+1

)

= a

(
(w + b)n−1 + b

n−2∑
i=0

(n− 1)

(
n− 2

i

)
wn−2−ibi

)
= a

(
(w + b)n−1 + (n− 1)b(w + b)n−2

)
= a(w + b)n−2 ((w + b) + (n− 1)b)

= a(w + b)n−2(w + nb). (6)

Equations (1) and (6) provide the basis for a new class BirthDeathCollapseModel extending
SpeciationModel. It contains a parameter for the origin height t as well as for α and β as in the
usual birth-death model.

10

4.3 Distance between similarity matrices

We start with an explicit formula for the Rand index. Suppose there is a set of n objects
S = {o1, . . . , on} and two clusterings of S to compare, X = {X1, . . . , Xx}, a clustering of S into x
clusters; and Y = {Y1, . . . , Yy}, a clustering of S into y clusters. For any clustering Z of S, and
1 ≤ i < j ≤ n, define f1(Z, i, j) to be 1 if i and j are in the same cluster in the clustering Z and 0
otherwise. Next define f2(X,Y, i, j) to be 1 if f1(X, i, j) is equal to f1(Y, i, j), and 0 otherwise. In
words, f2(X,Y, i, j) is 1 if the two clusterings X and Y ‘agree’ on the pair (i, j) and 0 if they
‘disagree’. Then the Rand index is:

R(X,Y) =

(
n

2

)−1 n∑
i,j:i>j

f2(X,Y, i, j)

Recall that M = M(Ω) is the similarity matrix and M⋆ is the true similarity matrix.

Dmat(M,M⋆) =

(
n

2

)−1 n∑
i,j:i>j

|Mi,j −M⋆
i,j |

=

(
n

2

)−1 n∑
i,j:i>j

∣∣∣∣∣
(

z∑
m=1

pmf1(Zm, i, j)

)
− f1(Z

⋆, i, j)

∣∣∣∣∣
=

(
n

2

)−1 n∑
i,j:i>j

∣∣∣∣∣
z∑

m=1

pmf1(Zm, i, j)−
z∑

m=1

pmf1(Z
⋆, i, j)

∣∣∣∣∣
=

(
n

2

)−1 n∑
i,j:i>j

∣∣∣∣∣
z∑

m=1

pm
(
f1(Zm, i, j)− f1(Z

⋆i, j)
)∣∣∣∣∣

=

(
n

2

)−1 n∑
i,j:i>j

z∑
m=1

pm
(
1− f2(Zm, Z⋆, i, j)

)
=

z∑
m=1

pm

(
n

2

)−1 n∑
i,j:i>j

(
1− f2(Zm, Z⋆, i, j)

)

=
z∑

m=1

pm

1−
(
n

2

)−1 n∑
i,j:i>j

f2(Zm, Z⋆, i, j)

=

z∑
m=1

pm (1−R(Zm, Z⋆))

=
z∑

m=1

pmR̄(Zm, Z⋆)

= D(Ω). (7)

5 Usage

The model is implemented in the development version v1.8.0pre of BEAST ([1], [2]), more
specifically the multispecies coalescent model *BEAST [4].

11

5.1 Running a Dissect analysis

BEAUTi can be used to set up most of the analysis. Each species should only be assigned
individuals which definitely belong together, since the program will consider merging but never
splitting these minimal clusters. The word ‘species’, as it appears in BEAUTi and in the BEAST
XML, should be interpreted as a minimal cluster.

Two changes need to be made to the XML. The birthDeathModel must be replaced with a
birthDeathCollapseModel, and an operator must be added for the origin height.

The value of w can be set using the element collapseWeight. It can either be fixed or estimated.
Even when w is fixed, the prior on the number of species k is somewhat diffuse. If you want to
estimate w, you can add a hyperprior and an operator for it. The model does not permit k to have
a more concentrated prior than the binomial distribution decribed above, but you can obtain a
more diffuse prior on k with a suitable hyperprior for w.

The value of ϵ is set in the birthDeathModel using the attribute collapseHeight.

Optionally, tmrcaStatistics may be added for groups of interest. A statistic
bdcNClustersStatistic for the number of clusters can also be added. A trace of the latter can
indicate if the MCMC chain is having trouble changing the number of almost collapsed nodes.

The Yule model for speciation can be used with Dissect, by setting the initial values of
species.birthDeathCollapse.relativeDeathRate to 0, and removing the operator wich changes
it.

XML for the birth-death-collapse model

<birthDeathCollapseModel id="birthDeathCollapse" units="substitutions"

collapseHeight="0.0001">

<speciesTree>

<speciesTree idref="sptree"/>

</speciesTree>

<birthMinusDeathRate>

<parameter id="species.birthDeathCollapse.meanGrowthRate"

value="100" lower="0.0" upper="Infinity"/>

</birthMinusDeathRate>

<relativeDeathRate>

<parameter id="species.birthDeathCollapse.relativeDeathRate"

value="0.5" lower="0.0" upper="1.0"/>

</relativeDeathRate>

<originHeight>

<parameter id="species.birthDeathCollapse.originHeight"

value="0.2" lower="0.0" upper="Infinity"/>

</originHeight>

<collapseWeight>

<parameter id="species.birthDeathCollapse.collapseWeight"

value="0.5" lower="0.0" upper="1.0"/>

</collapseWeight>

</birthDeathCollapseModel>

XML for the operator for origin height

<scaleOperator scaleFactor="0.75" weight="3">

<parameter idref="species.birthDeathCollapse.originHeight"/>

</scaleOperator>

XML for the operator for w (if w is estimated)

<scaleOperator scaleFactor="0.75" weight="3">

<parameter idref="species.birthDeathCollapse.collapseWeight"/>

</scaleOperator>

12

XML for a number-of-clusters statistic

<bdcNClustersStatistic id="nClusters" name="nClusters">

<collapseModel>

<birthDeathCollapseModel idref="birthDeathCollapse"/>

</collapseModel>

<speciesTree>

<speciesTree idref="sptree"/>

</speciesTree>

</bdcNClustersStatistic>

XML for a tmrca statistic

<tmrcaStatistic id="speciesTree.talpoidesHeight" name="speciesTree.talpoidesHeight">

<speciesTree idref="sptree"/>

<mrca>

<taxa>

<sp idref="Thomomys_talpoides1"/>

<sp idref="Thomomys_talpoides2"/>

<sp idref="Thomomys_talpoides3"/>

</taxa>

</mrca>

</tmrcaStatistic>

XML for a prior and an operator for w (if w is estimated)
This goes in the prior element, in the mcmc element:

<betaPrior shape="5" shapeB="2">

<parameter idref="species.birthDeathCollapse.collapseWeight"/>

</betaPrior>

This goes in the operators element:

<scaleOperator scaleFactor="0.75" weight="3" >

<parameter idref="species.birthDeathCollapse.collapseWeight" />

</scaleOperator>

5.2 Using SpeciesDelimitationAnalyser

You can run this tool using a command line like that for BEAST, with dr.app.beast.BeastMain

replaced by dr.app.tools.SpeciesDelimitationAnalyser.

The last two arguments are always an input file name and an output filename. The input file is the
MCMC samples of species trees. The output is a table which lists the clusterings which are found
when the nodes with small height have been collapsed. There are three optional arguments, shown
in this example:

SpeciesDelimitationAnalyser -burnin 10000 -collapseheight .001

-simcutoff .95 treesamples.txt out.txt

• burnin is the number of samples to be considered as ‘burn-in’ which will be ignored.

• collapseheight is the height below which nodes get collapsed. This would normally be equal
to or larger then the value of ϵ used in the BEAST analysis.

• simcutoff is the value above which two clusterings are regarded as similar enough to support
one another’s credibility. It may be useful to change this when summarising the results as a
single clustering. The similarity between two clusterings is the Rand index, and is a value
between 0 and 1. The idea is that a clustering may not be very common among the samples,
but may be similar to a lot of other clusterings, and the value of simcutoff affects which
clustering is regarded as the ‘best’ summary of the results. The summary is somewhat
analogous to a maximum clade credibility tree. Smaller values of simcutoff mean taking into
account more dissimilar clusterings. This option should be regarded as experimental: set it
to 1.0 if you want to ignore it.

13

Here is an imaginary example of the output to illustrate the format.

count fraction similarity nclusters a b c d

6000 0.6 6000.0 1 0 0 0 0

3000 0.3 3000.0 2 0 1 1 1

1000 0.1 1000.0 3 2 0 1 2

The count column is the number of samples containing the clustering. The fraction is this count
divided by the number of samples. The similarity column is a measure of how similar the
clustering is to others.

The remaining columns describe a clustering. The nclusters column is the number of clusters. The
other columns are labelled with the names of the ‘species’ (minimal clusters) used in the BEAST
XML for the analysis. The numbers in the columns show how these are grouped; the numbers
themseves are arbitrary, but if two columns have the same value, the minimal clusters are grouped
together in the clustering. So the table above shows clusterings abcd, a+bcd and ad+b+c.

The Rand indices between these clusterings are R(abcd, a+ bcd) = 3/6, R(abcd, ad+ b+ c) = 2/6,
R(a+ bcd, ad+ b+ c) = 2/6. If simcutoff is above 1/2, the similarity column will be unaffected. If
simcutoff is between 1/3 and 1/2, the first two clusterings will support one another.

The set of clusterings can be used to produce into a similarity matrix, which contains the posterior
probabilities of each pair of minimal clusters belong to the same cluster. See table 3 for the
similarity matrix corresponding to the imaginary example, and the main paper for a larger
example.

a b c d
a 1 .6 .6 .7
b .6 1 .9 .9
c .6 .9 1 .9
d .7 .9 1 .9

Table 3: Similarity matrix

6 Obtaining a development version of BEAST

You will need:

• Java and a Java development kit (JDK) installed.

• Subversion installed. http://subversion.apache.org/

• Ant installed. http://ant.apache.org/

6.1 Linux and Mac OS X instructions

6.1.1 Check out the code

Type

svn checkout http://beast-mcmc.googlecode.com/svn/trunk/ beast16

beast16 names a directory; you can use another name. You should see a long listing of files ending
something like

14

A beast16/examples/incorrect/testOTFPCLikelihood.xml

U beast16

Checked out revision 4366.

6.1.2 Build BEAST

cd to beast16 and type ant. You should see something like this:

[gjones@pc158250 beast16]$ ant

Buildfile: build.xml

clean:

init:

[echo] BEAST: /home/gjones/beast16/build.xml

compile-all:

[mkdir] Created dir: /home/gjones/beast16/build

[javac] Compiling 1836 source files to /home/gjones/beast16/build

[javac] Note: Some input files use or override a deprecated API.

[javac] Note: Recompile with -Xlint:deprecation for details.

[javac] Note: Some input files use unchecked or unsafe operations.

[javac] Note: Recompile with -Xlint:unchecked for details.

[echo] Successfully complied.

dist-all:

[mkdir] Created dir: /home/gjones/beast16/build/dist

[jar] Building jar: /home/gjones/beast16/build/dist/beast.jar

[jar] Building jar: /home/gjones/beast16/build/dist/beauti.jar

build:

BUILD SUCCESSFUL

Total time: 37 seconds

[gjones@pc158250 beast16]$

6.1.3 Copy some ‘properties’ files from source directory to build directory

Type

cp beast16/src/dr/app/beast/*.properties beast16/build/dr/app/beast/

6.2 Windows instructions

You have to do the same steps: download the code, compile it, and run it via a java command. I
use TortoiseSVN which is a GUI for Subversion and Eclipse which is an IDE for Java. This is
overkill if you just want to run a development version of BEAST, but I have not tried any other
way.

6.3 Test BEAST is working

In order to run BEAST you need to execute a java command and supply a ‘classpath’ which is in
this case a list of three places (. meaning ‘here’, /home/gjones/beast16/build/, and
/home/gjones/beast16/lib/*) to tell java where to look for code. Then there is the java class
BeastMain to run and the XML file YuleSingleLocus.xml which is input to BEAST. Under
Linux, all as one line:

15

java -classpath ’.:/home/gjones/beast16/build/:/home/gjones/beast16/lib/*’

dr.app.beast.BeastMain beast16/examples/release/starBEAST/YuleSingleLocus.xml

Under Windows, the classpath is separated by ; not : and the code is a different place (bin not
build) and file paths use \ not / and the single quotes don’t seem to be needed. It might look like
this:

java -classpath .;C:\workspace\beast16\bin;C:\workspace\beast16\lib/*

dr.app.beast.BeastMain beast16\examples\release\starBEAST\YuleSingleLocus.xml

You should see a normal BEAST run. If you get an error like this

Exception in thread "main" java.lang.NoClassDefFoundError:

jebl/evolution/treemetrics/RootedTreeMetric

....

it is probably a problem with the classpath and/or the directory you are in when you issue the
command.

16

7 R code

7.1 R code for density of origin

origindensity <- function(x, n, a, b, w) {

E <- exp(-a*x)

B <- (1 - E) / (1-b*E)

z <- 1

z <- z * a

z <- z * (1-b)

z <- z * E

z <- z / (1-b*E)^2

z <- z * (w + (1-w)*B)^(n-2)

z <- z * (w + n*(1-w)*B)

z

}

log.origindensity <- function(x, n, a, b, w) {

E <- exp(-a*x)

B <- (1 - E) / (1-b*E)

z <- 0

z <- z + log(a)

z <- z + log(1-b)

z <- z - a*x

z <- z - 2 * log(1-b*E)

z <- z + (n-2) * log(w + (1-w)*B)

z <- z + log(w + n*(1-w)*B)

z

}

n <- 50

a <- 1

b <- 0.9

w <- 0.5

cat("mean nof species in prior is ", 1 + (n-1)*(1-w), "\n")

x <- seq(from=0, to=10, length.out=1001)

matplot(x, cbind(log(origindensity(x, n, a, b, w)), log.origindensity(x, n, a, b, w)), type="l")

integrate(origindensity, lower=0, upper=Inf, n=n, a=a, b=b, w=w)

7.2 R code for prior probabilities of number of species

If w has a beta distribution for its hyperprior, with parameters a and b (shape and shapeB in the
XML) and there are n individuals, then the prior probabilities of number of species is given by

Pr(k = x|n, a, b) = Γ(n)

Γ(x)Γ(n+ 1− x)

Γ(x− 1 + b)Γ(n− x+ a)

Γ(n− 1 + a+ b)

Γ(a+ b)

Γ(a)Γ(b)

and the function px below calculates this, for 1 ≤ x ≤ n.

17

library(VGAM)

px <- function(x, n, a, b) {

dbetabinom.ab(x-1, size=n-1, shape1=b, shape2=a)

}

Alternative, without VGAM:

px2 <- function(x, n, a, b) {

p <- 1

p <- p * gamma(n)

p <- p / gamma(x)

p <- p / gamma(n+1-x)

p <- p * gamma(x-1+b)

p <- p * gamma(n-x+a)

p <- p / gamma(n-1+a+b)

p <- p * gamma(a+b)

p <- p / gamma(a)

p <- p / gamma(b)

p

}

z <- px(1:25, 25, 8,2)

z2 <- px2(1:25, 25, 8,2)

plot(z)

z

z2

18

7.3 R code for displaying the similarity matrix

Read in the table of clusterings

workdir <- "C:/Users/Graham/AAA/Programming/tmp/birthdeathcollapse/w70e0001/"

x <- read.table(paste(workdir, "SDA_OUT.txt", sep=""), header=TRUE)

Abbreviations for display

renames <- matrix(c(

"Orthogeomys_heterodus1", "O.het",

"Thomomys_bottae1", "T.bot awa-a",

"Thomomys_bottae10", "T.bot mew",

"Thomomys_bottae11", "T.bot sax",

"Thomomys_bottae12", "T.bot lat",

"Thomomys_bottae2", "T.bot awa-b",

"Thomomys_bottae3", "T.bot xer",

"Thomomys_bottae4", "T.bot cac",

"Thomomys_bottae5", "T.bot alb",

"Thomomys_bottae6", "T.bot rui",

"Thomomys_bottae7", "T.bot bot",

"Thomomys_bottae8", "T.bot alp",

"Thomomys_bottae9", "T.bot rip",

"Thomomys_idahoensis1", "T.ida pyg-a",

"Thomomys_idahoensis2", "T.ida pyg-b",

"Thomomys_mazama1", "T.maz maz",

"Thomomys_mazama2", "T.maz nas",

"Thomomys_monticola1", "T.mon-a",

"Thomomys_monticola2", "T.mon-b",

"Thomomys_talpoides1", "T.tal oci",

"Thomomys_talpoides2", "T.tal yak",

"Thomomys_talpoides3", "T.tal bri",

"Thomomys_townsendii1", "T.tow tow",

"Thomomys_townsendii2", "T.tow rel",

"Thomomys_umbrinus1", "T.umb chi",

"Thomomys_umbrinus2", "T.umb atr"),

nrow=26, ncol=2, byrow=TRUE)

Minimal cluster names are column names omitting first 4

mincl.names <- colnames(x)[-(1:4)]

Check for typos, etc

for (i in 1:length(mincl.names)) {

stopifnot(mincl.names[i] == renames[i,1])

}

19

Make the similarity matrix

displaynames <- renames[,2]

nmincls <- length(displaynames)

sim <- matrix(0, ncol=nmincls, nrow=nmincls, dimnames=list(displaynames, displaynames))

for (i in 1:nmincls) {

for (j in 1:nmincls) {

coli <- x[,mincl.names[i]]

colj <- x[,mincl.names[j]]

w <- coli == colj

sim[i,j] <- sum(x[w,"fraction"])

}

}

ensure rounding errors don’t make probabilities sum to more than 1.

sim <- pmin(sim,1)

change the order of minimal clusters

This depends on which patterns you want to emphasise

neworder <- c(11,7,8,9,10,13,3,2,6,4,5,12, 24,23, 26,25, 16,17, 20,21,22, 1, 14,15, 18,19)

Currently recognised groups

dividers <- c(0,12,14,16,18,21,22,24,26)

plot.rectangle <- function(v1,v2,...)

{

polygon(c(v1[1],v2[1],v2[1],v1[1]), c(v1[2],v1[2],v2[2],v2[2]), ...)

}

Main plotting routine

plot.simmatrix <- function() {

par(mar= c(0,5,5,0)+.1)

plot(NULL, xlim=c(0,nmincls), ylim=c(nmincls,0), axes=FALSE, ylab="", xlab="")

axis(3, at=(1:nmincls)-.5, displaynames[neworder], tick=FALSE, las=2, line=-1)

axis(2, at=(1:nmincls)-.5, displaynames[neworder], tick=FALSE, las=2, line=-1)

for (i in 1:nmincls) {

for (j in 1:nmincls) {

d <- 1 - sim[neworder[i],neworder[j]]

plot.rectangle(c(i-1,j-1), c(i,j), col=rgb(d,d,d), border="white")

}

}

for (b in dividers) {

lines(x=c(-.5,nmincls), y=c(b,b))

lines(x=c(b,b), y=c(-.5,nmincls))

}

}

Display as text, on screen, and to PDF file

print(sim[neworder,neworder], digits=2)

plot.simmatrix()

pdf(file=paste(workdir, "simmatrix.pdf", sep=""))

plot.simmatrix()

dev.off()

}

20

8 Distribution on partitions from prior

Probability distributions on the partitions of a finite set are of general interest. Some of these
distributions arise as the result of a stochastic process. The Chinese restuarant process (see
Wikipedia) is one example, and there are also a variety of preferential attachment processes (see
Wikipedia). One of the latter is known as ‘the Yule process’ [7] which models the emergence of new
genera among species. (Note that this is an extension to the pure birth model for speciation, which
is also called a Yule process or Yule model.) None of these seems to be the same as the distribution
associated with the model used here. The following result gives the probability of a given clustering
in the model used here, conditioned on the number of clusters. The point process described in [3]
shows why the merging process in the proposition produces the same distribution as sampling a
tree using the method described in the main paper (sampling from f and (1− w)f + wm), and
then slicing through the tree. The result is almost surely already published somewhere, but I can’t
find it. It may be useful for calculating Bayes factors for different species delimitation hypotheses.

Proposition. Assume a merging process which starts with n objects each assigned to its own
cluster. Clusters are then merged by randomly choosing pairs among those available at each step
until there are r clusters. Let b1, b2, . . . , br be the sizes of the clusters in a particular clustering B
produced by this process. Then

Pr(B|r) =
r! (n− r)! (r − 1)! b1! b2! . . . br!

(n− 1)!n!

= r!

(
n− 1

r − 1

)−1(
n

b1, b2, . . . , br

)−1

Proof. First we count the total number T of ordered mergings that make r clusters from
{1, 2, . . . , n}. Then we count the number S of ordered mergings that make B and obtain
Pr(B|r) = S/T . It may help to think of a particular example of B such as

B = { {1, 2, . . . , b1}, {b1+1, b1+2, . . . , b1+b2}, . . . , {n−br+1, n−br+2, . . . , n} }.

We have

T =

(
n

2

)(
n− 1

2

)
. . .

(
n− r

2

)
=

n!

r!

(n− 1)!

(r − 1)!
2n−r

For S, we multiply the numbers of ways in which each the clusters of sizes b1, b2, . . . , br can be
formed by the number of ways that the mergings of different clusters can be interleaved. There are
b− 1 mergings for a cluster of size b, so there are(

n− r

b1 − 1, b2 − 1, . . . , br − 1

)
interleavings, and

S =

(
n− r

b1 − 1, b2 − 1, . . . , br − 1

) r∏
i=1

bi!(bi − 1)!

2bi−1

= (n− r)!2n−r
r∏

i=1

bi!

and the result follows. �
Suppose that there are si clusters of size i (1 ≤ i ≤ n). Note that

∑n
i=1 si = r. Then there are

(
n

b1, b2, . . . , br

)(n∏
i=1

si!

)−1

21

partitions of {1, 2, . . . , n} which have the same shape (the same partition of the integer n). So the
probability that the r clusters have a given shape is

r!

(
n− 1

r − 1

)−1
(

n∏
i=1

si!

)−1

Example. Suppose n = 8, r = 3. Then

Pr(4 + 2 + 2) = 3!

(
7

2

)−1

(0! 2! 0! 1! 0! 0! 0! 0!)−1 = 1/7

and there are (
8

4, 2, 2

)
(0! 2! 0! 1! 0! 0! 0! 0!)−1 = 210

partitions of {1, 2, . . . , 8} which have this shape.

The Chinese restuarant process is different from the merging process above. The probabilities for
n = 6 are shown in table 4. When conditioned on r = 2, the Chinese restuarant process gives
probabilities in ratio 72:45:20 for 5+1,4+2,3+3, whereas the merging process gives 2:2:1. When
conditioned on r = 3, the Chinese restuarant process gives 6:8:1 for 4+1+1,3+2+1,2+2+2,
whereas the merging process gives 3:6:1.

Table 4: Chinese restuarant process

Shape P(partition) #ptns per shape P(shape)
6 120/720 1 120/720

5+1 24/720 6 144/720
4+2 6/720 15 90/720
3+3 4/720 10 40/720

4+1+1 6/720 15 60/720
3+2+1 2/720 60 120/720
2+2+2 1/720 15 15/720

3+1+1+1 2/720 20 40/720
2+2+1+1 1/720 45 45/720

2+1+1+1+1 1/720 15 15/720
1+1+1+1+1+1 1/720 1 1/720

22

References

[1] Alexei J Drummond and Andrew Rambaut. BEAST: Bayesian evolutionary analysis by
sampling trees. BMC Evolutionary Biology, 7:214, 2007.

[2] Alexei J. Drummond, Marc A. Suchard, Dong Xie, and Andrew Rambaut. Bayesian
phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution,
29:1969–1973, 2012.

[3] T Gernhard. The conditioned reconstructed process. J. Theo. Biol., 253:769–778, 2008.

[4] J Heled and A Drummond. Bayesian inference of species trees from multilocus data. Mol. Biol.
Evol., 27:570–580, 2010.

[5] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1988.

[6] W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the
American Statistical Association (American Statistical Association), 66(336):846–850, 1971.

[7] G. U. Yule. A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis,
F.R.S. Philosophical Transactions of the Royal Society B, 213:21–87, 1925.

23

