Supplementary Text and Figures

Availability of code and data

All code and configuration files used for the analyses in this manuscript are available at
https://github.com/valenlab/amplican _manuscript where they can be used for independent
verification. Data analysed is publicly available and accessible at their respective accession
numbers. ampliCan is available from Bioconductor as the R package at
http://bioconductor.org/packages/amplican. To obtain the newest development version visit
https://github.com/valenlab/amplican.

Supplementary Note 1: Automatic normalization using control reads

By default ampliCan normalizes through the strict removal of all indel events also found in the
control sample above a threshold (default 1%). Due to the stochasticity in sequencing data this
approach is better suited to handle more heterogeneous cases than the subtraction method
where indel frequency is simply normalized by subtraction of the control indel frequency. In the
latter case variation in the levels of indel frequencies in the control versus CRISPR treated
samples can lead to partially normalized data. Both normalization methods are outlined in
Supplementary Fig. 18 while Supplementary Fig. 19 shows examples of highly
heterogeneous data where without normalization estimated mutation efficiency would be
biased. Normalization becomes even more important when the exact nature of the indel event
matters, for instance whether it induces a frameshift or not (Supplementary Fig. 1).

All examples in Supplementary Fig. 1 can be recreated with the use of
“make_comparison_normalized.Rmd” in the amplican_manuscript repository.

Supplementary Note 2: ampliCan utilizes optimized alignments

CRISPR genome editing events typically result in a single break at a single site and by
extension produce a single deletion and/or insertion. Sequence read aligners are generally not
optimized for this type of genome editing event which can lead to the aligner fragmenting the
indels and creating multiple events (example in Supplementary Fig. 2). In the worst case
fragmented alignments could shift the indel events resulting in a distortion of the mutation
efficiency for those tools that only allow events within a certain distance from the expected
site. A more likely outcome however, is the misinterpretation of the nature of the mutation.
Under certain assumptions the theoretically optimal alignment can be obtained by the
Needleman-Wunsch algorithm. ampliCan uses this algorithm with optimized parameters to
reflect the expectation that a CRISPR experiment should result in one deletion and/or insertion
event, of unknown length (match = 5, mismatch = -4, gap opening = 25, gap extension = 0, no
end gap penalties). With these parameters the Needleman-Wunsch algorithm performs well
over a broad range of test cases (data not shown). ampliCan uses these optimized parameters
by default, but also allows for supervision of the alignments through human readable output of
individual alignment results (Supplementary Table 2).

Supplementary Note 3: Tools differ in estimating editing efficiency on real data.

We assessed how tools estimate editing efficiency on 263 real CRISPR experiments, of which
151 were previously published by us' (datasets from run 1 and run 5 available at BioProject
under accession number PRINA245510), and 112 novel experiments from 5 sets for this study



(datasets from run 6-10 available at ArrayExpress: E-MTAB-6310, E-MTAB-6355,
E-MTAB-6356, E-MTAB-6357, E-MTAB-6358). All experiments were conducted by injection
into 1 cell zebrafish embryos and sequenced 2 days post-fertilization'. Due to the rapid cell
division and development these experiments are likely to result in highly heterogeneous
mutational efficiencies due to mosaicism. For these experiments the true mutation
efficiency is not known and we can therefore not assess how precise the tools are in
their estimates. Instead, we quantified how much the tools differ in their estimates
(Supplementary Fig. 3A) and, to qualitatively assess the underlying reason for their
discrepancy, we plotted the estimated mutation efficiency values of the tools relative to the
non-normalized ampliCan result (Supplementary Fig. 3B). This showed that discrepancies
likely originate from different causes. Some, those above the normalized ampliCan estimate,
likely stem from a failure to consider control experiments. In our data the experiments
impacted by controls is about 5%, but this will depend heavily on the reference genome,
heterogeneity of the region and organism under study. Specific examples of the importance of
normalization are shown in Supplementary Fig. 1. The discrepancies of the other experiments
are due to the steps in the processing pipeline, e.g. off-target detection, primer dimer filtering,
alignment strategy and read merging. To investigate the specific sources of these
discrepancies and quantitatively assess the performance of the tools we created several
synthetic benchmark datasets.

Supplementary Note 4: Synthetic data set evaluation

The latest available versions was used for all tools and packages. The assessment set from
Lindsay et al.? paper (Synthetic Dataset 2, Supplementary 4) was replicated with the same
settings and seed values as described (Supplementary Fig. 4). The script from Lindsay et al.
was used for parsing, but a bug in the code was fixed for the CRISPResso output. In Lindsay
et al. only NHEJ estimation of mutation efficiency was considered for CRISPResso, skipping
HDR and “mixed” mutation frequencies. However, fixing this error did not influence
CRISPResso’s overall performance in any significant way. Versions of tools, scripts and details
needed for replication are available in the https://github.com/valenlab/amplican manuscript
repository. ampliCan used the same amplicon sequences as CRISPResso.

It should be noted that Synthetic Dataset 2 from Lindsay et al. (used for Supplementary Fig. 4)
is not a good approximation of a real life situation. First, the sequence matching the primers
can not be very divergent as they would then fail to amplify. Second, several experiments are
badly designed in that the target sites are very close to the sequencing end of the reads. This
makes it difficult to correctly call indels with support from both paired reads. Third, paired-end
sequencing of 200bp or longer is somewhat expensive and error-prone and most labs would
seek to restrict this to shorter reads. To account for this we created an additional set, Synthetic
Dataset 3, in a similar fashion to Synthetic Dataset 2, but with with the following minor
modifications. First, the length of amplicons and reads (150 bp) were adjusted. Second, gRNA
target sites were designed to be covered by both reads. Third, PCR off-target reads were
created without mutating the primer sequences. Finally, mutation efficiency was tested across
a range of mismatch rates, 10%, 20% and 30% (Fig. 2, Supplementary Fig. 5), to reflect
different levels of similarity to the contaminant reads.

For Synthetic Dataset 2 ampliCan matches the perfect score of CrispRVariants and
AmpliconDivider. However, on Synthetic Dataset Dataset 3 ampliCan is more consistent at
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estimating the known mutation efficiencies within the dataset (Fig. 2). AmpliconDIVider has no
filtering step and is confused by the contaminating reads. CrispRVariants has a filtering step,
but is unable to discern divergent off-target sequences (e.g. homologous regions) that are still
able to align to the correct target site. As in the benchmark from Lindsay et al. CRISPResso
performs poorly on all benchmarks. When increasing mismatch rate (from 10% of all bases to
20% and 30%), AmpliconDIVider and CrispRVariants get closer to the correct estimated indel
rate, but in all cases ampliCan obtains the highest precision and shows the most robust
performance (Fig. 2, Supplementary Fig. 5).

Supplementary Note 5: ampliCan is able to correctly call longer indels

We have found that even without targeted insertion CRISPR mutagenesis can frequently result
in some proportion of longer indels (Supplementary Fig. 20). In particular, we have observed
unintended insertions from lentiviral vectors used to introduce the guides and Cas9
(Supplementary Fig. 21)°.

Current tools primarily rely on either global mapping (CrispRVariants, AmpliconDIVider)
(Supplementary Tab 1) that can have problems identifying the correct loci in the presence of a
larger insertion or have certain processing steps that are incompatible with longer events (see
below for CrispRVariants). This mitigates primer dimer contamination problems (which can be
identified by too large deletion gaps after alignments), but ignores bona fide large indels. These
tools are therefore often unable to handle longer indels whether unintended or targeted. Long
deletions are also a problem for some tools. For instance, CrispRVariants filters out any
deletion that does not start or end within the gRNA complementary sequence plus a buffer of 5
bp. Any deletion spanning this region is ignored. This can be used as a strategy to filter
primer-dimers, but also has the side-effect of ignoring any bona fide longer deletions.
ampliCan uses a local alignment strategy that can detect these longer indels and a more
realistic model of primer-dimer artifacts (Supplementary Note 8).

We noticed that in the Synthetic Dataset 2 from Lindsay et al. (CrispRVariants benchmark
dataset) large indels (>10 bp) were disabled. To assess the capabilities of leading tools in
handling longer indels we created Synthetic Dataset 4. We made three subsets: 1) with no
indels > 10bp, 2) with a mix of indels by simply removing the line disabling longer reads in the
Lindsay et al. script. 3) To check explicitly how tools handle experiments with planned shorter
insertion of donor sequence we created a third scenario described as “insertions > 10bp” on
the figure. 4) For completeness we also created a set of large deletions. ampliCan match the
best competitors on the the set with no long indels and consistently outperform the other tools
on the mixed set and the set only containing long indels (Fig. 2, Supplementary Fig. 6).

Supplementary Note 6: ampliCan consistently recovers the true HDR efficiency
when faced with diverse donor templates

ampliCan takes into account the donor template and the original genomic sequence to define
the set of events that corresponds to a correct HDR editing experiment, but allowing for some
background sequencing noise (currently 3 mismatches by default). This is unlike CRISPResso,
the other CRISPR tool that can handle HDR events, which do not model events but simply
align reads against donor and original sequence picking the best-scoring instance. The
advantage of ampliCan’s approach is that it accounts for alignment imperfections in a more
robust fashion, allowing for complex donor-amplicon relations and sequencing errors.
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We designed a dataset for benchmarking the HDR calling capabilities of the most popular
tools. Using the same loci as in Supplementary Note 3 we tested 20 different donor templates
for each of three kinds of donor types: with point mutations, insertions or deletions of variable
length from 5bp to 70bp introduced into the amplicon sequences. We simulated 2000 reads
with different levels of HDR efficiency rate (0, 33, 66, 90). In this benchmark set only ampliCan
makes no errors (Supplementary Fig. 7).

Supplementary Note 7: Visualization and aggregation of the complete activity of
gRNAs

While the default alignment plot shows the most abundant reads across the expected cut site it
doesn’t provide an overview over all editing events. ampliCan therefore also produces multiple
plots that aggregate and visualize editing events (Supplementary Fig. 8). Unlike the alignment
plots these show the complete activity of the gRNA allowing for comparison of gRNAs by
manual inspection. The pipeline in ampliCan treats forward and reverse reads separately
which, after visualization, makes it possible to spot read-related problems immediately
(Supplementary Figs. 15, 16, 23). In addition, ampliCan provides meta plots that aggregate
information across groups of experiments allowing for visualization of deletions, mismatches or
insertions across groups of gRNAs, amplicons or any other set. This can for instance show the
combined activity of a single guide across multiple experiments.

ampliCan builds on top of ggbio* and ggplot2® packages and provides higher level functions
that automatically group event data (eg. collapse on start and end of deletion) and plot results.
Users can extend those plot objects and treat them like any other ggplot2 object. ampliCan
supports multiple types of meta plots to facilitate comparison of not only the gRNAs, but also
any group that a user wants e.g. barcode, amplicon, type of treatment (Supplementary Figs.
11,19, 22).

Supplementary Note 8: Filtering of noise

Multiple sources of noise can confound the estimation of cut rates, low quality reads,
primer-dimers, PCR off-target amplification and sequencing artifacts. ampliCan has three filters
to remove noise from different sources: 1) low quality reads, 2) primer-dimers, and 3)
erroneously assigned reads and sequencing artifacts.

1. Low quality reads

ampliCan offers basic read quality overview with the use of ShortRead® package and filters for
minimum base quality (default: 0) in a read, average base minimum quality (default avg min: 30)
and the presence of ambiguous (N) letters.

2. Primer-dimers

Filtering primer-dimers is a balance between getting rid of erroneous reads and allowing for
longer deletions. For instance, CrispRVariants ignores all alignments with deletions larger than
33 bp (the guide plus a buffer of 5 bp) and is frequently unable to map long insertions (Fig. 2B,
Supplementary Fig. 6). This effectively removes all primer dimers, but also ignores any bona
fide longer indels. ampliCan instead tries to estimate the likely length of a primer dimer deletion
by taking the length of the amplicon, subtracting the primer lengths with a small buffer (30 bp)
to arrive at maximally allowed deletion length. This results in a more realistic estimate of the
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length of artificial deletions that would result from primer-dimers. As an example, for an
amplicon of size 150 with primers of length 20, the maximum deletion length would be 80 bp
(150-(2*20+30)).

3. Erroneously assigned reads and sequencing artifacts

An assumption of ampliCan is that a CRISPR editing event will result in a low number of indel
events resulting in a good alignment with few discrepancies to the reference sequence or (if
available) the control experiment. To accomplish this ampliCan uses a two dimensional
clustering method based on sequence alignment score and sequence alignment indel events
to filter out erroneous reads and sequencing artifacts. This takes all alignments and performs
k-means clustering with different 1-3 clusters. It then uses the silhouette criterion to determine
the optimal number of clusters. In the case of 1 cluster, all reads are either edited or perfectly
matching the reference/control. In the case of 2 you have both edited and unedited reads. In
the case of 3 clusters, cluster with center that has the biggest humber of events and lowest
alignment score (in normalized relation on 0-1 scale) means that you in addition have a group
of sequencing artifacts or reads that poorly align to the loci (example in Supplementary Fig.
13).

ampliCan provides plots that shows the impact of each of the filtering steps, across the whole
library for read quality (Supplementary Fig. 24) and for each experiments for primer-dimer and
assignment/artifacts issues (Supplementary Fig. 10).

Supplementary Note 9: Read assignment

ampliCan assigns reads to the respective experiment by matching primers used in the
amplification of the loci. These region should be immutable and match the reads since an indel
spanning a primer would either result in failure to amplify the locus or be “corrected” by the
primer when it amplifies the target site. However, since small sequencing and primer synthesis
errors could potentially occur in the primer part ampliCan allows for up to 2 mismatches (user
customizable) between the primers and reads. During this process it is possible that some
reads will be unassigned and not match any of the experiments. While these reads are typically
noise from the high-throughput nature of the sequencing experiment, they could in some cases
be helpful in troubleshooting failed experiments. ampliCan therefore provides human readable
alignments of the top 5 most abundant forward and reverse read pairs aligned to each other
(Supplementary Fig. 17). In some cases these correspond to off-target PCR amplicons and
close homologous regions as well as errors in the specification of the experiment.
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Supplementary Fig 1. Examples of normalization with controls on 3 real

experiments. In heterogeneous data it can be challenging to derive the true mutation
profile. A. ampliCan automatically removes wild type mutations and reduce the number
of frameshift inducing mutations from 68% to 36%. B. A large number of insertions
could be mistaken for CRISPR activity reducing the total indel rate from 53 % to 3 %.
C. A large fraction of reads (39%) carry a G instead of an A. ampliCan automatically
adjusts reads in relation to the control to merge unedited reads and obtain a more
accurate count.



T TCA CGTTTATTCTGCC --ACT---ATACCCT

TGGTCA AAC- - - - - TGGTGGAGGTCACT ATACCCT
TGGTCA CGTTTATTCTGCCGGACT - == ==e=caceaacm-- ATACCCT
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Supplementary Fig 2. Alignments dependent on multiple parameters and are often a tradeoff between the cost
of gaps and the cost of mismatches. The top alignment shows a typical alignment for many aligners that are not
optimized for genome editing (gap opening 10, gap extension 2, match 5, mismatch -4 and no end gap penalty).
The bottom alignment, illustrates the result with ampliCan parameters (gap opening -25, gap extension 0, match
5, mismatch -4 and no end gap penalty) that are optimized for few events as is expected for CRISPR activity.
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Supplementary Fig 3. Comparison of leading tools on real CRISPR
experiments. A. Summary of differences between ampliCan and other tools.
CrispRVariants reports similar editing efficiencies to ampliCan in ~80% out of 263
experiments. The remaining experiments are due to controls (~5%) and
processing (~15%) B. Experiments (x axis, sorted) where estimated mutation
efficiency differs by at least 5% from non-normalized data. y-axis shows
differences in relation to non-normalized ampliCan estimates. Differences
between tools predictions staying above line created by ampliCan prediction are
likely to be due to lack of normalization, while the predictions below the ampliCan
are likely due to the alignments, processing and filtering of data.
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Supplementary Fig 4. A. Performance of leading tools when facing different
mutation efficiencies and fractions of contaminating reads. These sets are obtained
from the benchmark data in Lindsay et al. (CrispRVariants)?, Synthetic Dataset 2
(Supplementary Fig. 10 in Lindsay et al.?). Each dot in the plot correspond to the
estimated mutation efficiency calculated by a single tool for a single experiment, while
the dotted line shows the true mutation efficiency The fraction of contaminant reads
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Supplementary Fig 5. The data from left panel of Fig. 2 split by the true

mutation efficiency and with a baseline of 0% true mutation efficiency added for
comparison. The dots shows estimated mutation efficiency by leading tools on
reads with increasing contamination (as 0, 10 and 25 percentage of all reads)
with different mismatch rate of the off-target reads (10%, 20%, 30%). Each
point corresponds to one experiment. True mutation efficiency is indicated with
dotted lines, and labelled to the right of the charts. Contamination is simulated
by introducing random mismatches (Contaminant read mismatch rate) in reads
mapping to the loci, similar to the benchmark in Lindsay et al.2. The mismatch
rate is indicated at the top. Only ampliCan shows robustness to the whole range
of different mismatch rates and mutational efficiencies.
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Supplementary Fig 6. Performance of leading tools grouped on simulated data with
large indels. Some tools find larger indels challenging. ampliCan consistently returns
values closest to the real mutation efficiency.
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Supplementary Fig 7. Performance of ampliCan, CRISPResso and CRISPResso

Pooled on simulated data with variable donor templates. Dotted line represents real
HDR efficiency. Mismatch, insertions and deletions represent different donor types of
variable length (20 donors from ranges 5-70bp). ampliCan manages to handle all kinds
of donor templates. CRISPResso in situations where alignment is imperfect may have
trouble with correct estimation. No noise of NHEJ was added in this simulation.
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Supplementary Fig 8. A number of plots are produced by ampliCan to investigate editing events: mismatches to
the reference (top), aggregated deletions (middle) and aggregated insertions (bottom). Dashed blue vertical lines
indicate where the primers start and end. The black dashed lines mark the region around the cut site where we
require a mutation event to overlap to be considered a CRISPR event. The top half of the plots shows the forward
reads, while the bottom shows the reverse reads. The amplicon sequence is shown in the middle, with uppercase
letters indicating the gRNA. The y axis shows the efficiency of the events summed over all reads. This allows for
immediately discerning which bases are edited above the background noise from sequencing.
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Supplementary Fig 9. Example of a heterogeneity plot produced by ampliCan. In
this, identical reads are collapsed together and grouped by gRNA. A stronger shade of
yellow indicates a large group of homogeneous reads. This plot can give insight into the
heterogeneity of the outcome. A high level of heterogeneity can indicate sequencing
problems or mosaicism. Reads can also be aggregated on experiments or any other
user selected grouping rather than guides.
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Supplementary Fig 10. Example of bar plot showing fraction of reads that were
filtered out of the experiments. Red bars correspond to a primer-dimer filter, and blue
bars indicate low quality reads.

Tom- |

Betty- | 4| ’—

75 10

Group

S

50
Percentage of reads (not filtered) that have indel
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Supplementary Fig 12. Overview of the ampliCan pipeline
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Supplementary Fig 13. Example of k-means clustering of reads during filtering of
contaminant reads. A low alignment score (x axis) combined with a high number of
events (y axis) indicate erroneous reads. Silhouette criterion is used to determine
whether data should be clustered into two (read with no edits and reads with editing
events) or three clusters (a noise cluster). In the case of three clusters, the cluster with
its center (purple) closest to the upper left corner is filtered.
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Supplementary Fig 14. The paired-end read consensus rules for ampliCan. Events
marked in green are considered real cut sites while those in gray are not. When reads
from forward (purple) and reverse (blue) reads are in agreement there is a consensus
(top row). In situations where an event is only covered by one read, that read is
preferred. When events from the two reads are in disagreement, but overlap each other,
the event from the strand with a higher alignment score will be used. In cases where
one of the strands ends prematurely we treat the situation as if it only has one strand. In
rare case where there are events on one strand and the other has continuous alignment
ampliCan allows users to define the behaviour (default is promiscuous rule enabled).
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Supplementary Fig 15. ampliCan evaluates forward and reverse reads separately which allows users to spot potential

problems. Here, purple colour indicates cuts outside of the gRNA expected cut site, a large majority of those reads comes
from problematic alignments, where forward read and reverse read are in disagreement.
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Supplementary Fig 16. Mismatch plot (top), deletion plot (middle) and insertion plot (bottom). This presents a case where
the user might have mischaracterized their own experiment which can be spotted with these plots. Here nickases were
used, but only one of the gRNAs was specified in the configuration file. A bimodal distribution of mismatch events and
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insertions is the result. A quick examination allows the user to realize the expected cut site should be extended to include
the second gRNA, enabling more precise mutation efficiency estimation.
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Supplementary Fig 17.
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1 AAAT--ACTGTCTTGTGACCAAACCTTCTTAAGGTGCTGTTTT-GATGAT

I [ NI RN AR N B
1 AAGCTGACGGCTAAATGA- - AAAATATCTGAAACATCTGTTCCAGGTGCT

48 AAACTTTATTGTGCTTTTGTAGTTGTGCCCCTTGTGTTGGCAGAGGGTCA

| 11 {0 I 0 Y 0
49 GCGTATGCCAGGGCAGA-GAAGAAG-GTCAGGGAAGGTCACTGGAGGTCA

98 ---GCAGACCAGTAAGTCTTCTCAATTTCTTTTATTTATGTATATGTAGT
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97 CTGGGATACCCTT- - - TCTTCCCACACCAATGGGGAAAGGAGTCCTGCCA
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Frequency

0.0714286

Screenshot of the example barcode report, top unassigned

read section. Human readable alignment of forward and reverse reads of the top most
frequent unassigned reads is presented. Huge fragmentation and poor alignment
suggest contamination, while low frequency indicate proper specification of the primers

in the config file.
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Supplementary Fig 18.

Two common methods for normalization using controls. In the

first, the frequencies from events in the control sample are subtracted from the
frequencies in the treated sample (subtraction method). In the second method, all
events occurring in the control above a frequency threshold (ampliCan default: 0.01) are
removed from the treated sample. The latter is more robust to stochastic differences.
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Supplementary Fig 19. Deletion plots produced by ampliCan for two experiments showing deletions in Cas9
injected (red) versus control (cyan) samples. The archs indicate deletions (x-axis, start to end of arch) present in
the samples at a frequency indicated by the y-axis and transparency. The blue, vertical dotted lines shows the
start and end of the primers. In the top panel experiment normalization using the subtraction method would filter
the big deletion also present in the control, but it would not completely get rid of the 1bp long deletion in the lower
panel experiment. Both cases would get expunged with the default ampliCan normalization.
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Normalized experiments
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# of reads with insertions larger than 10bp [% of indels]

Supplementary Fig 20. Fraction of reads having indels greater than 10 bp across 176
experiments. Each dot represents one experiment and are grouped in rows by having
the same gRNA (replicates). All experiments are normalized using wild type controls
ensuring that these are real indel events. The higher mean for some of the replicated

experiments suggests that some gRNAs have a higher chance of resulting in long

indels.
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Supplementary Fig 21.  Distribution of insertions width for lentiviral samples on Chari
et al. datasets. Shows the proportion (y-axis) of reads with a given insert length (x-axis).
The insert shows a population of unintended larger insertions. Around 90% of these
originate from the lentiviral vector used to transfect the cells.
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Supplementary Fig 22. Example of a deletion metaplot produced by ampliCan
summarizing multiple experiments. Here, an aggregation of editing events from many

experiments (many targets) using the same gRNA is presented giving an overall gRNA
cut profile. Position 0 is relative to the first 5’ base of gRNA.

27



= — |

R -

2]
[
[0
£
2 ® o :
x
(0]
©
[0
N
©
£
(o]
Z
0 20 40 60

# of reads with with ambiguous indels [% of all reads]

Supplementary Fig 23. Percentage of reads with ambiguous indels caused by
disagreement of forward and reverse reads. ampliCan consensus rules help to mitigate
mis-estimation that could arise from these events.
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Supplementary Fig 24. Waffle plot of the quality of reads across all experiments.
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Supplementary Tables

Tool Aligner Notes

ampliCan Needleman-
Wunsch from
Biostrings’
as local
alignment

CrispRVariant? BWA-MEM? Filters primer dimers by restricting
as global start/end of indel, but may result in
alignment missing larger deletions. Larger
insertions can be missed through

mapping.

ampliconDIVider® BWA-MEM Sometimes returns estimates above
(ampliconDIV_minimal.sh) [ as global 100%, these values were filtered. We
alignment run only the variant counting step of the

pipeline. The full pipeline requires the
commercial novoAlign.

CRISPResso & BWA-MEM + | Poor performance due to unknown

CRISPRessoPooled™ FLASH (in issues. It was installed and run in the
Pooled) same fashion as in Lindsay et al.
as local analysis. CRISPRessoPooled uses
alignment local-global alignment strategy.

Supplementary Tab 1. Table of compared tools, with align strategy.

IID: ID_1 read_id: 1 Count: 3

AAGCTGACGGCTAAATGAAAAAT GTCAAACGT CTGTTCCAG = = = = = = = = == = = == = = m e o m e e e o e o e AAAAAAAAAAAAAAAAAAAATTCCCACACCAATGGGGAAAGGAGT CCTGCCAGATGACCATCC
CAACTGTGTTGCAGCAGCCAGATCCAGGTGTGTTTGCGCTTGTGTAATT
AAGCTGACGGCTAAATGAAAAATGTCAAACATCTGTTCCAGGTGCTGCGTATGCCAGGGCAGAGGAGGTGGTCAGGGAACTGGTGGAGGTCACTGGGATACCCTTTC - - - - - e e e e o - TTCCCACACCAATGGGGAAAGGAGTCCTGCCAGATGACCATCC
CAACTGTGTTGCTGCAGCCAGATCCAGGTGTGTTTGCGCTTGTGTAATT
AAGCTGACGGCTAAATGAAAAATGTCAAACGTCTGTTCCAG- === === mm s s s s s e e oo m o oo oo oooooooco oo AAAAAAAAAAAAAAAAAAAATTCCCACACCAATGGGGAAAGGAGTCCTGCCAGATGACCATCC
CAACTGTGTTGCAGCAGCCAGATCCAGGTGTGTTTGCGCTTGTGTAATT
AAGCTGACGGCTAAATGAAAAATGTCAAACATCTGTTCCAGGTGCTGCGTATGCCAGGGCAGAGGAGGTGGTCAGGGAACTGGTGGAGGTCACTGGGATACCCTTTC == - m s m e e e e e oo - TTCCCACACCAATGGGGAAAGGAGTCCTGCCAGATGACCATCC

CAACTGTGTTGCTGCAGCCAGATCCAGGTGTGTTTGCGCTTGTGTAATT

ID: ID_1 read_id: 2 Count: 2

AAGCTGACGGCTAAATGAAAAATGTCAAACGTCTGTT === === =====ceeecoeo e e e e ceccececcecccececoccmcecceccocaceaaae AAAAAAAAAAAAAAAAAAAACACACCAATGGGGAAAGGAGT CCTGCCAGATGACCATCC
CAACTGTGTTGCAGCAGCCAGATCCAGGTGTGTTTGCGCTTGTGTAATT
AAGCTGACGGCTAAATGAAAAATGTCAAACATCTGTTCCAGGTGCTGCGTATGCCAGGGCAGAGGAGGTGGTCAGGGAACTGGTGGAGGTCACTGGGATACCCTTTCTTCC - - mm e e e e e e - CACACCAATGGGGAAAGGAGTCCTGCCAGATGACCATCC
CAACTGTGTTGCTGCAGCCAGATCCAGGTGTGTTTGCGCTTGTGTAATT
AAGCTGACGGCTAAATGAAAAAT GTCAAACGT CTGT T = = = = = = = = = = = = = = m o m e o e o e e e o e o e e e oo a AAAAAAAAAAAAAAAAAAAACACACCAATGGGGAAAGGAGT CCTGCCAGATGACCATCC
CAACTGTGTTGCAGCAGCCAGATCCAGGTGTGTTTGCGCTTGTGTAATT
AAGCTGACGGCTAAATGAAAAATGTCAAACATCTGTTCCAGGTGCTGCGTATGCCAGGGCAGAGGAGGTGGTCAGGGAACTGGTGGAGGTCACTGGGATACCCTTTCTTC - - - - - - m e e e oo - CACACCAATGGGGAAAGGAGTCCTGCCAGATGACCATCC

Supplementary Tab 2. Example of human readable output. Aligned reads are
assigned to the experiment (ID, read_id) and sorted based on count (Count). For
each pair alignment is presented with top part representing forward read aligned
to amplicon and bottom presenting reverse read aligned to amplicon.

30



|seqnames start end width strand originally replacement

ID_1 108 127 20+
ID_1 112 131 20+
ID_1 42 107 66+
ID_1 38 111 74+
ID_1 24 173 150+
ID_1 34 117 84+
ID_1 31 31 1+
ID_1 163 163 1+
ID_1 31 31 1+
ID_1 163 163 1+
ID_1 23 23 1+
ID_1 176 176 1+
ID_1 177 177 1+
ID_1 31 31 1+
ID_1 171 171 1+
ID_1 108 127  20-
ID_1 112 131  20-
ID_1 42 107  66-
ID_1 38 111 74-
ID_1 24 173 150-
ID_1 34 117  84-
ID_1 31 31 1)-
ID_1 163 163 1)-
ID_1 31 31 1)-
ID_1 163 163 il-
ID_1 23| 23 1-
ID_1 176 176 1-
ID_1 177 177 1)-
ID_1 31 31 1]-
ID_1 171 171 1-
ID_2 115 127 13-
ID 2 106 114 9-
ID 2 101 105 5-
ID 2 115 127 13+
ID 2 106 114 9+
ID_2 101 105 54
ID 3 171 171 1+
ID 3 74 89 16+
ID_3 66 83 18+
Supplementary Tab 3.

meta-columns. This
manipulation and processing of the data.

AAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAA

A G

T A

A G

T A

T G

A T

G Cc

A G

G A
AAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAA

A G

T A

A G

i) A

T G

A T

G Cc

A G

G A
T

CCCCCCcCccccceceece

type
insertion
insertion
deletion
deletion
deletion
deletion
mismatch
mismatch
mismatch
mismatch
mismatch
mismatch
mismatch
mismatch
mismatch
insertion
insertion
deletion
deletion
deletion
deletion
mismatch
mismatch
mismatch
mismatch
mismatch
mismatch
mismatch
mismatch
mismatch
deletion
deletion
deletion
deletion
deletion
deletion
insertion
insertion
deletion

HWR WNRFEFWONFEFLHDDIWWWNNEFE R, LWNFENFELDDWWWNNERELWNEN-=

read _id score counts

597
557
597
557
193
532
597
597
557
557
193
193
193
532
532
597
557
597
557
193
532
597
597
557
557
193
193
193
532
532
845
865
885
845
865
885
819
860
819

Q= O =N W NWRMFEEENDNWWERENWONWRRBRBBRNNWRWE=E=NDWNDW

Example GenomicRanges table output with additional

representation of alignments allows for
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| ) Barnn}fs Fnrwaereads Revevse’ Reads Gr(;up Control guideRNA ) Forward_Primer Reverse_Primer Dlre(}tmn Amplicon
ID_1 barcode_1 R1_001.fastq R2_001.fastq Betty 0 AGGTGGTCAGGGAACTGG AAGCTGACGGCTAAATGA AATTACACAAGCGCAAACACAC 0 ..cagaggAGGTGGTCAGGGAACTGGtgga. ..

ID_2 barcode_1 R1_001.fastq R2_001.fastq Tom O TGACCCTCTGCCAACACAAGGGG TGACCAAACCTTCTTAAGGTGC CTCTGCTGCAAAATGCAAGG 1 ...agttgtgCCCCTTGTGTTGGCAGAGGGTCAG...
ID_3 barcode_2 R1_002.fastq R2 002fastg Tom O AGGTGGTCAGGGAACTGG AAGCTGACGGCTAAATGA AATTACACAAGCGCAAACACAC 0 .ggAGGTGGTCAGGGAACTGGtgga...
ID_4 barcode 2 R1_002.fastq R2_002.fastq Betty 0 GTCCCTGCAACATTAAAGGCCGG GCTGGCAACATTCCTACCAGT GAGCGCTGAGGCAGGATTAT 0 ..ccaGTCCCTGCAACATTAAAGGCCGGaag..

Supplementary Tab 4. Example ampliCan config file. ampliCan requires this file
as minimal input, together with relevant fastq files. More precise, up to date
description of the file can be found in the ampliCan vignettes.
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