
Supplementary Information

Robustness to the nature of the transmission model

We have trained classifiers using simple structural features of phylogenetic trees, and used classification
to distinguish between outbreaks with a super-spreader, outbreaks with homogeneous transmission,
and outbreaks built from chains of transmission. In the absence of real-world datasets in which the true
transmission dynamics are known, we have used simulated outbreaks to train the classifiers. However,
this necessitates specifying how the simulations are performed, and determining whether results are
robust to our choice of model.

We applied our SVM classifier to simulated phylogenies described in Robinson et al [7]. In that work,
dynamic networks of sexual contacts were created based on random graphs with a Poisson distribution
(termed ’ER’ because they are essentially Erdos-Renyi graphs), and with a distribution of contacts
derived from the National Survey on Sexual Attitudes and Lifestyles (NATSAL) [3]. In our simulations,
individuals with many contacts reported over the 5-year time frame in the survey had relationships
of shorter durations, on average, than individuals who reported only a few contacts. In [7], when
epidemics were sampled at one time after the epidemic had spread through the network for some years,
the branch lengths, cluster sizes and Colless imbalances of phylogenies did not vary between NATSAL-
type contact networks and ER-type networks. This is despite the fact that NATSAL-type networks
have individuals with far more contacts than the mean (ie a “core group” of likely super-spreaders).
However, when sampling was done over time, the phylogenies from NATSAL-type networks showed
higher imbalance than those from ER-type networks, consistent with the work of Leventhal et al [4] on
static networks. Here, we used the phylogenies from [7] with a duration of infectiousness d = 40 weeks,
both under same-time sampling (homochronous) and sampling-through-time (heterochronous). Trees
were inferred from simulated sequences using dnaml in the phylip package. Methods are described in
detail in [7].

When we classified the homogeneous (ER) and super-spreader (NATSAL-derived) sexual contact
networks, we found that the classification was poor on all groups of trees when hosts were sampled
at the same time. Indeed, we found no differences between the distributions of any of the topological
features we examined. However, in the heterochronous case, when individuals were sampled through-
out the outbreak, the classifiers both performed very well. The KNN classifier classified 98.8% of the
homogeneous-network trees correctly and all of the NATSAL-derived (super-spreader) trees correctly;
the SVM classifier had no errors (AUC of 1), grouping NATSAL-derived trees with super-spreaders
and ER-derived trees with homogeneous transmission. This is despite the fact that the parameters of
the process, contact network, tree inference method and tree sizes were very different from the simu-
lated homogenous, super-spreading, and chain networks the classifiers were trained upon. The basis of
the sampling difference is that super-spreaders (or core group members) are likely to be infected early,
and so are only included in the sample under heterochronous sampling. This result is consistent with
[7], where only trees from heterochronous sampling showed differences in imbalance, branch lengths
and cluster sizes between NATSAL and ER networks.

Phylogenetic noise

In the results reported in the main text, we extract the true phylogeny from the simulations, based
on the fact that we know who infected whom, and can therefore determine the time of the MRCA of
all the nodes in the tree. In real outbreaks, this information is of course not available. To determine
the extent to which our results are sensitive to phylogenetic noise, we created neighbour-joining trees
from the simulations and applied the classification models to these.

We created neighbour-joining phylogenies as follows. The initial (seed) individuals were assigned
a random sequence of A, C, T and G of 1000 base pairs in length. When an individual infected
another individual, the transmitted sequence was mutated and the number of mutations reflected the
time elapsed. As an example, suppose individual i was infected with sequence si at time t0i and
then infected individuals j and k at times tij and tik with tij < tik. The time elapsed between i’s
infection and j’s infection is tij − t0i. Individual j obtains a sequence sj which is si with m mutations,
where m is Poisson-distributed with mean µ(tij − t0i). Individual k obtains a sequence sk, which is
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Truth Hom SS Ch
Classification

Hom 704 302 6
SS 296 640 441
Ch 0 58 53

Table S1: KNN classification of neighbour-joining phylogenies

sj with a number of mutations distributed as Poiss(µ(tik − tij)). Under this model, k’s sequence has
the mutations occured in host i before i infected j, as well as further variation reflecting the fact that
k was infected at a point in time after j. This reflects the simplifying assumption, commonly made,
that branching points in the phylogeny are very close to or the same as transmission events [10, 11, 9].
Sequences were sampled at the end of the duration of infection. The mutation rate µ was 6 SNPs
per month - biologically unrealistic but required in the current scenario to generate sufficient genetic
diversity over the short simulation timescales. If sufficient diversity is present for a phylogeny to be
inferred, the mutation rate does not affect the structural properties computed here, and so does not
affect the classification. Sampled simulated genome sequences from each outbreak case were aligned
and phylogenetic trees for each of the networks were created using matlab’s seqpdist and seqneighjoin
functions [5]. Trees were constructed using a neighbour-joining method based on the Jukes-Cantor
distance between sequences.

We found that phylogenetic noise has a large effect on the quality of KNN predictions and a modest
effect on the SVM classification. It reduces the specificity and sensitivity of both classifiers, but SVM
classification remains good. Table S1 shows the KNN results, illustrating that classification of chain-
like patterns is particularly poor. Chain genealogies have a very characteristic shape, in which nearly
all internal nodes of the tree have one tip descendant. Due to variable numbers of mutations between
transmission events, the neighbour-joining trees fail to capture this structure sufficiently. Figure S1
shows the ROC when the SVM classifier is applied to homogeneous and super-spreader trees created
with the neighbour-joining method.

Figure S1: SVM classification (ROC curves) from the neighbour-joining phylogenies. Areas under the
curve (AUCS) are 0.79, 0.79, 0.7 and 072 for the baseline, variable parameters, variable sampling and
variable sampling with variable parameters lines respectively.

Additional topological summary measures

We considered a number of topological summary measures. These are listed in Table S2 and comprise
different combinations of the ladder sizes, imbalance, depths, widths, and numbers of cherry formations
[6] in the trees. Because they are not mutually independent, using more of these measures did not
improve the classification.

Cherry formations, one of the features we examined, were studied in recent work by Frost and Volz
[1]. They found expressions for the Sackin imbalance and number of cherries in virus phylodynamic
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models. A “cherry” is a pair of tips sharing a direct common ancestor, or equivalently, an internal
node of the tree with two tip descendants [6]. Frost and Volz found that the number of cherries
depended on the ratio of contact rates in two distinct subpopulations, and on the extent to which these
subpopulations mixed preferentially within themselves. As such, it is not surprising that we did not
find a strong signal in the cherry numbers, as their relationship to super-spreaders is complex. Also, our
model is very different from that of Volz and Frost, in that we have modeled small outbreak trees in non-
saturating outbreaks, and their work represents a viral pathogen (HIV) with large enough incidence
and prevalence to be modeled with ordinary differential equations. Nonetheless, their approach gives
an account of how and why the structures of topologies differ under different underlying epidemiological
dynamics, including increased imbalance. Earlier work has also associated imbalance with positive
selection and with super-spreaders [2, 4]; intuitively, a lineage corresponding to a super-spreader or
one under positive selection would branch more rapidly than others, leaving asymmetric numbers of
descendants on the right and left sides of descending sub-trees.

We have used what we term “ladders” in the trees; these are connected sets of internal nodes with
a single leaf descendant. Our ladders are closely related to the “caterpillars” studied by Rosenberg
[8]. The difference is that a caterpillar terminates in two tips (a cherry), whereas we include ladder
formations further up in the tree, terminating in more complex sub-trees. See Figure S2 for an
illustration. In our outbreaks, super-spreaders were infected early, and their sequences continued to
mutate throughout the outbreak. As such, the signatures of super-spreading were likely to occur in
the “ancestral” sequences – those of the super-spreader and their secondary infections prior to the
mutations that occurred during the remainder of the outbreak. This motivates the use of structural
features that occur internally in the tree, in contrast to cherries which reflect the dynamics among the
most recently observed sequences. Cherry numbers would also be expected to change depending on
sampling, though an exploration of how sampling affects phylogenetic structure is beyond the scope
of this work.

Figure S2: Illustration of a cherry formation, a ladder and a caterpillar in a phylogenetic tree.

Model parameters

Figure S3 shows the distribution of infectious period in the model; this was the same for both types
of networks. The association between topological structures and transmission via super-spreaders is
dependent on these parameters, and in particular, when the duration of infection becomes quite long
(greater than 2 years) and the value of R decreases (below 1.3), the associations we report become
weaker as a result of the very spread-out nature of transmission with these parameters. However, the
results were robust to variation of the parameters such that β/D was uniform in [1.25, 2.5].
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Name Description Relation to outbreak type

* Imbalance Colless’s I, defined in main text Higher for super-spreader out-
breaks

IL portion Portion of internal nodes with one
leaf descendant

No notable difference

* max(l/N) Maximum ladder length / number
of leaves

Higher for super-spreader out-
breaks

IL nodes not in ladder Number of internal nodes with one
leaf descendant that are not in a lad-
der formation

No notable difference

* Scaled depth Maximum depth / number of leaves Higher for super-spreader
outbreaks and anti-correlated
with width/depth

* ∆w As in main text; max difference in
widths at successive depths

Lower for super-spreader out-
breaks

* Maximum width/N Maximum width over number of
leaves

Lower for super-spreader out-
breaks

Cherry number/N Number of cherries over number of
leaves

Slightly higher for super-
spreader outbreaks

φ Fraction of clades with very high im-
balance

Higher for super-spreader out-
breaks

Fraction high cherry numbers Fraction of clades with very many
cherries

Slightly lower for super-
spreader outbreaks

Table S2: Summary measures for phylogenetic trees. Those with an asterisk are the measures used to
train the classifiers reported in the main text.

Tree size

While the structural features were normalised linearly, we did not ensure that they were scaled to
be independent of tree size because the two real outbreaks were close in size. It is challenging to
characterise the asymptotic expected value of structural features (see for example [8]). For outbreaks
of the size reported here, asymptotic results may not be very meaningful in any case. For outbreaks
of the size reported here, asymptotic results may not be very meaningful in any case. Furthermore,
most of the work that has been done has focused on trees derived from one of several common simple
models, including the Yule model. These may not be good descriptions of trees from densely sampled
outbreaks, because in densely sampled outbreaks, the fact that infection processes are not memory-
less affects the shape of the trees. When there is a new infection, the infectious period of the original
host does not “reset”, as would match the assumptions of homogeneous branching process models.
Rather, the original host is likely to recover sooner than the newly-infected host, unless the infectious
period is truly memory-less. For these reasons, we are uncertain how the structural features should
scale on average with tree size, either in the Yule model or in a model adjusting for this asymmetry
in the infectious period. We computed the structural features and the classification for trees from
the homogeneous networks, and show the dependence on tree size in Figure S4. We found that the
classification does depend on the size, which is likely one reason that classification performed poorly
when only a few isolates had been observed. If we were interested in analysing much larger trees than
those here, then it would be necessary to use summary features that capture more higher-resolution
information about the tree at different scales than the very simple summary features we have used in
any case. Simulation results such as the ones reported here could be the basis of conjectures as to
how the structural summaries scale with tree size, but this analysis is beyond the scope of this work.
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Figure S3: Distribution of lengths of infectious period in the transmission model

Figure S4: The structural features of trees, showing the dependence of the results on the number of
tips included. Trees were derived from the homogeneous networks with the baseline parameter values
reported in the main text.
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D. Xie, et al. Estimating the basic reproductive number from viral sequence data. Molecular
Biology and Evolution, 29(1):347–357, 2012.

[10] Tanja Stadler and Sebastian Bonhoeffer. Uncovering epidemiological dynamics in heterogeneous
host populations using phylogenetic methods. Philosophical Transactions of the Royal Society B:
Biological Sciences, 368(1614), 2013.

[11] E.M. Volz, J.S. Koopman, M.J. Ward, A.L. Brown, and S.D.W. Frost. Simple epidemiologi-
cal dynamics explain phylogenetic clustering of hiv from patients with recent infection. PLoS
Computational Biology, 8(6):e1002552, 2012.

6


