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Methods 
Promoter library construction  
For pTpA and Abf1TATA libraries, a single-stranded oligonucleotide pool was ordered from IDT 
containing the random 80 bp oligonucleotide flanked by arms complementary to the promoter scaffold 
for use with Gibson assembly. These oligonucleotides were double stranded with a complementary 
primer sequence and Phusion polymerase master mix (NEB), gel purified and cloned into the dual 
reporter vector, ensuring a complexity of at least 108 for each library.  
The promoter scaffold sequences were:  
For pTpA: 
(poly-T; distal) 
GCTAGCAGGAATGATGCAAAAGGTTCCCGATTCGAACTGCATTTTTTTCACATC  
(poly-A; proximal) 
GGTTACGGCTGTTTCTTAATTAAAAAAAGATAGAAAACATTAGGAGTGTAACACAAGACTT
TCGGATCCTGAGCAGGCAAGATAAACGA (up to the theoretical TSS).   
For Abf1TATA:  
(Abf1 site; distal) 
GCTAGCTGATTATGGTAACTCTATCGGACTTGAGGGATCACATTTCACGCAGTATAGTTC  
(TATA-box; proximal) 
GGTTTATTGTTTATAAAAATTAGTTTAAACTGTTGTATATTTTTTCATCTAACGGAACAATA
GTAGGTTACGCTAGTTTGGATCCTGAGCAGGCAAGATAAACGA. In both cases, 80 Ns were 
inserted in between distal and proximal regions. 
For the scaffold library (sequences in Table S1), the library was cloned in two stages. In the first, the 
promoter scaffolds (synthesized by microarray synthesis) were amplified and cloned using Gibson 
Assembly. The resulting library had a common restriction site into which the N80 was cloned by 
ligation. 
 
Reporter assay 
Libraries were transformed into yeast (strain Y8205 (70)) using the lithium acetate method (71), starting 
with 1L of yeast harvested at an OD of 0.3-0.4, ensuring at least 108 cells were transformed (with the 
exception of the high-quality pTpA library, where a dilution series was performed to achieve the desired 
lower complexity). The yeast were then grown in SD-Ura for two days, diluting the media by 1:4 three 
times during this period. Media was then either changed to YPD, growing for at least 5 generations prior 
to cell sorting, or to YPGly and YPGal, with culture grown for at least 8 generations (due to the different 
carbon source). In the final 10 hours of growth prior to cell sorting, all cultures were allowed to grow 
continuously in log phase, never achieving an OD above 0.6, by diluting in fresh media.  All cultures 
were grown in a shaker incubator, at 30°C and approximately 250 RPM.  
Prior to sorting, yeast were spun down, washed once in ice-cold PBS, and then suspended in ice-cold 
PBS and kept on ice until cell sorting. Cells were sorted by log2(RFP/YFP) signal (using mCherry and 
GFP absorption/emission) on a Beckman-Coulter MoFlo Astrios, using 18 uniform bins, done in three 
batches of six bins each, with the exception of the scaffold library, which was sorted into non-uniform 



 2 

bins to account for the higher variance at low expression levels and the larger dynamic range of the 
library. The FACS configuration varied between experiments (e.g., different laser intensities), resulting 
in different baseline expression values. Post sort, cells were spun down and resuspended in SC-Ura 
(supplemented with 1% Gal for Gal sort), grown for 2-3 days, shaking at 30°C. The plasmids were then 
isolated, the promoter region amplified, Nextera adaptors and multiplexing indices added, and the 
resulting libraries sequenced with 76 bp, paired-end reads, using 150 cycle kits on an Illumina NextSeq 
sequencer, achieving complete coverage of the promoter, including overlap in the center. For the 
scaffold library, the libraries were instead sequenced with a 300 cycle kit using a 190 bp read 1 and 112 
bp read 2. 
 
MNase-Seq experiment 
Aliquots of the pTpA library, expected to correspond to ~100,000 (sample A) or ~200,000 (sample B) 
viable cells were each cultured in duplicate (Rep 1 and 2) in YPD for ~16 hours to an OD of ~0.4-1.0. 
For each sample, 0.5 mL of culture was pelleted and frozen to prepare input genomic DNA, and 3 mL of 
culture was crosslinked with 1% formaldehyde, washed twice with 1mL H2O supplemented with a 
protease inhibitor cocktail, and the pellet frozen for MNase treatment. These pellets were next 
spheroplasted using zymolyase, and spheroplasts were lysed in NP buffer (10 mM Tris pH 7.4, 50 mM 
NaCl, 5 mM MgCl2, 1 mM CaCl2, and 0.075% NP-40, freshly supplemented with 1 mM β-
mercaptoethanol, 500 μM spermidine, and EDTA-free protease inhibitor cocktail) at a concentration of 
2*106 cells/ µl of NP buffer. 0.125 units of Worthington MNase were added per 10µl of lysed 
spheroplasts and MNase digestion was preformed at 37°C for 20 minutes. MNase digestion was stopped 
by addition of equal volume of 2X MNase Stop Buffer (220 mM NaCl, 0.2% SDS, 0.2% sodium 
deoxycholate, 10 mM EDTA, 2% Triton X-100, EDTA-free protease inhibitor cocktail). MNased 
chromatin samples were treated with RNase A and proteinase K, reverse cross linked, separated on a 4% 
agarose gel and mononucleosome bands were isolated. Genomic DNA was prepared using the 
Masterpure Yeast Genomic DNA Preparation Kit (Epicenter). For both MNase and genomic DNA, the 
variable region of the promoter library was amplified, and adaptors added for sequencing using an 
Illumina NextSeq with 76 bp single-end reads.  
 
Theoretical TFBS abundance 
We estimated the abundance of TFBSs in random DNA by analyzing the information contents (ICs) of 
known motifs associated with yeast TFs (25). The IC of a motif (ICmotif ) is proportional to the frequency 
(fmotif) with which that motif is expected to be found on either strand of random DNA with the following 
relationship, where ICmotif is expressed in bits:  

 
The number of instances present in a library of a given TFBS motif, assuming that binding sites are 
independent, is the number of positions in the library that could potentially contain a complete binding 
site multiplied by the expected frequency of the TFBS motif. For a library with a complexity of 107, 
comprised of 80 bp sequences, the number of possible TFBSs is (80 – lengthmotif + 1) * 107.  
For Figure 1B, we used the average motif length as the lengthmotif for all motifs so that the x axis could 
include frequency and the expected number of binding sites. For this analysis, motifs for zinc cluster 
monomers were excluded, since these are abundant in the database (25) and are likely to represent only a 
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half TFBS. Several TFBS motifs that are long but generally have low IC content, were also excluded 
since they are unlikely to represent true TF specificities (Table S2). 
 
Promoter sequence consolidation 
The paired end reads representing both sides of the promoter sequence were aligned using the 
overlapping sequence in the middle, constrained to have 40 (+/-15) bp of overlap for pTpA and 
Abf1TATA libraries and 16 (+/-10) bp for the scaffold library, and discarding any reads that failed to 
align well within these constraints. Note that only ~0.3µg of N80 DNA were received from IDT, and 
only ~108 of these were successfully cloned; these are only a vanishingly small portion of the possible 
480 sequences in N80 (which would weigh ~1026 kg even with just one copy of each possible molecule). 
Thus, any very similar sequences we observe represent the same source promoter with high probability, 
with minor differences likely corresponding to PCR or sequencing errors. Consequently, promoters of 
pTpA and Abf1TATA libraries were aligned to themselves using Bowtie2 (version 2.2.1) (72) to 
identify clusters of related sequences, merging these clusters and taking the sequence with the most 
reads as the “true” promoter sequence for each cluster. For the scaffold library, promoters were first 
clustered into those sharing a common scaffold, using Bowtie2 to align to the known scaffold sequences 
(using the following parameters: -L 18 -p 4 -f --no-sq --no-head --np 0 --n-ceil C,100). Promoters were 
then sub-clustered within each scaffold using the sequences of the random 80-mers using CD-HIT 
(version 4.6.5, using the following parameters: -g 1 -p 1 -r 0 -c 0.96 -uS 0.05 -uL 0.05 -mismatch -1) 
(73), yielding a single consensus sequence for each promoter. 
 
Estimating the proportion of active random promoters 
We estimated the proportion of random promoters (those with both random 80-mers and scaffolds 
designed to mimic random DNA) that were expressed at detectable levels using the empirical 
log(YFP/RFP) distributions of regrown, previously-sorted, cells (Figure 2B). We considered any bin 
above the lowest expression bin to be “expressed”, but since some cells might end up in this lowest 
expression bin upon re-sorting, we attempted to estimate the number of cells that would remain 
expressed upon resorting. AUROC statistics were calculated to estimate how well the cells sorted into 
each bin can be distinguished from those sorted into the not-expressed bin. Here, each AUROC is 
equivalent to the probability that a cell sorted into the corresponding expressing bin is expressed higher 
than a randomly selected cell from the not-expressed bin. Thus, cell proportions in expressing bins were 
weighted by the corresponding AUROC for that bin to get an estimate of the number of expressing 
random promoters, 83%.  
 
Linear transcription model 
TF motifs (Table S2) were taken from the YeTFaSCo database (25) and supplemented with the poly-A 
motif (AAAAA), which we initialized to 100% A at all five positions. Motifs were trimmed to fill 30 bp 
1-d convolutional filters, centering the motif if it was less than 30 bp, and, where motifs were longer 
than 30 bp, trimming off the least informative bases until it was 30 bp.   
To identify dissociation constants, Kd, for each TFBS motif and each potential binding site instance, 
motif filters were applied to DNA sequences and their reverse complements by scanning them with the 
TFBS motif position weight matrix. Binding to each site in the DNA was determined by the GOMER 
method using a fixed [TFx] that corresponds to the minimum Kd possible with the motif (and therefore a 
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perfect match corresponds to 50% occupancy) (26). The expected binding (sum of all binding to all 
binding sites), assuming Michaelis-Menten equilibrium binding occupancies for all possible binding 
sites (location l, strand s) for TF x in promoter p, where Kds for each binding site are calculated from the 
position weight matrix: 

   
Correlations between predicted occupancy for each individual TF and expression level were done using 
these values (Bindingx,p). We optimized a single weight for each TF (Activityx), representing the ability 
of that TF to activate or repress transcription.  

 
This model was implemented in Tensorflow, as described for the other models below, but without a 
regularization term.  
 
Billboard model of transcription 
The billboard model includes parameters for TF concentration ([TFx]), TF activity (Actx), TF 
potentiation (Potx), and TF activity limits (ALx). The concentration parameter is unlikely to be 
comparable to measured cellular TF concentration, since its magnitude also depends on TF affinity and 
PWM scale, and possibly other factors that affect TF binding. Motifs were trimmed, as before, but 
filling 25 bp 1-d convolutional filters. As described above, we use these filters, the DNA sequence, and 
the (now learned) TF concentration parameter to gain an initial estimate for TF binding, here called Raw 
Binding (RBx,p). 

We calculate Openp, which corresponds to a probability the promoter p will be accessible to binding, as 
a logistic function on the sum of each TF’s (x) predicted Raw Binding, weighted by Potx, their learned 
ability to potentiate the binding of other factors:  

  
Because our promoters are small, we can reasonably assume that a TF that opens chromatin would open 
it for the entire 80-bp variable region: if the promoter is open, all TFs can bind unimpeded; if the 
promoter is closed, no TFs can bind. Thus, we re-weight the Raw Binding scores with Openp to get 
Bindingx,p, the amount of binding of each TF x to each promoter p, as: 

 
Finally, the predicted expression level (ELp) is the sum of binding values for each TF x, weighted by 
their learned effect on expression (Actx):  

  
Here, the measured and predicted expression levels are in log space, corresponding to the log-space bins 
of YFP/RFP. One possible interpretation of the formulation above is that TF activities are proportional 
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to how much the TF affects the zero-order rate constants for different steps of mRNA production, which 
would be multiplicative in linear space or additive (as above) in log space. 
When activity limits for TFs (ALx) were included as a learned parameter, the expression level was 
instead calculated as follows, putting an upper limit on TF activity: 

   
 
Position-specific activity model 
Position-specific activity models were built as an extension of the billboard model that included binding 
limits. Here, each potential TFBS position was allowed its own (learned) activity parameter. Position-
specific occupancy was estimated similarly to before, but accounting for the strand (s) and binding 
location (l) of each TF (x) to each promoter (p): 

  
The transcriptional effect of each TF on each promoter (Effectx,p) was estimated using the position-
specific activity parameters (Actx,l,s), which were implemented as a local scale of the overall TF activity 
(Actx): 

 
We then re-implement the binding limits as follows: 

 
 
Model learning 
Parameters were learned iteratively, first learning TF activity and potentiation, then TF concentration, 
then allowing the motifs themselves to be changed, then including a parameter that limited the 
maximum binding of each TF, and finally learning position-specific activity parameters, each time, 
learning the new parameters and updating those previously included with a single pass through the data.  
Transcriptional models were implemented in Tensorflow (74), minimizing the mean squared error 
between predicted and measured expression level using the AdamOptimizer and learning in batches of 
1,024 promoters. In all cases (except the linear model above), potentiation and activity parameters were 
regularized with an L1 penalty (0.00001), motifs were regularized with an L2 penalty (0.000001), and 
position-specific activity biases (when present) were regularized with an L2 penalty (0.00001) on the 
difference between adjacent (by location l) activity biases. Learning rate was set to 0.04 for the epoch 
learning activity and potentiation parameters, 0.01 when also learning concentration, and 0.001 when 
also learning motifs, activity limits, and position-specific activities. All analyses used the models that 
did not include activity limits, with the exception of the comparisons to Miller et al. (24) data, and the 
position-specific activity model.  
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Applying models to other promoter libraries 
We applied the pTpA+glucose and Abf1TATA+glucose models to predict expression of our scaffold 
library. Because each model was trained on much shorter sequences than those on which it was tested, 
we applied the model to each promoter in five overlapping windows of 110 bp (pTpA) and 115 bp 
(Abf1TATA), ending at -183, -136, -99 (which included the random 80-mer), -43, and -13 relative to the 
theoretical TSS, yielding five expression predictions for the different regions. The five predictions tiling 
the region were combined into a single expression prediction using a linear model that predicted 
measured expression level using predicted expression and accessibility for each of the five windows, 
trained on a random 20% of the scaffold library data (approximately 2 million sequences). This was then 
used to predict expression of the remaining 80% of the scaffold library. For comparisons within 
promoter scaffolds or only including the random 80-mer, the predicted expression levels for the bin 
ending at -99 (relative to the TSS) were used directly. 
 
Applying models to native sequences 
Since the models above were designed to operate on relatively short sequences (~110 bp), scanning the 
yeast genome (R64) was done in tiling windows of 110 bp each, spaced at 1 bp intervals, yielding 
expression and accessibility predictions for nearly all bases in the genome.  
To compare to chromatin organization in core promoters, the accessibility predictions were averaged 
across all yeast promoter sequences to yield a metagene plot, as was done for DNase (43) and 
nucleosome occupancy (42) data.  
To compare the models’ predictions to RNA synthesis rates, the model’s predicted expression levels for 
sequences from -450 to -75 relative to the TSS were averaged; to avoid overfitting, this range was 
optimized on unrelated RNA-seq data (30). We then compared this predicted average expression to the 
inferred RNA synthesis rate for each gene (24). 
 
Comparing refined and original motifs 
The original and model-refined motifs were evaluated for their ability to predict independent ChIP 
binding and TF mutant gene expression data. The GOMER method (26) was used to get a predicted 
binding occupancy of each sequence for the original and model-refined motifs. For ChIP data (44), 
ChIP-chip probes were scanned with the motifs, and their ability to predict ChIP binding for the 
corresponding TF was evaluated. For TF perturbation experiments (25, 45) promoter sequences were 
scanned with motifs, and their ability to predict expression changes when the cognate TF is perturbed 
(mutated, over-expressed, or deleted) was evaluated. In both cases, there were often multiple 
experiments for the same TF. We repeatedly sampled the data from each experiment (50% of the data 
sampled randomly 100 times, without replacement), and with each sample calculated the Pearson 
correlation coefficient between motif-predicted binding and biological measurement (gene expression, 
ChIP intensity) for both model-refined and original motifs. If the model-refined motif had a Pearson r2 
greater than the original in at least 95% of samples, we considered the experiment to be predicted better 
by the refined motif. Conversely, if the original motif was better in at least 95% of samples, the 
experiment was considered to be predicted worse by the refined motif. A model-refined motif was 
considered to be better than the original if at least one experiment was predicted better and no 
experiment was predicted worse, while it was considered worse if at least one experiment was predicted 
worse and no experiment was predicted better. In all other cases, the motifs were considered equal. 
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Motifs that were regularized out of the model (i.e. became neutral PWMs) were not considered in this 
analysis.  
 
Classifying TFs into activators and repressors by GO annotation 
GO terms for yeast genes were downloaded from SGD (75) on Jan. 14, 2017. TFs annotated with a term 
containing any of "positive regulation of transcription", "transcriptional activator", "activating 
transcription factor binding", or "positive regulation of RNA polymerase II" were labeled as activators. 
TFs annotated with "negative regulation of transcription", "transcriptional repressor", "repressing 
transcription factor binding", or "negative regulation of RNA polymerase II" were labeled as repressors. 
Any annotated as both or neither were ignored for the purposes of testing for enrichment. 
 
Identifying TFs that act non-linearly 
To identify cases where TF activity was not captured accurately by the model, we first examined the 
relationship between expression level and TF binding directly, but found this to be misleading in many 
cases, because many TFs have related motifs, leading to seeming non-linearities merely due to multiple 
TFs acting on related TFBSs (e.g. Figure S2C). As an alternative, we identified lingering relationships 
between predicted TF binding and residual expression level (actual minus predicted expression; Figure 
4A), since the residual expression level is calculated after accounting for the activity of other TFs. Here, 
the model-learned PWMs and concentration parameters were used to identify promoters containing each 
TFBS (predicted occupancy 5% or above, relaxing this to 1% if there were fewer than 106 such 
promoters, and subsampling to approximately 106 promoters if there were more than 107). For each TF, 
lines of best fit were learned between predicted occupancy of the TFBS and the promoter’s residual 
expression level after the model’s fit, and the slopes of these lines calculated at 300 points along the 
curve, each spanning 1/300th of the data points. The maximum absolute value of the slope of each curve 
was used to rank TFs by their lingering non-linear relationships (Figure 4B). 
 
MNase-Seq analysis  
Sequencing reads were mapped to all known promoters in any pTpA library using Bowtie2 (72). Only 
promoters with at least 20 reads in the input DNA and 1 read in the MNase data were kept for 
subsequent analysis. Input and MNase counts were scaled within each sample to yield counts per million 
(CPM) per promoter and the log ratio of MNase to input was compared between replicates and to the 
model’s predicted occupancy, corresponding to log(1-predicted accessibility). To combine MNase 
replicates, the log ratio of MNase to input was averaged for promoters present in both samples – those in 
only one sample were ignored. Similarly, pairwise correlations between samples in Figure 3C reflect 
only the promoters common to both samples, and all promoters within the sample when comparing to 
the model’s predictions. 
 
Zinc cluster monomer analysis 
The zinc cluster monomeric model was created as above, training on the pTpA+glucose data, but only 
TFBS motifs representing the canonical zinc cluster monomeric motif (CGG) and one base pair variants 
(CGG-variants) were provided as motif features and the only parameters learned were motif activities 
and potentiations, whereas the motifs themselves were held static. In the model, expected binding is 
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proportional to the number of exact motif matches, and so is equivalent to counting the number of the 
corresponding CGG-variant in the sequence.   
Potentiation and activity parameters for each CGG-variant were then compared to those learned for 
predicting protein binding microarray (PBM) data (47). To this end, we learned a linear model relating 
the number (Nm,p) of each CGG-variant (m) within each PBM probe (p) to PBM binding signal for the 
probe (Sp) for each zinc cluster TFs in the UniPROBE database (47), learning a binding coefficient for 
each CGG-variant (Bm).  

 
The degree of binding that could be captured by CGG-variants was then estimated by calculating 
Pearson’s correlation coefficient r between measured PBM binding and predicted binding by these 
linear models. The Pearson correlation coefficients between PBM-learned binding weights for each TF 
and the billboard model’s CGG-variant coefficients were calculated to see which TF’s binding profile 
was most similar to the learned potentiation/activity weights. 
Other models comprised only of simple (1- to 3-mers) motifs were created similarly to the CGG-variant 
model in order to determine the predictive power of lower-order features (e.g., 1- and 2-mers, reflecting 
GC content and dinucleotide frequencies, respectively) and how much performance could be gained by 
including additional simple features in the CGG-variant model (e.g., 1- and 2-mers, and other 3-mers). 
We also aimed to estimate the degree to which the lower-order models were simply capturing the 
activity of CGG-variants (e.g., since %G+C and occurrence of CGG are correlated, %G+C is predictive 
of CGG content and therefore expression). Thus, linear models that take as features the abundance of 
mono- and di-nucleotide features within each promoter and predict the CGG-variant model's expression 
level predictions were created, training on the first 8,000 high-quality pTpA+Glu promoters. These were 
then applied to the last ~2,000 high-quality pTpA+Glu promoters, and a Pearson r2 (red bars) was 
calculated for the correlation between this model's predictions and measured expression level. All data 
in Figure S5A are using these same ~2,000 test promoters. We conclude that CGG and related motifs 
are likely to be the true active motifs because models using only 1- and 2- mers can predict expression 
about as well as they are able to capture the features of the CGG-variant model, adding 1-, 2-, or 3-mers 
to the CGG-variant model adds little predictive value, and a model including only the two most 
impactful CGG variants (CGG and CGC) can explain nearly 53% of expression (Figure S5B). 
 
Position and orientation-specific TF activities 
In order to identify the approximate fraction of TFs displaying a 10.5 bp helical activity bias, the 
position-specific activities across the variable promoter region were compared to a 10.5 bp sine wave. 
First, we regressed out the overall positional activity bias using loess regression (span=0.5; Figure S6G 
– green curves). These long-range trends were subtracted from the data, leaving only the short-range 
trends (Figure S6G – blue curves), which were then compared to a 10.5 bp sine wave for 100 possible 
alignments of the sine wave, taking the largest magnitude correlation for each TF and strand, and 
calculating Spearman’s correlation coefficient, ρ. As background, the same procedure was performed 
after first shuffling the position-specific activity biases for 100 permutations of the data per TF. A P-
value and AUROC were calculated describing the difference between the randomized and actual data for 
each model using Wilcoxon’s rank sum test. 
 
Data and software availability 
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Data are available at NCBI’s GEO: GSE104903, GSE104878. Open source code for our transcriptional 
models is available on: https://github.com/Carldeboer/CisRegModels. 
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Supplemental Figures 

 
Figure S1. Random DNA yields diverse expression levels in all promoter scaffolds tested. For each promoter scaffold (right), shown 
are the distributions of expression levels (log2(YFP/RFP), x axis) measured by flow cytometry for the entire library (gray filled curves) and 
for a few selected clones, each from a different single promoter from the library (colored line curves).  
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Figure S2: Predictions of billboard model on other test data sets. (A) Impact of promoter scaffolds. Relationship between mean (x axis) 
and standard deviation (SD, y axis) of expression for random sequences embedded within different promoter scaffolds based on either 
native promoters (red) or random sequences (blue). Each point is the mean and SD calculated for a single scaffold from the measured 
expression of all promoters with that scaffold, only considering those appearing in one bin. (B) Saturation analysis. Shown are the numbers 
of distinct promoters detected when subsampling the pTpA+glucose sequencing data (black points), after combining reads from all 
expression bins. Red curve: promoters projected to be detected with additional sequencing (76). (C) Relationship between predicted 
binding of individual TFs and expression level. Measured expression level (pTpA+Glu data; y axis) vs. predicted binding (x axis) for Abf1 
(left), Rsc30 (middle), and Ume6 (right). Top: Motifs. Blue lines: GAM lines of best fit. Gray shaded areas: 95% confidence intervals. (D) 
Predictions of the Abf1TATA+glucose trained model on the high-quality pTpA+glucose test data. Shown are the measured expression 
levels in the high-quality pTpA+glucose test data (y axis) vs. the corresponding predictions for these sequences by the billboard model 
trained on the Abf1TATA+glucose data (x axis). Red: GAM fit; Grey shaded area: 95% confidence interval. (E) Partial prediction of 
hybrid native-random promoters for pTpA model. As in Figure 2F. (F) Models’ performance across scaffolds. Pearson r’s for how well 
Abf1TATA (x axis) and pTpA (y axis) models predict measured expression level for each native promoter scaffold in the scaffold library 
(points). (G) Inferred mRNA synthesis rates of yeast promoters (from (24), y axis) vs. their predicted expression by the pTpA model. Red 
line: GAM line of best fit (Methods).   
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Figure S3. The billboard models identify biochemical activities of TFs. (A,B) TF classification into activators and repressors. Shown 
are the number of TFs classified as activators, repressors, neither, or both in the yeast Gene Ontology (GO, Methods) (bars) and whether 
they are predicted as (A) closing (blue) or opening (red) chromatin; or (B) repressor (blue) or activator (red), by each model (label on top). 
Hypergeometric P-values for overlaps between predicted activator/repressor (or chromatin opener/closer), compared with 
activator/repressor GO annotations are as shown (“neither” and “both” categories are ignored). (C,D) Model-refined motifs perform better 
in predicting TF binding and knockout effects in independent experiment. Shown are the absolute values of the Pearson correlation 
coefficient (|r|) when using either the original motifs (x axis) or the pTpA+Gal model-refined motifs (y axis) to predict whether (C) the 
gene’s expression will change in the corresponding TF mutant (compared to wild type; (25, 45)) based on predicted binding to the 
promoter, or (D) a ChIP probe will be bound by the TF in a ChIP assay (44) based on predicted binding to ChIP probe. (Here, data were not 
subsampled). Overall, model-refined motifs perform better (points above diagonal), but some perform worse. Reduced performance can be 
due to condition specific regulators that are minimally active in our tested growth conditions (e.g., Gcn4), redundancy between motifs (e.g., 
Hsf1 has mono-, di-, and trimeric motifs), and overfitting of the original motif to the test data (e.g., ChIP-derived motifs tested on ChIP 
data). (E,F) Prediction of nucleosome occupancy. (E) Model predicted (x axis) vs. measured (MNase-Seq, y axis) nucleosome occupancy. 
Four MNase biological replicates are shown (Methods). (F) As in E, with replicates averaged, and only promoters present in both 
replicates shown.  
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Figure S4: The GRFs and Gal4 have saturating activity. (A) Lingering relationship for Abf1. Relationship between predicted Abf1 
binding (x axis) and residual expression level (y axis). Blue line: GAM line of best fit. Vertical red line: estimated saturation point. (B-E) 
Relationship between measured expression level (y axis) and predicted binding strength (x axis) for Abf1 (B, in pTpA+glucose), Gal4 (C, 
in pTpA+galactose), Rsc3 (D, in pTpA+glucose), and Hap4 (E, in pTpA+glycerol). 
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Figure S5. Zinc cluster monomeric TFBSs have large potentiation effect sizes. (A) Shown are the cumulative distribution functions of 
the average potentiation effect sizes (x axis) for zinc cluster monomeric TFBS variants (blue), and all other TFBS motifs (pink), in each of 
the four learned models.  (B) CGG-variants best explain CGG-variant model performance. Ability of models containing only simple 
sequence features (up to 3-mers) (bars, x axis) to predict high-quality pTpA+glucose test data (Pearson r2, y axis). Models were trained to 
predict either pTpA+glucose GPRA expression data directly (black bars), or the CGG-variant model’s expression output (red bars). The 
latter asks how well the included features are able to (indirectly) capture CGG-variants, and so how much of their performance can be 
attributed to CGG-variant activity. Gray dashed line: CGG-variant model performance. Marginal gain in performance of CGG-variant 
model supplemented with 2- and 3-mers could result from other important motifs being partly captured (e.g., poly-A). 
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Figure S6. Positional preferences of TFs are prevalent and context-dependent. (A-F) Position and strand preferences. Learned activity 
parameter values (y axis) for motifs in each position (x axis) and strand orientation (upper and lower panels) for each model (colors), for 
(A) Abf1, (B) Mcm1, (C) Ume6, (D) Mot3, (E) Azf1, and (F) Thi2. (G) Capturing helically biased positional preferences. Plot shows, for 
each location within the promoter (x axis), the learned activity bias parameters (red curve; as in Figure 6B) for the poly-A motif, long-
range trend captured by a loess fit (green), and short-range residual activity bias after subtracting loess fit (blue) with reference 10.5 bp sine 
waves (black) for the minus strand (top) and plus strands (bottom) for the four different models (columns). (H) Modeling positional 
preferences increases predictive accuracy within the same scaffold but can drastically decrease it between scaffolds. For each training data 
set (four sub-panels) for both model types (colors), the Pearson r2 (y axis) capturing performance on each test dataset (x axis). 
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Table S1: Promoter scaffolds included in the scaffold library. Sequences include 80 Ns in place of 
the random 80-mers and begin 13 bp upstream of the theoretical TSS.  
 
Table S2: Motifs used in this study. Motif IDs are from the YeTFaSCo database (25). Motifs excluded 
from the motif frequency analysis (Figure 1B) are indicated. 
 


