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 2 

Regularized linear models are poor models for predicting mean abundance from core promoter 3 

sequences (10-fold cross-validated average oos-r2 < 0).  To assess how simple linear models compare 4 

to “deep learning” models, we fitted linear models by minimizing a regularized empirical squared loss, 5 

with a L2 (squared euclidean norm) penalty, using stochastic gradient descent from python’s sci-kit 6 

learn (sklearn). The input of the class B models (non-specific annotated DNA model; 1D matrix with 7 

32 channels) was flattened prior to modelling, i.e. the mean abundance each gene was modelled as a 8 

linear function of 128,000 variables (most were binary variables). For brevity, we limited our analysis 9 

to skeletal muscle, the tissue with the largest number of samples in GTEx. The model was fit using the 10 

partial fit function from SGDRegressor with sklearn using default parameters; the same exit criteria as 11 

described in Online Methods were applied. We noted that 10-fold cross-validated average oos-r2 was 12 

consistently below zero, with performance considerably worse than the peaBrain model. The gap in 13 

performance was considerable (precludes visualization). We also repeated this analysis using a single 14 

dense neural network layer with linear activations, and noted that the 10-fold cross-validated average 15 

oos-r2 was below 0; a single dense layer with linear activations is equivalent to a simple linear model. 16 

 17 

Fully connected neural networks are slower and more memory-intensive, with slightly worse 18 

performance than convolutional neural networks; non-linear activations for convolutional layers 19 

improve performance over linear activations. We compared fully connected dense neural networks 20 

to the convolutional neural networks at the heart of peaBrain (Figure 1) for class B skeletal muscle 21 

model. We replaced each pair of convolutional-pooling layers with a single dense layer; the number of 22 

neurons in the three dense layers was limited only by GPU memory. The penultimate layer and single 23 

output neuron were kept consistent between the models. Using the skeletal muscle Class B input, we 24 

noted that fully connected performed slightly worse (oos-r2 = 0.42) than the convolutional neural 25 

networks (oos-r2 = 0.46). Increasing the number of layers allows fully connected neural network to 26 

reach performance parity with CNNs, at the cost of increased memory and computational cost (not 27 

feasible for Stage 2 peaBrain analyses). We subsequently wanted to assess the importance of the non-28 



linear activation for the convolutional layers of peaBrain. We constructed an identical model, but 29 

replacing all CNN activations with linear functions and noted that performance for this model was 30 

consistently worse (oos-r2 = 0.43) than the classical peaBrain architecture (oos-r2 = 0.46). It is important 31 

to note that this is not an exhaustive search of the ideal set of parameters, but an exploratory analysis to 32 

begin to understand peaBrain’s performance. 33 

 34 

DNA sequence, annotated with experimentally-derived TFBS, from core promoter sequences are 35 

insufficient to predict mean abundance with high accuracy – epigenetic/histone markers contain 36 

the bulk of the information and are not readily accessible from the DNA sequence alone. We were 37 

interested in determining the contribution of epigenetic/histone makers, alongside more general 38 

genomic annotations (such as coding sequences), in predicting the mean abundance of genes. In 39 

particular, we wanted to explore whether the DNA sequence alone was sufficient to predict expression 40 

in skeletal muscle. We noted that increasing the number of convolutional layers or the number of filters 41 

did not improve model performance (Figure 1). Explicitly incorporating TFBS into the model (i.e. 42 

annotating the DNA only and explicitly with TFBS) only improved performance slightly (oos-r2 = 43 

23%), and was still considerably worse than the full class B model with epigenetic/histone marker 44 

annotations (oos-r2 = 46%; Figure 1). (Class-A DNA-only models had an average oos-r2 of 16% for 45 

skeletal muscle; class-C models annotated with tissue-specific information had an average oos-r2 of 46 

57%.) The TFBS were collected from the Gene Transcription Regulation Database (GTRD) v17.4 with 47 

data on 476 human transcription factors and included peak calling with four different software (MACS, 48 

SISSRs, GEM, and PICS). In addition to including the processed peak calls, we also incorporated 49 

clusters (i.e. peaks merged for the same transcription factor but under different experimental conditions) 50 

and meta-clusters (i.e. non-redundant peaks synthesized from all four methods). This absence of 51 

improvement suggests that peaBrain model already recognizes many of the TFBS; identified by the 52 

convolutional filters inherent to the model architecture. These results indicate that experimentally-53 

derived epigenetic and genomic annotations add information to that contained in the DNA sequence 54 

alone. As described in the main text, this is broadly consistent with the observation that other 55 



convolutional neural networks models like DeepSEA are better at predicting TFBS (median AUC = 56 

0.958) than at predicting histone modifications (median AUC = 0.856)1.  57 

 58 

peaBrain score out-performs existing measures in predicting allele-specific transcription factor 59 

binding. As with tasks A and B (described in the Main Text), we compared the performance of the 60 

non-tissue-specific peaBrain score to predictions by CADD and EIGEN in predicting allele-specific 61 

binding, after accounting for allele frequency and evolutionary conservation. We assessed performance 62 

of the three non-coding metrics across 6675 sites in core promoter regions after filtering for duplicate 63 

sites2; 1896 of which exhibited allele-specific binding at an unadjusted binomial p < 0.05 (see Online 64 

Methods).  We noted that only peaBrain impact score was significantly predictive of allele-specific 65 

binding sites (coefficient = 35.38 [12.00, 58.67]; p = 0.003; see Table 1 in Main Text); relaxing the 66 

binomial p-value threshold (i.e. increasing the number of sites considered as allele-specific) brings the 67 

other non-coding metrics to significance. peaBrain’s discriminative ability to identify allele-specific 68 

binding sites is consistent with our earlier observation that explicitly adding TFBS annotations did not 69 

improve the model. Notably, peaBrain’s ability indicates that average expression of all genes in a single 70 

tissue and the reference genome is sufficient to learn both TFBS and allele-specific binding.  71 

 72 

To further investigate peaBrain’s ability to identify allele-specific binding sites, we compared peaBrain 73 

impact scores to predictions by methods specifically designed to predict TFBS, including two neural-74 

network methods (DeepBind3 and DeepSEA1),  two kmer-based variant scoring methods (gkmSVM4 75 

and GERV5), and three position-weighted matrices (PWM)-related methods2. These methods depend 76 

on modelling TF ChIP-seq data in various ways and may have multiple models for the same TF. After 77 

confirming the predictive ability of these methods to identify allele-specific binding sites, we noted that 78 

peaBrain scores positively correlated only with GERV measures, a kmer-based variant scoring 79 

algorithm (Figure 2). Unlike the other methods, peaBrain (and GERV) do not assume the existence of 80 

canonical motifs and learn TFBS by modelling sequences (or kmers) directly (i.e. not simply by 81 

modelling the absence or presence of a ChIP-seq peak). In contrast, for both DeepBind and DeepSEA, 82 

we noted positive correlation with at least one PWM-method. These methods generally assume the 83 



existence of canonical TF binding sites and predictions are based on the extent of perturbation of those 84 

motifs. While this comparison is limited to variants for which data was available, the peaBrain results 85 

suggest that explicitly characterizing TF motifs is not necessary to understand the consequences of 86 

sequence variation on TF binding and transcriptional dysregulation. 87 

 88 

Neural activations of penultimate layer of peaBrain model can be used to construct an embedding 89 

from the genes that encodes correlation information.  Having demonstrated the predicative ability 90 

of the peaBrain model (see Main text for details), we were subsequently interested in using the 91 

activations from the penultimate layer of the model as a continuous (and compressed) representation of 92 

the genes. These neural activations capture both the annotated DNA (input) and its additive 93 

contributions to tissue- and phenotype-specific abundance (output) in a compressed form amenable to 94 

downstream analyses. Furthermore, as these vectors were obtained from a regression model, they 95 

readily capture only the salient portions of DNA abundance encoded in the annotated-genome (the 96 

weights of the model corresponding to the transcription factor that regulate and interact with this 97 

genome). Because of model choice, the mean abundance of each gene was encoded as a linear 98 

combination of the vector elements, i.e. the output of the regression model. As with our earlier analyses, 99 

for brevity, we limited our analysis of the properties of the embeddings to class B models for skeletal 100 

muscle. We observed, for the skeletal muscle embeddings, that pairwise cosine similarity between these 101 

dense gene representations corresponded to the measured RNAseq correlation between the gene pair. 102 

After excluding self-correlations and weakly correlated genes (RNAseq rho < 0.5), we noted that the 103 

cosine similarity of the embedding was significantly correlated (Spearman’s rho = 0.18; p < 2.2 x10-16) 104 

to the experimentally RNAseq-derived correlation. This suggests the annotated-DNA model, without 105 

supervision, imposes a linear structure on this vector space: the angle between the vectors corresponds 106 

to the co-regulation of the gene pair. 107 

 108 

peaBrain-derived gene embeddings also encode membership to pathways and other curated gene 109 

sets. We were interested in further exploring the utility of these embeddings in other applications. We 110 

noted that this dense representation from the class B skeletal muscle pea Brain model encodes 111 



membership to the MSigDB Hallmark curated gene sets (average 10-fold cross-validated for all 112 

pathways AUC = ~0.70, Table 1), suggesting that the representations themselves, not only encode 113 

abundance and regulatory information, but also functional relationships. (We filtered pathway sets not 114 

relevant to the tissues, such as “PANCREAS_BETA_CELLS”, “COMPLEMENT”, or 115 

“SPERMATOGENSIS”). Taken all together, this suggests the gene embeddings capture both the 116 

annotated DNA (input) and its additive contributions to tissue-specific abundance (output) in a 117 

compressed form amenable to downstream analyses (e.g. network-based analyses).  118 



Supplementary Note 1 – Table 1.  Tabulated 10-fold cross-validated AUC for genomewide pathway 119 

membership predictions using class B MuscleSkeletal Embeddings.  120 

Hallmark Gene Set 
10-fold cross-validated  

average auc 

MYC_TARGETS_V1 0.80 

MYC_TARGETS_V2 0.79 

G2M_CHECKPOINT 0.77 

UNFOLDED_PROTEIN_RESPONSE 0.76 

OXIDATIVE_PHOSPHORYLATION 0.76 

MTORC1_SIGNALING 0.76 

EPITHELIAL_MESENCHYMAL_TRANSITION 0.74 

MITOTIC_SPINDLE 0.74 

E2F_TARGETS 0.73 

REACTIVE_OXIGEN_SPECIES_PATHWAY 0.73 

TNFA_SIGNALING_VIA_NFKB 0.72 

PROTEIN_SECRETION 0.72 

TGF_BETA_SIGNALING 0.71 

UV_RESPONSE_DN 0.71 

PI3K_AKT_MTOR_SIGNALING 0.71 

DNA_REPAIR 0.71 

HYPOXIA 0.70 

P53_PATHWAY 0.69 

APOPTOSIS 0.68 

APICAL_JUNCTION 0.68 

ADIPOGENESIS 0.67 

MYOGENESIS 0.66 

IL2_STAT5_SIGNALING 0.66 

ANGIOGENESIS 0.66 

GLYCOLYSIS 0.65 

PANCREAS_BETA_CELLS 0.65 

ANDROGEN_RESPONSE 0.65 

KRAS_SIGNALING_DN 0.64 

HEME_METABOLISM 0.64 

CHOLESTEROL_HOMEOSTASIS 0.64 

HEDGEHOG_SIGNALING 0.63 

APICAL_SURFACE 0.63 

UV_RESPONSE_UP 0.63 

INTERFERON_GAMMA_RESPONSE 0.63 

ESTROGEN_RESPONSE_EARLY 0.62 

INTERFERON_ALPHA_RESPONSE 0.62 

ESTROGEN_RESPONSE_LATE 0.61 

NOTCH_SIGNALING 0.61 

KRAS_SIGNALING_UP 0.61 

INFLAMMATORY_RESPONSE 0.61 

COAGULATION 0.60 

SPERMATOGENESIS 0.60 

WNT_BETA_CATENIN_SIGNALING 0.58 



PEROXISOME 0.58 

IL6_JAK_STAT3_SIGNALING 0.57 

ALLOGRAFT_REJECTION 0.57 

COMPLEMENT 0.57 

BILE_ACID_METABOLISM 0.56 

XENOBIOTIC_METABOLISM 0.56 

FATTY_ACID_METABOLISM 0.56 

 121 

  122 



Supplementary Note 1 – Figure 1. Boxplots of 10-fold cross-validated oos-r2, as assessed in skeletal 123 

muscle, for class A models (labelled as “class A peaBrain – DNA only”), class A with TFBS annotations 124 

(labelled as “class A peaBrain – DNA+TFBS”),  class B models with tissue-agnostic annotations (“class 125 

B peaBrain – CNNs”), fully connected neural networks (“class B – fully-connected”), class B models 126 

with linear activation functions (“class B peaBrain – linear activations”),  class B models with increased 127 

number of layers (“class B peaBrain – more layers”),  class B models with increased number of filters 128 

(“class B peaBrain – more filters”), and class C models with tissue-specific annotations (“class C 129 

peaBrain”). 130 

 131 

 132 

  133 



Supplementary Note 1 – Figure 2. Rank correlation plot for TF-binding algorithms and the peaBrain 134 

impact score. JASPAR, MEME_1 and MEME_2 are PWM-approaches. 135 
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