
Supplementary Materials

Figures

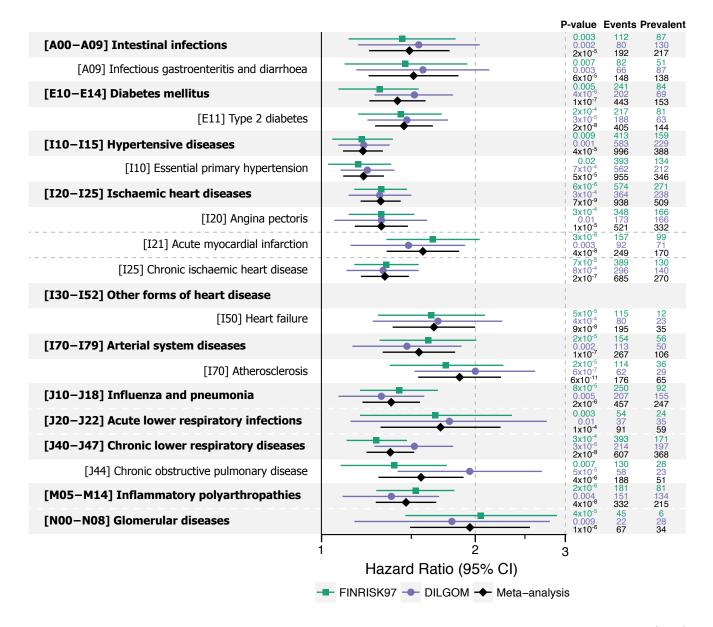


Figure S1. Cohort specific associations between GlycA and 8-year disease risk. Hazard ratios (diamonds) and 95% confidence intervals for the first diagnosis occurrence (hospitalisation or mortality) conferred per standard deviation increase of GlycA in FINRISK97 (green), DILGOM (blue), and in meta-analysis (black). The figure shows all ICD categories and codes where the association GlycA was

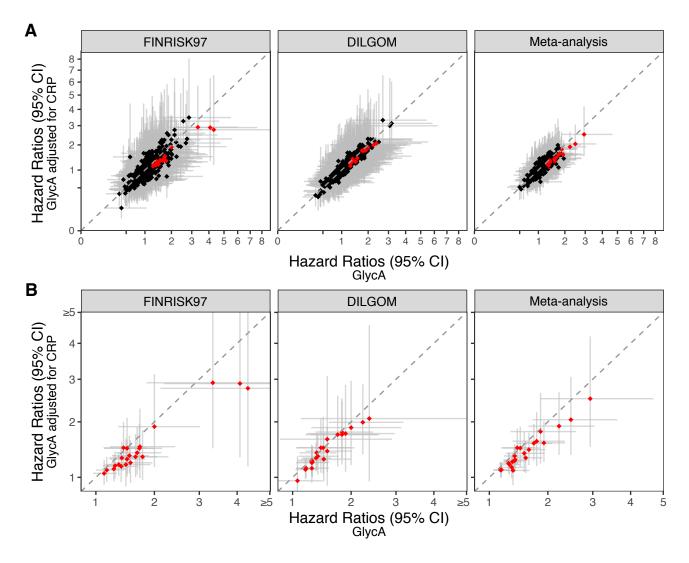

nominally significant (P < 0.05) and the association in meta-analysis was significant after multiple testing correction (P < 1.1×10^{-4} ; adjusting for the 468 tested outcomes). HRs and 95% CIs are shown on a natural logarithm scale. Diagnosis data were analysed for 468 outcomes with > 10 events in both cohorts over a matched 8-year follow-up period. Alphanumeric codes in the square brackets indicate the ICD10 codes/categories for each outcome. Cox models were fit using age as the time scale and adjusting for sex, smoking status, BMI, blood pressure, alcohol consumption, and biomarkers for all-cause mortality identified alongside GlycA: citrate, albumin, and VLDL particle size. Prevalent cases were excluded for each association test (**Methods**).

Figure S2. Sensitivity analysis to prevalent disease. Each panel compares the hazard ratios (diamonds) calculated excluding prevalent cases (x-axes) to hazard ratios calculated when adjusting for prevalent cases as a covariate (y-axes) in DILGOM, FINRISK97, and meta-analysis. Horizontal and vertical grey bars indicate the 95% confidence intervals for each outcome excluding prevalent cases (horizontal bars, x-axes) and adjusting for prevalent cases (vertical grey bars, y-axes) respectively. The diagonal dashed line shows y=x, the location where hazard ratios would fall if their estimates were identical in both models. Data are shown on a square root scale. Red diamonds indicate the significantly associated outcomes shown in **Figure 1** and **Figure S1**. Diamonds above the dashed diagonal line and > 1 indicate hazard ratios which are stronger in the model in which prevalent cases are adjusted. Cox proportional hazard models adjusted for prevalent cases were only analysed for > 20 incident cases (N=356 electronic health records in both DILGOM and FINRISK97) as the statistical models became unstable with lower number of incident cases adjusted for prevalent disease. Adjustment for prevalent cases was performed where there were > 10 cases of the respective electronic health records in the 10 years prior to sample collection.

Figure S3. 8-year disease risk for GlycA and when adjusting for prevalent cases. Cox proportional hazard ratios (diamonds) and 95% confidence intervals for the first diagnosis occurrence (hospitalisation or mortality) conferred per standard deviation increase of GlycA in FINRISK97, DILGOM, and in meta-analysis. Diagnosis data were analysed for 356 outcomes with > 20 events in both cohorts over a matched 8-year follow-up period and adjustment for prevalent cases was performed where there were > 10 prevalent cases. The figure shows all ICD categories and codes where the association GlycA was nominally significant (P < 0.05) and the association in meta-analysis was significant after multiple testing correction (P < 1.2×10^{-4} ; adjusting for the 356 tested outcomes). HRs and 95% CIs are shown on a natural logarithm scale. Alphanumeric codes in the square brackets indicate the ICD10 codes/categories for each outcome. Models were fit using age as the time scale and adjusting for sex, smoking status, BMI, blood pressure, alcohol consumption, biomarkers for all-cause mortality identified alongside GlycA (citrate, albumin, and VLDL particle size), and prevalent cases of the outcome within 10 years prior to sample collection. Hazard ratios are detailed in **Table S3**.

Figure S4. Sensitivity analysis to C-reactive protein. Each plot compares the hazard ratios (diamonds) conferred per standard deviation increase of GlycA (x-axes) to hazard ratios conferred per standard deviation increase of GlycA when adjusting for CRP (y-axes) in DILGOM, FINRISK97, and meta-analysis. Horizontal and vertical grey bars indicate the 95% confidence intervals for each hazard ratio for GlycA (horizontal bars, x-axes) and for GlycA adjusted for CRP (vertical grey bars, y-axes) respectively. The diagonal dashed line shows y=x, the location where hazard ratios would fall if their estimates were identical in both models. Diamonds above the dashed diagonal line and > 1 indicate hazard ratios which are stronger after adjusting GlycA for CRP. Data are shown on a square root scale. Red diamonds indicate the significantly associated outcomes shown in **Figure 1** and **Figure S1**. Panel **A**) shows all EHRs while **B**) shows just the significant outcomes. 95% confidence intervals in **B**) with a lower limit ≤ 0.8 or an upper limit ≥ 5 are truncated. Models were fit using age as the time scale and adjusting for sex, smoking status, BMI, blood pressure, alcohol consumption and biomarkers for all-cause mortality identified alongside GlycA: citrate, albumin, and VLDL particle size. Prevalent cases within 10 years prior to sample collection were excluded for each association test.

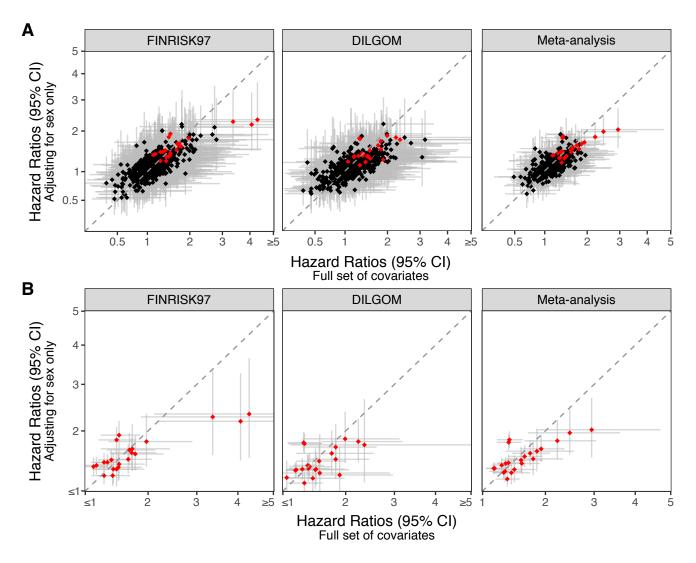
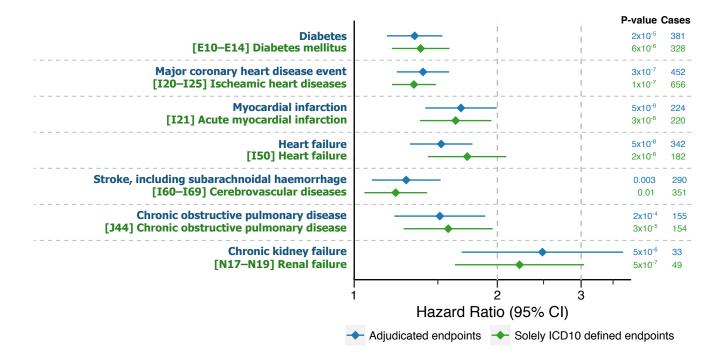



Figure S5. Sensitivity analysis to models with minimal adjustment. Each panel compares the hazard ratios (diamonds) conferred per standard deviation increase of GlycA adjusting for the full set of covariates (x-axes) to hazard ratios conferred per standard deviation increase of GlycA when adjusting for sex only (y-axes) in DILGOM, FINRISK97, and meta-analysis. The full set of covariates used in Cox proportional hazards models shown on the x-axis were sex, smoking status, BMI, blood pressure, alcohol consumption and biomarkers for all-cause mortality identified alongside GlycA: citrate, albumin, and VLDL particle size. In both models age was used as the time-scale and prevalent cases within 10 years prior to sample collection were excluded for each association test. Horizontal and vertical grey bars indicate the 95% confidence intervals for each hazard ratio for GlycA when adjusting for the full set of covariates (horizontal bars, x-axes) and for GlycA adjusting for sex only (vertical grey bars, y-axes) respectively. The diagonal dashed line shows y=x, the location where hazard ratios would fall if their estimates were identical in both models. Data are shown on a square root scale. Red diamonds indicate the significantly associated outcomes shown in Figure 1 and Figure S1. Panel A) shows all EHRs while **B**) shows just the significant outcomes. 95% confidence intervals in **A**) with an upper limit \geq 5 are truncated. 95% confidence intervals in **B**) with a lower limit \leq 1 or an upper limit \geq 5 are truncated.

Figure S6. Sensitivity analysis using broader registry information for major common diseases. Cox proportional hazard ratios (diamonds) and 95% confidence intervals for the first diagnosis occurrence (**Methods**) conferred per standard deviation increase of GlycA in meta-analysis of FINRISK97 and DILGOM. The figure shows selected major common diseases from the broader registry information compared to their closest equivalent outcome (ICD10 code or category) in the EHR scan. Models were fit using age as the time scale and adjusting for sex, smoking status, BMI, blood pressure, alcohol consumption, and biomarkers for all-cause mortality identified alongside GlycA: citrate, albumin, and VLDL particle size. Prevalent cases detected using the same registry information were excluded from the analysis. Hazard ratios for the adjudicated endpoint definitions are detailed in **Table S4**.

Tables

Table S1. Listing of outcomes analysed for an association with GlycA. NB this table is provided as a separate Excel file.

Table S2: Electronic health record associations between GlycA and 8-year disease risk. Details of the Cox proportional hazard models shown in **Figure 1** and **Figure S1**. Models were fit with age as time scale, adjusting for sex, smoking status, BMI, blood pressure, alcohol consumption, and biomarkers for all-cause mortality identified alongside GlycA: citrate, albumin, and VLDL particle size. Diagnosis data was obtained from a matched 8-year follow-up period of the DILGOM and FINRISK97 cohorts. Prevalent cases within 10 years prior to sample collection were excluded from association tests between GlycA and each outcome. Alphanumeric codes within the square brackets indicate the ICD10 categories or codes for each outcome. Meta-analysis results were obtained from an inverse variance weighted fixed effects meta-analysis of the DILGOM and FINRISK97 cohorts. HR: the hazard ratio conferred per standard deviation increase of GlycA levels. SE: standard error of the hazard ratio estimate. 95% CI: 95% confidence interval of the hazard ratio.

Outcome	Cohort	Events	HR	SE	95% CI	P-value
	Meta-analysis	328	1.38	0.07	1.20–1.59	6×10 ⁻⁶
[E10–E14] Diabetes mellitus	DILGOM	149	1.31	0.10	1.08-1.59	0.005
	FINRISK97	179	1.46	0.10	1.19–1.79	2×10 ⁻⁴
	Meta-analysis	311	1.39	0.07	1.20-1.61	7×10 ⁻⁶
[E11] Type 2 diabetes	DILGOM	145	1.30	0.10	1.07-1.58	0.009
	FINRISK97	166	1.50	0.11	1.22-1.85	2×10 ⁻⁴
	Meta-analysis	656	1.34	0.05	1.20-1.48	1×10 ⁻⁷
[I20–I25] Ischaemic heart diseases	DILGOM	235	1.36	0.09	1.15-1.62	5×10 ⁻⁴
	FINRISK97	421	1.32	0.07	1.15-1.51	5×10 ⁻⁵
	Meta-analysis	421	1.38	0.07	1.21-1.57	1×10 ⁻⁶
[I20] Angina pectoris	DILGOM	135	1.37	0.11	1.09-1.71	0.006
	FINRISK97	286	1.38	0.08	1.18-1.62	6×10 ⁻⁵
	Meta-analysis	220	1.63	0.09	1.37-1.94	3×10 ⁻⁸
[I21] Acute myocardial infarction	DILGOM	83	1.54	0.13	1.19-2.01	0.001
	FINRISK97	137	1.71	0.12	1.35-2.15	6×10 ⁻⁶
	Meta-analysis	526	1.27	0.06	1.13-1.44	9×10 ⁻⁵
[I25] Chronic ischaemic heart disease	DILGOM	212	1.28	0.10	1.06-1.54	0.01
	FINRISK97	314	1.27	0.08	1.09–1.49	0.003
	Meta-analysis	182	1.73	0.10	1.43-2.09	2×10 ⁻⁸
[I50] Heart failure	DILGOM	70	1.82	0.15	1.35-2.46	9×10 ⁻⁵
	FINRISK97	112	1.67	0.12	1.31-2.13	4×10 ⁻⁵
	Meta-analysis	223	1.59	0.09	1.33-1.90	4×10 ⁻⁷
[I70–I79] Arterial system diseases	DILGOM	92	1.49	0.15	1.12–1.99	0.007
	FINRISK97	131	1.65	0.12	1.32-2.07	1×10 ⁻⁵
	Meta-analysis	144	1.92	0.11	1.56-2.37	7×10 ⁻¹⁰
[I70] Atherosclerosis	DILGOM	47	2.24	0.18	1.58-3.18	7×10 ⁻⁶
	FINRISK97	97	1.77	0.13	1.37-2.29	1×10 ⁻⁵
	Meta-analysis	424	1.36	0.07	1.19–1.55	9×10 ⁻⁶
[J10–J18] Influenza and pneumonia	DILGOM	192	1.31	0.10	1.07-1.60	0.008
	FINRISK97	232	1.40	0.09	1.17-1.68	3×10 ⁻⁴
	Meta-analysis	87	1.78	0.14	1.36-2.34	3×10 ⁻⁵
[J20–J22] Acute lower respiratory infections	DILGOM	34	1.89	0.23	1.21-2.97	0.005
	FINRISK97	53	1.72	0.18	1.22-2.42	0.002
[J40–J47] Chronic lower respiratory	Meta-analysis	434	1.30	0.07	1.15-1.48	6×10 ⁻⁵
diseases	DILGOM	127	1.39	0.12	1.09–1.76	0.007
ui500505	FINRISK97	307	1.27	0.08	1.09-1.48	0.002

Outcome	Cohort	Events	HR	SE	95% CI	P-value
[144] Chronic obstructive nulmonery	Meta-analysis	154	1.58	0.11	1.27–1.96	3×10 ⁻⁵
[J44] Chronic obstructive pulmonary disease	DILGOM	45	1.75	0.19	1.19–2.55	0.004
uisease	FINRISK97	109	1.50	0.13	1.15–1.94	0.003
	Meta-analysis	28	2.94	0.24	1.85–4.68	5×10 ⁻⁶
[K70] Alcoholic liver disease	DILGOM	13	2.36	0.38	1.11-5.01	0.03
	FINRISK97	15	3.37	0.30	1.87-6.07	5×10 ⁻⁵
	Meta-analysis	49	2.23	0.16	1.63-3.04	5×10 ⁻⁷
[N17–N19] Renal failure	DILGOM	33	1.82	0.18	1.27-2.61	0.001
	FINRISK97	16	4.07	0.32	2.18-7.61	1×10 ⁻⁵
	Meta-analysis	33	2.47	0.19	1.69-3.61	3×10 ⁻⁶
[N18] Chronic renal failure	DILGOM	20	1.99	0.23	1.28-3.12	0.002
	FINRISK97	13	4.30	0.36	2.11-8.76	6×10 ⁻⁵

Table S3. Hazard ratio details for GlycA associations and when adjusting for prevalent cases. Details of the Cox proportional hazard models shown in **Figure S3**. Models were fit with age as time scale, adjusting for sex, smoking status, BMI, blood pressure, alcohol consumption, biomarkers for all-cause mortality identified alongside GlycA (citrate, albumin, and VLDL particle size), and prevalent cases of the outcome within 10 years prior to sample collection. Diagnosis data were analysed for 356 outcomes with > 20 events in both cohorts over a matched 8-year follow-up period and adjustment for prevalent cases was performed where there were > 10 prevalent cases. Alphanumeric codes within the square brackets indicate the ICD10 categories or codes for each outcome. Meta-analysis results were obtained from an inverse variance weighted fixed effects meta-analysis of the DILGOM and FINRISK97 cohorts. #E: the number of people who were hospitalised or died from the outcome within the 8-year follow-up period. #P: the number of people who had been hospitalised from that outcome in the 10 years prior to sample collection. HR: the hazard ratio conferred per standard deviation increase of GlycA levels. SE: standard error of the hazard ratio estimate. 95% CI: 95% confidence interval of the hazard ratio.

Outcome	Cohort	#E	# P	HR	SE	95% CI	P-value
	Meta-analysis	192	217	1.49	0.09	1.24-1.78	2×10 ⁻⁵
[A00-A09] Intestinal infections	DILGOM	80	130	1.55	0.14	1.18-2.04	0.002
	FINRISK97	112	87	1.44	0.12	1.13-1.83	0.003
[A00] Infectious costre enteritie	Meta-analysis	148	138	1.51	0.10	1.24-1.85	6×10 ⁻⁵
[A09] Infectious gastroenteritis and diarrhoea	DILGOM	66	87	1.58	0.15	1.17-2.13	0.003
	FINRISK97	82	51	1.46	0.14	1.11-1.93	0.007
	Meta-analysis	443	153	1.41	0.06	1.24-1.60	1×10 ⁻⁷
[E10-E14] Diabetes mellitus	DILGOM	202	69	1.52	0.09	1.27-1.81	4×10 ⁻⁶
	FINRISK97	241	84	1.3	0.09	1.08-1.55	0.005
	Meta-analysis	405	144	1.45	0.07	1.27-1.65	2×10 ⁻⁸
[E11] Type 2 diabetes	DILGOM	188	63	1.47	0.09	1.23-1.77	3×10 ⁻⁵
	FINRISK97	217	81	1.43	0.10	1.18-1.72	2×10 ⁻⁴
	Meta-analysis	996	388	1.21	0.05	1.10-1.32	4×10 ⁻⁵
[I10-I15] Hypertensive diseases	DILGOM	583	229	1.21	0.06	1.08-1.36	0.001
	FINRISK97	413	159	1.2	0.07	1.05-1.38	0.009
	Meta-analysis	955	346	1.21	0.05	1.10-1.33	5×10 ⁻⁵
[I10] Essential primary hypertension	DILGOM	562	212	1.23	0.06	1.09-1.39	7×10 ⁻⁴
nypertension	FINRISK97	393	134	1.18	0.07	1.03-1.37	0.02
	Meta-analysis	938	509	1.31	0.05	1.19–1.43	7×10 ⁻⁹
[I20-I25] Ischaemic heart	DILGOM	364	238	1.3	0.07	1.13-1.50	3×10 ⁻⁴
diseases	FINRISK97	574	271	1.31	0.06	1.16-1.47	6×10 ⁻⁶
	Meta-analysis	521	332	1.31	0.06	1.16-1.48	1×10 ⁻⁵
[I20] Angina pectoris	DILGOM	173	166	1.31	0.11	1.06-1.61	0.01
	FINRISK97	348	166	1.31	0.07	1.13-1.52	3×10 ⁻⁴
	Meta-analysis	249	170	1.58	0.08	1.34-1.86	4×10 ⁻⁸
[I21] Acute myocardial	DILGOM	92	71	1.48	0.13	1.14–1.91	0.003
infarction	FINRISK97	157	99	1.65	0.11	1.34-2.04	3×10 ⁻⁶
	Meta-analysis	685	270	1.33	0.06	1.19-1.48	2×10 ⁻⁷
[I25] Chronic ischaemic heart disease	DILGOM	296	140	1.32	0.08	1.12-1.55	8×10 ⁻⁴
	FINRISK97	389	130	1.34	0.07	1.16-1.55	7×10 ⁻⁵
<u>-</u>	Meta-analysis	195	35	1.66	0.09	1.38-2.00	9×10 ⁻⁸
[I50] Heart failure	DILGOM	80	23	1.69	0.15	1.26-2.26	4×10 ⁻⁴
L J	FINRISK97	115	12	1.64	0.12	1.29-2.09	5×10 ⁻⁵
							11

Outcome	Cohort	#E	#P	HR	SE	95% CI	P-value
[170 170] Antonial system	Meta-analysis	267	106	1.55	0.08	1.32-1.83	1×10 ⁻⁷
[I70-I79] Arterial system diseases	DILGOM	113	50	1.47	0.12	1.15-1.88	0.002
uiseases	FINRISK97	154	56	1.62	0.11	1.30-2.01	2×10 ⁻⁵
	Meta-analysis	176	65	1.86	0.10	1.55-2.25	6×10 ⁻¹¹
[I70] Atherosclerosis	DILGOM	62	29	2	0.14	1.52-2.62	6×10 ⁻⁷
	FINRISK97	114	36	1.75	0.13	1.36-2.27	2×10 ⁻⁵
	Meta-analysis	457	247	1.37	0.07	1.20-1.56	2×10 ⁻⁶
[J10-J18] Influenza and	DILGOM	207	155	1.31	0.10	1.08-1.59	0.005
pneumonia	FINRISK97	250	92	1.42	0.09	1.19–1.69	8×10 ⁻⁵
	Meta-analysis	91	59	1.71	0.14	1.31-2.24	1×10 ⁻⁴
[J20-J22] Acute lower	DILGOM	37	35	1.78	0.23	1.14-2.76	0.01
respiratory infections	FINRISK97	54	24	1.67	0.17	1.19-2.36	0.003
	Meta-analysis	607	368	1.36	0.05	1.22-1.52	2×10 ⁻⁸
[J40-J47] Chronic lower	DILGOM	214	197	1.52	0.09	1.27-1.81	3×10 ⁻⁶
respiratory diseases	FINRISK97	393	171	1.28	0.07	1.12-1.47	3×10 ⁻⁴
[144] Chronic chatmative	Meta-analysis	188	51	1.57	0.10	1.29-1.90	4×10 ⁻⁶
[J44] Chronic obstructive	DILGOM	58	23	1.95	0.16	1.41-2.70	5×10 ⁻⁵
pulmonary disease	FINRISK97	130	28	1.39	0.12	1.09-1.76	0.007
	Meta-analysis	332	215	1.46	0.07	1.28-1.68	4×10 ⁻⁸
[M05-M14] Inflammatory polyarthropathies	DILGOM	151	134	1.37	0.11	1.10-1.70	0.004
	FINRISK97	181	81	1.53	0.09	1.28-1.82	2×10 ⁻⁶
	Meta-analysis	67	34	1.95	0.14	1.49-2.56	1×10 ⁻⁶
[N00-N08] Glomerular	DILGOM	22	28	1.8	0.22	1.16-2.80	0.009
diseases	FINRISK97	45	6	2.05	0.17	1.46-2.89	4×10 ⁻⁵

Table S4. Hazard ratio details for GlycA associations with major common diseases using more detailed registry information. Details of the Cox proportional hazard models shown in **Figure S6**. Models were fit with age as time scale, adjusting for sex, smoking status, BMI, blood pressure, alcohol consumption, and biomarkers for all-cause mortality identified alongside GlycA: citrate, albumin, and VLDL particle size. Prevalent cases were removed from the analysis. HR: the hazard ratio conferred per standard deviation increase of GlycA levels. SE: standard error of the hazard ratio estimate. 95% CI: 95% confidence interval of the hazard ratio.

Outcome	Cohort	#E	HR	SE	95% CI	P-value
	FINRISK97	237	1.38	0.10	1.14–1.67	8×10 ⁻⁴
Diabetes	DILGOM	144	1.30	0.10	1.07-1.57	0.008
	Meta-analysis	381	1.34	0.07	1.17-1.53	2×10 ⁻⁵
	FINRISK97	277	1.46	0.08	1.24-1.73	7×10 ⁻⁶
Major coronary heart disease event	DILGOM	175	1.31	0.10	1.08-1.59	0.007
	Meta-analysis	452	1.4	0.06	1.23-1.58	3×10 ⁻⁷
	FINRISK97	140	1.79	0.12	1.43-2.26	6×10 ⁻⁷
Myocardial infarction	DILGOM	84	1.54	0.13	1.18 - 2.00	0.001
	Meta-analysis	224	1.68	0.09	1.41–1.99	5×10 ⁻⁹
	FINRISK97	242	1.56	0.09	1.30-1.86	1×10 ⁻⁶
Heart failure	DILGOM	100	1.43	0.15	1.07-1.91	0.02
	Meta-analysis	342	1.52	0.08	1.31-1.77	5×10 ⁻⁸
Stroke, including subarachnoidal	FINRISK97	189	1.23	0.11	1.00-1.52	0.05
haemorrhage	DILGOM	101	1.39	0.14	1.05-1.83	0.02
	Meta-analysis	290	1.29	0.09	1.09-1.52	0.003
	FINRISK97	111	1.49	0.13	1.14–1.93	0.003
Chronic obstructive pulmonary disease	DILGOM	44	1.57	0.20	1.05-2.35	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Meta-analysis	155	1.51	0.11	1.21-1.89	2×10 ⁻⁴
	FINRISK97	12	4.57	0.40	2.08-10.06	2×10 ⁻⁴
Chronic kidney failure	DILGOM	21	2.04	0.23	1.30-3.20	0.002
	Meta-analysis	33	2.49	0.20	1.68-3.68	5×10 ⁻⁶

Table S5. Hazard ratio details for 12-year cardiovascular mortality risk in ANGES shown in **Figure 2**. Hazard ratios indicate risk of cardiovascular mortality relative to individuals in the lowest GlycA quintile. There were 180 people in each quintile. 95% CI: 95% confidence interval. Cox proportional hazard models were adjusted with age, sex, albumin, VLDL-diameter, citrate, thrombocyte count and ejection fraction.

GlycA Quintile	Deaths	Hazard Ratio	Standard Error	95% CI	P-value
20-40%	23	1.95	0.34	1.00-3.80	0.05
40-60%	26	2.35	0.36	1.16-4.77	0.02
60-80%	26	4.87	0.35	2.45-9.65	6×10 ⁻⁶
80–100%	41	5.00	0.38	2.38-10.48	2×10 ⁻⁵

Table S6. CRP hazard ratio details for 12-year cardiovascular mortality risk in ANGES. Hazard ratios indicate risk of cardiovascular mortality relative to individuals in the lowest CRP quintile. 95% CI: 95% confidence interval. Cox proportional hazard models were adjusted with age, sex, albumin, VLDL-diameter, citrate, thrombocyte count and ejection fraction. Analyses were conducted using 582 individuals with complete data.

CRP Quintile	Deaths	Hazard Ratio	Standard Error	95% CI	P-value
20-40%	23	1.77	0.43	0.76-4.14	0.2
40-60%	26	3.41	0.37	1.64-7.09	0.001
60-80%	26	3.13	0.38	1.49-6.56	0.003
80–100%	41	4.62	0.35	2.31-9.23	2×10 ⁻⁵

Table S7: Hazard ratios and standard errors for all outcomes analysed in the EHR analyses. NB

this table is provided as a separate Excel file. Hazard ratios and standard errors in each sensitivity analysis are provided as additional sheets in the Excel file.