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Accounting for location uncertainty in azimuthal telemetry data improves ecological inference.

A Full-conditional distributions and Markov chain Monte Carlo
algorithm for parameter estimation

The proposed azimuthal telemetry models were fit using a Markov chain Monte Carlo (MCMC) algorithm
implemented in the R computing environment.

A.1 Observer model from “Azimuthal Telemetry Model (ATM)”

Suppose that multiple individuals (I = 1,...,L) are fixed with a radio-transmitter within a study region
and are subsequently relocated using radio-telemetry on ¢ = 1,...,n; days. For each relocation attempt, an
observer records a set of azimuths (9h~j; j=1,...,J;) at known locations s;;; = (suij,smj)’ to estimate

the true transmitter spatial location, p;; = (g1, o)’

MODEL STATEMENT!
0135 ~ vonMises (9@, /m)

057 = tan~? (HQli - 32lij>
1)

H1li — Silij
wy; ~ U (Sy)
Jui

Sii = U {(@,9) [ (& = suij)® + (y = s21)* <12}

log (k1) ~ N (Bo + B11s},07)
ﬂO ~N (:uﬁa U%)
61 ~ N (:’-1’67 U%)

o ~ Inv-gamma (o, B5)

L Assuming 2 observers (A,B) with 1 observer per location i



FULL-CONDITIONAL DISTRIBUTIONS
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MCMC ALGORITHM FOR PARAMETER ESTIMATION

To estimate the parameters above, an MCMC algorithm was implemented as follows:

1. Define initial values for the model parameters: Iil(? ), 0 , 1 , and U,(go). Define values for hyperpa-

rameters: 7, ug, a[%, Ay, and fB,.

2. Generate grid of points on S;; and compute élij for each grid point. Set k = 1.

3. Direct approximation of [py; | -]:

(a) Obtain ul(f) by taking a random draw from the set of grid points m = 1,..., M where the
probability of each grid point m is defined as:

Jii

I [9lij\um»fﬁ(fc 1)]
=1

Ti: o
U [Glijlumwl(f 1)}

Pm =

J
M
>
m=1j

4. Metropolis-Hastings step for [k | -]:

(k—1)

(a) Sample /-@l(:) from the proposal distribution [K) )|Iilk 1)] = N(o,00) (K)li T, ) where 72

y Tre T, 1S a

tuning parameter and N (- ) represents a truncated normal distribution with support (0, o).

(b) Compute the ratio of densities,

S e I e e e B

j=

(i o) ]

Jj=1

a =

(c) Set

K (k 1)
’L

*) /{l(z) with probability min(a, 1)
B otherwise
5. Metropolis step for [5p |- ]:
(a) Sample ﬂé*) from the proposal distribution {ﬁo | B(k 2 } =N ( (()k_l), Tgo) where TEO is a tuning
parameter.

(b) Compute the ratio of densities,

{1 T [1om (<4) 18578070 (667 1.0

Rt

1:=1
[ () 552,02 37 ]

(c) Set
(k) _ {ﬂé*) with probability min(a, 1)

0 k—1 .
(g ) otherwise

6. Metropolis step for [B1 | -]:

(a) Sample ﬁ§*) from the proposal distribution [,6’1 \,B(k D } =N ( %kil),rgl) where Tél is a tuning
parameter.



(b) Compute the ratio of densities,

(XL H (10w () 18078070} [507 1 1n.o]

l=11i=1

{lli zij1 [log (Iill ) |50k), §k 1) (kl)}} [ﬂkfl) |Mﬁ70ﬂ

(c) Set
a0 _ Bg*) with probability min(a, 1)
! ngil) otherwise
7. Metropolis-Hastings step for [0y | -]:

(a) Sample ol from the proposal distribution [aﬁ |J(k 1)} = N(0,00) (o,&kil)ﬂ'ﬁ) where 72

is a
tuning parameter and N(g o) (- ) represents a truncated normal distribution with support (0, c0)

(b) Compute the ratio of densities,

{0 o o) 10 o T} o ] ot

_ 1=11i=1 .

L mn _ _ (k—1)

{H [T [1og (wi)) 1667, 81", it ”]} [t agpr] |78 104
I=1i=1

(c) Set
(k) ol with probability min(a, 1)
O’ = (k—1) .
Ok otherwise
8. Save ulf), nl(lk), (()k), %k) and O'(k) Set k = k+1 and return to step 3. Iterate algorithm by repeating

steps 3—7 until a sufficiently large sample has been obtained from which to approximate the posterior
distribution.

A.2 Single k model from “Simulation”

Suppose that a single individual is fixed with a radio-transmitter within a study region and is subsequently
relocated using radio-telemetry on ¢ = 1,...,n days. For each relocation attempt, an observer records a set
of azimuths (6,;; 7 = 1,...,J;) at known locations s;; = (s145, S2i;)" to estimate the true transmitter spatial

location, p; = (p14, p2;)’
MODEL STATEMENT
0;; ~ vonMises (éij, m)

f. — tan-! <M2—52J>
’ H1i — S1ij
pi ~ U (S;)

Ji
Si= U {(I7y) | (x — 811‘]‘)2 + (y— 321']')2 < 7'2}

k~TUl(a, )

FUuLL-CONDITIONAL DISTRIBUTIONS

(i | -] o< [T 1635 | pi, w1 ]

Jj=1

n J;
o [T T]10:s | i, 6][x]
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MCMC ALGORITHM FOR PARAMETER ESTIMATION
To estimate the parameters above, an MCMC algorithm was implemented as follows:

1. Define initial value for von Mises concentration parameter (). Define values for hyperparameters: r,
a, and f.

2. Generate grid of points on S; and compute éij for each grid point. Set k = 1.

3. Direct approximation of [p; | - ]:

(a) Obtain u by taking a random draw from the set of grid points m = 1,..., M where the
probability of each grid point m is defined as:

Ji
H [ i |ll’m7/€(k71)]

j=
Pm = 737
371 0 e

4. Metropolis-Hastings step for [x]-]:
(a) Sample £ from the proposal distribution [k | K*~D] =Ny, 5 (k*~1, 72) where 72 is a tuning
parameter and Ny, () represents a truncated normal distribution with support [, 3].

(b) Compute the ratio of densities,

ﬁ _Ji [ ij |H(k) K )}

1 [K(kil) | Ii(*)}

“= ™) | aED)]

i=1j=
n J;
11

1
o 1 -0
i=1j=1

(c) Set

(k) ) with probability min(a, 1)
K =
k=1 otherwise

5. Save uz ) and k™). Set k = k + 1 and return to step 3. Iterate algorithm by repeating steps 3—4 until
a sufficiently large sample has been obtained from which to approximate the posterior distribution.

A.3 ATM-RSF model from “Resource Selection Model”
The following details are in addition to those presented in §A.2.
MODEL STATEMENT

exp (' (pi)7)
Jexp (& (1)) dp
VhNN(Nva 7),f0rh:1,...,7

(i |v] =

FuLL-CONDITIONAL DISTRIBUTIONS
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_ exp (&' (pi)vn)
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MCMC ALGORITHM FOR PARAMETER ESTIMATION

To estimate the parameters above, an MCMC algorithm was implemented concurrently with the algorithm
presented in §A.2 as follows:

1. Define initial values for the RSF covariates: ’y§()), 'yéo), e ,750). Define values for hyperparameters: u.,

and U?/. Set k= 1.
2. Metropolis step for [y | -]:

() (k—1)

(a) Sample ;" from the proposal distribution [ﬁ*) [y } =N (75’671), o2

71

2

) where o3, is a tuning

parameter.

(b) Compute the ratio of densities,

n €xXp (:1:’ (ugk)) 7;”)

im1 [exp (x/(p)y*) dp

exp (&' (™ ik_l) ’
AEIGCRERY

W 02}
i Jexp (2 (p)y™) dp v

. ®) (k— k1))’ - k— k— k1))’
where ~y :(fﬁ),fyé D,...,fy; 1)) and vy :(% 1)775 U,..,yé 1))

(c) Set

[Vi*) 7 aﬂ

a =

M= (k—1)

(k) _ ’Y§*) with probability min(a, 1)
ol otherwise

3. Metropolis step for [y2]-]:

(a) Sample fyé*) from the proposal distribution [yé*) | yék_l)} =N (75’“”, cr?yz) where 02, is a tuning
parameter.

(b) Compute the ratio of densities,
o exp (@ (u)4§7)
i=1 [ exp (@' (p)y*) dp

ﬁ exp (w' (uﬁk)) 7£k_1)) [ ,

L 02}
o Jexp (2 (p)y™) du v

[75*) 7 Uﬂ

* k * k— k— % k k— k— k—
where 37 = (17,287 27, and = (54D D, o)

(c) Set
(k) é*) with probability min(a, 1)
T2 = (k—1) .
Yo otherwise
4. Tterate through remaining + parameters (h = 3,...,7) using Metropolis steps and continuing the

updating pattern given in steps 2-3.
5. Save %k), 'yék), e ’,ygk)_ Set k = k + 1 and return to step 2. Iterate algorithm by repeating steps 2—4
until a sufficiently large sample has been obtained from which to approximate the posterior distribution.

A.4 ATM-HR model from “Home Range”

The 95% kernel density estimate (KDE) isopleth or convex hull of p; (i = 1,...,n) is a derived quantity
and thus can be computed using u(k) for each iteration k of the MCMC algorithm. The results presented in

%

Figure 4 are derived quantities from the algorithm presented in §A.2.



B Simulation Algorithms

The following details the steps used to simulate a single location under each specified design using x = 100
and 3 observer locations. Similar simulation steps were used for designs with k = 25 and 4 bearings. Data
used to fit the model given in §A.2 under each design are the observer locations (s; = (s1;, $2;)’) and the

observed azimuths (624).

B.1 Random Design
1. Draw py ~ U (1000, 2000) and pe ~ U (1000, 2000)
2. Draw 0; ~ U (—m,7) fori=1,...,3

3. Draw d; ~ fqfori=1,...,3 where f; is a doubly truncated exponential distribution (lower = 25, upper
= 2000) with rate parameter equal to Ayg = 0.0039 from the non-truncated “empirical” distribution
of distances (years 2005-2010). The coordinates of s; are obtained using the following equations:

S1i = M1 + COS(G@) . di
S9; = M2 + sin(@i) . dl

4. For each 6;, draw H?dj ~ vonMises (é =0, —m, k= 100)

B.2 Encircle Design
1. Draw u; ~ U (1000,2000) and 15 ~ U (1000, 2000)

2. Draw 01 ~ U (—m, 7). For i = 2,3, draw 6, ~ U (%, %) and add to previous bearing: 6; = 6,1 + 0!

3. Draw d; ~ fqfori=1,...,3 where f; is a doubly truncated exponential distribution (lower = 25, upper
= 2000) with rate parameter equal to AyLg = 0.0039 from the non-truncated “empirical” distribution
of distances (years 2005-2010). The coordinates of s; are obtained using the following equations:

S14 = M1 + cos(@i) . dz
S92 = M2 + sin(@i) . dl

4. For each 6;, draw Q?dj ~ vonMises (é =0, —m K= 100)

B.3 Road Design
1. Draw 1, ~ U (1000,2000) and 15 ~ U (1000, 2000)

2. Draw 673 ~ U (—m,7) and d*°® ~ U (50,250) (i.e., direction and distance to perpendicular road
feature)

3. Given a maximum span of 160°, we obtain the endpoints of the road feature s:°*d (k = 1,2) as follows:

4 droad
Sroad = + cos (aroad + 7T> . =
cos (%)
4 droad
Sgciad = po + sin eroad + i -
9 cos ( o )
A droad
Sroad — 4+ cos eroad =
12 f 9 ) cos (4F)
A droad
Sroad _ + sin eroad -
He2 9 cos ( 4; )



road road
shot¢ — s . .
. Compute angle between s:°d and si°ad: §* = tan~! (M) and the Euclidean distance
s — s
12 11

between them d* = \/(s537 — s5329)2 4 (55524 — s192d)2

. Split d* into 3 equal-length segments and sample uniformly on length of each: for i = 1,...,3, draw
di~U((i=1)-%.()- %)
. Obtain observer location points: for i =1,...,3,

S1; = Sﬁad + COS(G*) i

-d
s9; = 55934 4 sin(6*) - d;

— 8o
. Compute angle from s; to u: fori =1,...,3, 6; = tan™! (M)
M1 — S14

. For each 6;, draw H?dj ~ vonMises (5 =0; —m k= 100)



