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1 Management Implications of Our Work

1. Epidemiological models can be used to describe natural baculovirus epizootics, which lead

to population crashes in Douglas-fir tussock moth (DFTM) populations. Managers are usually3

able to predict population crashes after 1-2 years of intense defoliation, but epidemiological

models show that epizootics can decimate populations even before substantial defoliation occurs.

Infection rates often sharply increase when larvae reach the third or fourth instar and viral spread6

may therefore out pace defoliation. These findings suggest that additional consideration may be

warranted prior to the decision to treat an area affected by a DFTM outbreak.

2. When the DFTM population is sufficiently large, very low initial infection rates can gener-9

ate an epizootic strong enough to curtail defoliation. Even initial densities as low as 7 larvae/m2

are sufficient for epizootics to occur. When assays of initial infection are conducted, 25% initial

infection has historically been the threshold at which a decision to treat an area is made, while12

infection rates below 25% have been considered to be too low for meaningful epizootics to occur

(Stelzer, 1979). Our work, however, shows that natural epizootics may occur even when initial

infection rates are much lower, and so this threshold is far too conservative.15

3. NPV spray programs are labor intensive and materials intensive. Comprehensive pre-

season assays of infection rates may allow for more accurate prediction of baculovirus mortality

rates, but such assays require considerable time and effort in the laboratory. When combined18

with the epidemiological modeling approach presented here, however, such laboratory efforts

could result in significant savings of money and effort. This is because, in many cases, naturally

occurring baculovirus epizootics will decimate DFTM populations, even in the absence of a spray21

program.

4. Detailed knowledge of epidemiological theory is not required to use the model, and we are

therefore planning to develop a web-based application for managers that will allow prediction24

of epizootic dynamics. The data inputs required will be the host density and the initial infection

rate. Host density can be obtained by standard cocoon or egg mass surveys, which are often
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carried out by forest health management personnel. The initial infection rate can be estimated by27

hatching out field-collected egg masses in the lab, to determine the fraction of larvae that hatch

out infected. Managers usually estimate the fraction infected as well, but our results indicate that

more intensive searches for low initial infection rates may be necessary.30

2 Observational data

In two cases, one the work of Otvos et al. (1987) in the Kamloops Forest District of British

Columbia, and one the work of a co-author (C.J.M.) in the Methow Valley of Washington State,33

data were collected both from sprayed treatment plots (Otvos et al.: 4 sites; C.J.M.: 1 site), and

control sites (Otvos et al.: 3 sites; C.J.M.: 2 sites, reported in Polivka et al. 2012). One of us

(K.M.P.) also collected data from two naturally occurring epizootics, one in the Lovell Valley36

(Benewah Co.), Idaho, and one in Cheyenne Mountain State Park in Colorado (table A1).

Initial host density in our observation sites was measured using one of three methods, de-

pending on the site. The first two methods consisted of standardized cocoon or egg mass surveys39

in the fall or spring preceding the insect collection, respectively (Mason et al., 1993). Cocoon sur-

veys were conducted for the 2010 Washington sites, while an egg mass survey was conducted for

the Idaho site. In these surveys, 25 trees were randomly selected across a 0.8 to 2.0 ha area, and42

the number of cocoons or egg masses on the underside of three 45 cm branch tips in the lower

crown of each tree was counted (Mason et al., 1993). Because the pupae in the cocoons give rise

to adult moths, we inferred the density of larvae resulting from cocoons by multiplying cocoon45

density by 0.5 to approximate the density of emerging females, and we inferred the initial larval

density by multiplying by 145, the average number of larvae that hatch per egg mass (Mason

et al., 1977). For the egg-mass survey data, we used the same calculation, except that of course48

we did not need to multiply by 0.5 to account for the fraction of pupae that produce females.

The third method consisted of larval surveys in the early spring preceding virus treatment,

and was used by Otvos et al. (1987). In these surveys, 90 45 cm branch samples were taken from51
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Site Location Year
Initial Host Density

(Larvae · m−2)

C1 Washington 2010 7.20

C2 British Columbia 1987 44.35

C3 Coloradoa 2015 47.85

C4 British Columbia 1987 112.09

C5 Idaho 2010 126.08

C6 Washington 2010 149.00

C7 British Columbia 1987 165.39

T1 Washington 2010 8.99

T2 British Columbia 1987 34.27

T3 British Columbia 1987 124.08

T4 British Columbia 1987 172.65

T5 British Columbia 1987 232.03

Table A1: Labels and characteristics of sites used for the observational data set. C1, C2, and

so on indicate unsprayed control sites, while T1, T2 and so on indicate sprayed sites. aThe

initial host density for the Colorado site was estimated from the data (see Methods section and

Supplementary Materials).

45 trees at each site. The foliage area was estimated for each branch, and larvae were counted

to yield larval density per m2, which was then averaged across branches (Otvos et al., 1987). We

did not have an estimate of initial host density for the 2015 control site in Colorado, and so for54

that site, we estimated the initial larval density along with the epidemiological parameters.

In some control sites, several weeks passed before sampling began, or before any infections

were detected. In these cases, we adjusted the initial host density to account for non-disease57

mortality, due for example to predation or dessication, before the epizootic began. To simplify

the problem, we assumed that this mortality rate was constant, and we estimated it using data
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from Mason and Torgersen (1983) on larval survivorship in two tussock moth populations. We60

fit a simple model of density-independent mortality to these data, using a binomial likelihood,

which gives a log-likelihood score of:

−∑
t
(N(0)− N(t)) log

(
1− e−bt

)
+ N(t) log(e−bt). (A1)

Here, the initial population size N(0) = 150, while N(t) is the population size at t days post63

hatching. To estimate the mortality rate b, we used the one-dimensional nonlinear fitting function

optimize() in the R statistical language. The best-fit mortality rate is b = 0.037. As fig. A1

shows, the model provides a reasonable fit to the data, suggesting that the assumption of constant66

mortality is reasonable. Also, the model provided a good fit to data from both branches on which

emigration was allowed, and on branches from which emigration was prevented, suggesting that

mortality was mostly due to predation rather than to emigration. We used this estimate of b to69

adjust the initial susceptible host density in epizootics for which the virus infection rate was zero

for 2 or more weeks early in the larval period.
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Figure A1: Fit of a density-independent mortality model to data from Mason and Torgersen

(1983)’s fig 2. The black dots are data from experimental populations that were exposed to

natural mortality factors, including predators, and for which emigration was allowed. Gray dots

are data from adjacent populations for which emigration was prevented using cages that allowed

access by small predators. The solid lines represent the maximum likelihood estimate of the

decay function, while the dashed lines represent bootstrapped 95% confidence bounds.

3 Field transmission experiments72

3.1 Additional experimental details

Because the transmission rate, ν, represents the overall infection risk per unit time, it encom-

passes both the probability of exposure and the probability of infection given exposure. Because75

ν thus allows for host behavior and host-tree foliage effects, it is best measured using experiments
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in which larvae feed freely on virus-contaminated foliage, preferably in the field. Previous work

has shown that, by using the correct protocol, it is possible to carry out field-transmission exper-78

iments that are highly repeatable (Dwyer, 1991; Dwyer et al., 1997; Fleming-Davies et al., 2015).

Following these protocols, we first reared uninfected tussock moth larvae in the laboratory from

field-collected egg masses, which had been collected from an early-stage outbreak in Cheyenne81

Mountain State Park in Colorado in 2014. We used hatchling larvae as infected hosts in our

experimental epizootics, because the most important round of transmission occurs when third

and fourth instar larvae are infected by first instar cadavers. To deactivate any virus particles on84

the surface of the eggs, we submerged the egg masses in 5% formalin for 90 minutes prior to

incubation (Dwyer and Elkinton, 1995). To cause infection, we placed the hatchlings on artificial

diet contaminated with the respective viral isolate. A small pilot study allowed us to determine87

the viral dose that results in ∼95% of larvae becoming infected (Mihaljevic et al., unpublished

data).

Infected larvae were reared at 26 ◦C in the laboratory for five days to ensure that they were90

infected. Uninfected larvae can be easily identified and removed because they have molted to

the second instar by this time (Fuller et al., 2012). Infected larvae were then placed on mesh-bag-

enclosed Douglas-fir branches in the field at two densities: 10 and 40 larvae per ∼0.5 m2 branch.93

We then allowed the infected larvae to disperse on the foliage and die, which takes roughly 5

days. On the fifth day, we added 20 uninfected larvae, which we had reared in the lab to the

fourth instar, the stage at which most transmission occurs in the wild (Dwyer et al., 1997). We96

also established seven control replicates by adding 20 uninfected fourth instar larvae to bagged

branches without infected larvae.

Because a larval insect’s susceptibility to a baculovirus can vary in a complex way within an99

instar (Grove and Hoover, 2007), we developmentally synchronized the fourth instars that we

used as uninfected larvae. When a larva is ready to molt to the next instar, its head capsule

slips forward, making it easy to identify larvae that are close to the end of an instar. To generate102

synchronized fourth instars for our experiment, we therefore collected third instars with slipped
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head capsules, and we held them at 4◦C, halting development, until we had enough larvae to

begin the experiment. We then moved all the larvae to 26◦C until they had molted to the fourth105

instar, which occurred within 48 hours. This protocol produces larvae that have all reached the

fourth instar within a relatively short period. The similarity in infection risk among these larvae

eliminates most extraneous variability, leaving only the binomial variation that is expected in an108

infection experiment (Elderd et al., 2008).

Our experimental treatments thus consisted of 2 viral densities (10, 40), crossed with 3 viral

isolates (TMB-1, WA, NM), for a total of 6 treatments, each replicated 14 times, with 7 control bags111

(viral density = 0). The experiment therefore included 91 total mesh bags and 1,820 uninfected,

fourth instar larvae. We allowed the initially uninfected larvae to feed on foliage for 7 days, and

then we removed the branches from the trees and brought them into the laboratory. Larvae from114

the branches were then reared individually in 2 ounce (59 ml) cups partially filled with artificial

tussock moth diet. To determine if larvae had died because of the virus, we examined smears

from dead larvae under a light microscope at 400× to determine if occlusion bodies were present.117

After the 7 day experimental period, we photographed each branch, and we used ImageJ

(Schindelin et al., 2015) to estimate the 2-dimensional surface area of foliage for each branch. The

number of cadavers divided by the estimated foliage area per branch then served as an estimate120

of infectious-cadaver density. The density units were thus the same as in the epizootic data.

As described in the main text, we used three baculovirus isolates in this experiment, two nat-

urally occurring isolates (WA and NM), and TMB-1, which is used in the spray formulation. The123

two naturally occurring isolates came from individual infectious cadavers that were originally

collected as live larvae in the field. One of these isolates was collected from a control plot in the

2010 spray program in Washington, while the other was collected near Los Alamos, New Mexico126

in 2014. Transmission electron microscopy showed that all three isolates were the multicapsid

form of the virus, known as “OpMNPV” (Hughes and Addison, 1970).

As part of this experiment, we attempted to measure the decay rate µ of infectious cadavers on129

foliage, by allowing some cadavers to be exposed to sunlight outside of the mesh bags for 3 days.
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3 days, however, proved to be too short a period for us to detect meaningful decay of the virus,

and we therefore do not report these results in detail. One of us (G.D.) was similarly unsuccessful132

at estimating the decay rate when using exposure periods of 1, 4, 13, and 32 days (Dwyer, 1992).

It may therefore be that the decay rate of the virus is very low, as implied by the posterior median

of the decay rate for the models with experiment-based priors on the transmission rates (table135

A3).

3.2 Fitting the SEIR model to the experimental data

Experimentally manipulating the initial density of cadavers, P0, allowed us to estimate the aver-

age transmission rate ν̄ and the variability in transmission rate C for each virus isolate, as follows.

Viral breakdown was effectively zero (Fuller et al., 2012), and the experiment was short enough

that none of the initially uninfected larvae died of the virus during the experiment. Because the

infectious cadaver density was thus held constant, we can set dP/dt = 0, which in turn allows

us to simplify the SEIR model so that we can solve for the fraction of infected larvae, i, on each

branch (Dwyer et al., 1997). When we compare the model to the data in the main text, we use a

negative log-transformed version of this equation, as follows:

− log(1− i) =
1

C2 log
(
1 + C2ν̄P0 t̂ρ

)
(A2)

Here, t̂ is the time larvae were exposed to virus on foliage, which was 7 days. The ratio parameter,138

ρ, is included because an implicit assumption of the SEIR model is that all larvae are in the fourth

instar, but the infectious cadavers in our experiment were in the first instar. The parameter ρ

therefore scales the transmission rate so that it is expressed in terms of fourth-instar cadavers.141

Because we had estimated ρ from another experiment, we included an experimentally-derived

prior on ρ.

We fit equation A2 to the data from the field transmission experiment to estimate ν̄ and C

for each virus isolate, and to estimate a marginal posterior for ratio, ρ. We explicitly tested for

the effect of host heterogeneity on transmission by also a fitting simpler, nested model, which
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assumes C ≡ 0:

− log(1− i) = νP0 t̂ρ. (A3)

We used the Bayesian inference software, JAGS (http://mcmc-jags.sourceforge.net/) via144

the rjags package in R with vague priors for ν̄ and C, and an experimentally-derived prior for

ratio, ρ. To avoid biases in the parameter estimates, we explicitly allowed for error in the cadaver

densities P0 in the statistical model. We then compared the full and nested models using WAIC147

(see below for the formal definition of WAIC). Example code for the fitting routine for this model

is provided at the end of this document.

To use the results of this analysis in fitting the SEIR model to the data, we constructed log-150

normal prior probability distributions for transmission ν̄, heterogeneity C, and ratio ρ, from

the marginal posterior samples generated from fitting the simplified SEIR model (eq. A2) to

the experimental data. On a log scale, the marginal posterior samples were well described by153

normal distributions, and so we constructed priors by calculating sample means and standard

deviations from the posterior marginals. We expressed transmission heterogeneity C in terms

of the parameter k = 1/C2, which has a distribution that is more nearly normal on a log scale.156

We thus used the following informative prior probability distributions: ν̄ ∼ LN(−4.82, 0.59),

k ∼ LN(−0.094, 0.75), ρ ∼ LN(−3.39, 0.50), where LN represents a log-normal distributions. For

k and ρ, we inflated the prior variance slightly to improve chain mixing, but the effects were159

minimal.

Dessication is a common source of natural mortality in Douglas-fir tussock moth populations

(Mason and Torgersen, 1983), and so seven of our 119 experimental branches had 100% mortal-162

ity due to dessication. Because the mesh bags can elevate temperatures (Páez et al., 2017), we

excluded these branches from our analyses. For the other branches, we similarly excluded dessi-

cated larvae, which were unlikely to have become infected, and could only be autopsied with165

extreme difficulty. The estimated 2-dimensional area of foliage per replicate branch ranged from

0.09 to 0.28 m2 (mean = 0.15). After correcting for this variability, the cadaver density for the low

density treatment (10 cadavers per branch) ranged from 38.49 to 112.58 cadavers · m−2 foliage168
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(mean = 70.58), and the high density treatment (40 cadavers per branch) ranged from 142.38 to

426.98 cadavers · m−2 foliage (mean = 254.41).

Model Type WA Isolate NM Isolate TMB-1 Overall

C > 0 175.53 179.48 165.06 520.07

C = 0, 174.28 199.11 168.45 541.84

Table A2: Model selection for the transmission experiment. The bold-faced WAIC scores high-

light the best model, based on ∆WAIC > 3.

As Table A2 shows, for the WA data, the fit of the model with no heterogeneity (C = 0) is171

indistinguishable from the fit of the model with C > 0. Over all 3 isolates, however, the model

with C > 0 provides a better fit.
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4 Speed of kill experiment174

DFTM egg masses were collected from sites C1 and T1 (table A1), sterilized, and reared to the

fourth instar following the same protocols as the uninfected larvae in the field transmission

experiment. Larvae were then exposed to the TMB-1 isolate by placing them on Douglas-fir177

seedlings in the greenhouse, at a temperature of 30 ◦C. To apply the virus to the foliage, we pre-

pared a solution of TMB-1 (Lot no. 4 USDA Forest Service, Corvallis, Oregon) at a concentration

of 0.018g ·l−1, equal to the concentration used in large microbial control projects (R. Magelssen,180

pers. comm.). We then sprayed the foliage with 4.5 mL, a quantity sufficient to cover all the

foliage on the small trees that we used.

We allowed larvae to feed on the foliage for 7 days and then we transferred them individually183

to 2 oz cups with artificial diet. Larvae were then incubated at 27 ◦C and monitored daily for

mortality. Larvae that died before pupation were autopsied to confirm virus death.

In the SEIR model, hosts proceed through several exposed classes, leading to a gamma-

distributed speed of kill (see main text). To estimate the death rate parameter 1/δ, we therefore

used Bayesian methods to fit the following gamma distribution to the speed of kill data;

f (x; α, β) =
βαxα−1e−βx

Γ(α)
(A4)

In terms of the parameters α and β, as well as the parameters m and δ of the SEIR model, the186

mean of this distribution is: E[X] = α
β = 1

δ and the variance is: Var[X] = α
β2 = 1

mδ2 . Thus, by

estimating α and β from our speed of kill data, we were able to estimate the death rate parameter

δ in our epidemiological model.189

We fit the gamma distribution in JAGS (http://mcmc-jags.sourceforge.net/) using flat priors

for α and β, three MCMC chains, an adaptation period of 10,000 iterations, and 50,000 sampling

iterations, thinning by 50, for a total of 1000 samples from the posterior. The resulting distribu-192

tion explains most of the variation in the data (fig. A2). From the posterior distribution of the

parameters, the mean α = 28.84, with variance = 42.6, while the mean β = 1.9, with variance =
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0.2. Given the relationship between these parameters and δ, our posterior mean δ = 0.067, so195

that the speed of kill is approximately 15 days.
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Figure A2: A comparison of the fitted gamma distribution to the speed of kill data. The black

points represent the data, the red line represents the model’s prediction based on the median

values of the parameters, and the gray lines represent a set of model predictions using parameters

drawn randomly from the joint posterior.

By allowing larvae to feed freely on virus-contaminated foliage, we attempted to ensure that

the doses that larvae consumed were similar to the doses that they consume in nature. A possible198

downside to this approach, however, is that larvae may have became infected over several days,

whereas in laboratory experiments, larvae typically become infected over a few hours (Dwyer

et al., 2005). Possibly for this reason, the variance in the speed of kill was substantially larger than201

it was in a previous laboratory experiment (Dwyer, 1991), while nevertheless being extremely

small compared to the mean (variance: 4.4× 10−6). The experimental data therefore imply a

value of m = 29 (range 10-50), but because of the near-zero variance in previous work, in our204
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fitting routine, we set m = 200. In fact, for values of m much greater than 10, the variance in the

speed of kill is very slight, so using m = 29 probably would have given similar results.

5 Experimental estimate of the ratio parameter, ρ207

To estimate the ratio parameter ρ, we infected 40 first instars and 20 fourth instars by exposing

them to virus-contaminated diet in the lab, and then estimating the number of viral occlusion

bodies (OBs) that were produced by each larva. We randomly assigned one of our three virus210

isolates to each larva, but to allow for variation across isolates, we pooled the data to produce an

overall estimate of ρ. After exposure, larvae were reared individually at 26◦C in 2oz cups until

death, and then stored at -20◦C in individual micro-centrifuge tubes. Thawed larvae were later213

vortexed in 5 mL of dH2O in the micro-centrifuge tubes, and then filtered through cheesecloth

into a 50 mL centrifuge tube. After we added an additional 25 mL DI water to the tube, we

centrifuged the solution for 10 minutes at 5000 g to pellet the virus. The supernatant was then216

poured off and the viral pellet was re-suspended in 10 mL of DI water. We vortexed the solution

for 3 minutes and counted OBs using a hemocytometer. We calculated an average density of

OB/µL from two replicate counts of 10 µL aliquots of the virus isolate.219

Viral densities ranged from 50 to 2150 OBs/µl for first instars, with a mean of 340, and

from 1575 to 9775 OBs/µl for fourth instars, with a mean of 4832. Based on 1000 bootstraps of

these data, we used the following log-normal prior distribution for ρ in the field experiment:222

ρ ∼ LN(−2.77, 0.83).

6 Effects of stochasticity in the model

In our model, the stochastic variation in transmission rates varied among sites, such that larger225

variation σ increased the effective transmission rate over the course of the epizootic. Increased

stochasticity thus led to more severe epizootics than expected from a deterministic model with

the same parameters (fig. A3).228
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Figure A3: (a) Simulated phase portraits for our model, using initial conditions estimated from

each of our twelve epizootics. The solid black lines represent trajectories from a deterministic

version of the SEIR model, while the gray lines represent median trajectories over 500 realizations

of the stochastic model, with time proceeding from right to left. The infected density in the model

is measured as the sum of the densities in the exposed classes, ∑ Em. (b) Same as (a) but with log-

transformed densities to illustrate more clearly that stochasticity leads to more severe epizootics.

To explain this effect, here we show that the mean transmission rate is always higher for

the stochastic model. First, for the stochastic model, the average transmission rate E[ν̄] can be

expressed as:231

E [νt] = E [eεt ν̄] = ν̄E [eεt ] . (A5)

The rightmost expectation can be calculated according to,

E [eεt ] =
∫

eεt dp(εt). (A6)

In practice, we specify that the distribution of the εt’s is normal, and so by Jensen’s inequality we
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have;234

∫ ∞

−∞
eεt dp(εt) =

∫ ∞
−∞ ex 1√

2πσ2 e−
x2

2σ2 dx > 1. (A7)

We therefore have that,

E [ν] = ν̄E [eεt ] > ν̄. (A8)

In other words, the expected transmission rate of the stochastic model is always higher than the

(constant) transmission rate of the deterministic model.237

Interestingly, our estimates of the stochasticity term σ vary in a consistent way with initial host

density. As fig. A4 shows, the estimated values of σ tended to be higher in plots with lower initial

host densities, especially for control plots (fig. A4), and this trend is consistent across model types240

(see Marginal Posterior section, below, for parameter estimates across model types). This result

suggests that what we are attributing to weather stochasticity may instead be stochasticity due to

the chance events that befall individuals, known as “demographic stochasticity” (Bolker, 2008).243

In our case, transmission can be affected by behavioral decision-making and individual variation

in exposure risk (Parker et al., 2010), either of which may be subject to chance at the individual

level. Because demographic stochasticity has stronger effects in smaller populations, the higher246

values of σ that we estimated in lower-density control plots may reflect demographic stochasticity.

In sprayed plots in contrast, demographic stochasticity may have had weaker effects because the

initial inundation of virus may have homogenized infection risk across space relative to the249

natural situation in which the virus is clumped into cadavers (D’Amico et al., 2005; Eakin et al.,

2015). The spray may therefore have reduced or eliminated the effects of individual variation in

behavior early in the epizootic.252
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Figure A4: Relationship between stochastic transmission and initial host density for our 12 epi-

zootics, separated into control and sprayed treatment plots. Error bars are 95% credible intervals.

7 Fitting Algorithm and Model Selection

Here we describe the algorithm that we used to fit our SEIR model to the epizootic data, and

the details of our model selection approach. The algorithm that we used is known as “line255

search-MCMC”. Using line-search MCMC required that we carry out 3 steps, which can be

briefly summarized as follows. First, we conducted a Bayesian line search through the multi-

dimensional parameter space of the model, with multiple random re-starts of the line searches.258

Second, we performed principle components analysis (PCA) on the line-search results, in order

to construct proposals for MCMC. We then used these proposals to implement an MCMC routine
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to sample from the posterior distribution of the model, and thus to fit the model to the epizootic261

data. The first and third steps required that we calculate model likelihood scores by averaging

across the likelihoods of many model realizations, effectively integrating out the stochasticity

across realizations. Here we explain these steps in more detail. All methods were executed using264

custom code in the C programming language (Kernighan and Ritchie, 2006).

7.1 Line-search, Markov chain Monte Carlo (line-search MCMC)

The line-search MCMC method was first proposed by Kennedy et al. (2014) to adapt MCMC267

so that it takes advantages of developments in high performance computing, and to improve

MCMC performance through automated proposal construction. Following the algorithm, we

began with a line-search step in which we iteratively swept through parameter space, one pa-270

rameter at a time, calculating the posterior probability of each parameter set. Each line search

swept through the parameter space many times, resulting in a “best” parameter set for each

search. Line searches, however, generally get stuck at local maxima, or on ridges of the posterior273

probability surface. We therefore ran 2000 independent line-searches, with each started by ran-

domizing the order of parameters in the search and the initial position in parameter space. Each

search then produced a best parameter set, by maximizing the posterior probability.276

Next, we used the top 5% of these 2000 parameter sets to construct automated proposal

distributions for an MCMC routine. When MCMC is used to fit nonlinear models with more

than a few parameters, correlations between parameters commonly disrupt the performance of279

the MCMC algorithm, by creating ridges on the surface of the posterior probability. To overcome

this problem, we followed the line search-MCMC algorithm by using the top 5% of the 2000

parameter sets from the line searches, as ordered by decreasing posterior probability, in a PCA.282

We then used the PCA results to generate proposals for MCMC.

To explain how the PCA results were used, we note first that, in a standard Metropolis-

Hastings MCMC algorithm, a random value of a single parameter is drawn from a proposal285

distribution, a new likelihood is calculated for the new parameter set, and then a decision is
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made to keep or reject the newly proposed parameter value. Following line search-MCMC, we

instead drew a parameter in PCA space, and then we back-calculated to produce a new full set of288

model parameter values on the original, non-PCA-transformed scale. In each MCMC iteration,

we therefore proposed a full, uncorrelated set of parameters, before calculating likelihoods. This

vastly improved the mixing of our MCMC chains.291

We ran 10 independent MCMC chains for each of our 1-ν̄ and 2-ν̄ models for at least 30,000

iterations, thinning by 100 iterations. This took approximately one week of computing or “wall-

clock time” for each model. We tested for convergence via the Potential Scale Reduction Factor,294

R̂, (Gelman et al., 2014), and we used visual diagnostics to assess overall mixing, and within-

and among-chain auto-correlations and parameter correlations. Our results are based on strong

convergence, except for models for which heterogeneity C = 0. As we describe in the main text,297

the latter models fit the data very poorly, so it may be that there is no Bayesian algorithm that

will converge for those models.

7.2 Likelihood calculation300

For each set of parameters in the line search and MCMC steps, calculating likelihood scores is

challenging for two reasons. First, our model is stochastic, so we were forced to integrate the

likelihood over many realizations of the stochastic process. Second, our field observations may303

have had extra-binomial variation, so we estimated and corrected for over-dispersion.

Because the specific values of the daily stochasticity εt are not of interest, we integrated over

realizations, which effectively integrated out the values of the εts. To do this, we calculated an

average likelihood, as follows:

L̄ =
∫

L (ε1, ε2, . . . , εD) f (ε1, ε2, . . . , εD) dε1dε2 . . . dεD (A9)

Here L̄ is the likelihood, and D is the number of days for which we drew εt values. Here

f (ε1, ε2, . . . , εD) is the probability density of the εt’s. Because the model is quite complicated,306

it can only be integrated numerically, and as we have discussed, this numerical integration is
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computationally expensive. Calculating the integral in equation (A9) using numerical integration

methods, such as numerical quadrature, is therefore impractical.309

We therefore instead used Monte Carlo integration (Ross, 2002). The idea behind Monte

Carlo integration is that we draw values of the εt’s, and then we calculate the average likelihood

according to,312

ˆ̄L =
1
R

R

∑
j=1

L(εj
1, ε

j
2 . . . ε

j
D), (A10)

where R is the number of realizations, and ε
j
1 is the value of ε1 in the jth realization. According

to the weak law of large numbers (Ross, 2002), as R→ ∞, ˆ̄L→ L̄.

For reducing computing time, however, it is crucial that ˆ̄L approaches L̄ for a reasonably315

small number of realizations, and for this purpose we used the MISER Monte-Carlo integration

algorithm. This algorithm uses recursive, stratified sampling to estimate the average likelihood

while minimizing the number of realizations. Briefly, the algorithm works as follows (the code318

that we use is from the Gnu Scientific Library, but for a more complete explanation, see Press

et al. (1992)). As equation (A10) shows, in calculating an estimate of the average likelihood ˆ̄L,

we are sampling over a D-dimensional space. Within this space, it is likely that there are sub-321

spaces within which the variance in ˆ̄L is higher than in other sub-spaces. In estimating ˆ̄L across

the entire space, it is more efficient to sample more frequently in sub-spaces within which the

variance in ˆ̄L is proportionately higher. It is possible to demonstrate this proposition formally,324

and it therefore forms the basis of the MISER algorithm.

Accordingly, given a quota of R realizations, the algorithm first devotes some fraction of

the realizations, in our case 0.1, to sampling uniformly across the entire space. Based on this327

initial sample, the algorithm recursively divides the overall space into sub-spaces of high and

low variance. In using the remaining realizations, the algorithm then samples more intensively

in sub-spaces of high variance. The end result is an estimate of ˆ̄L that minimizes the variance,330

subject to the constraint of a limited number of realizations. This algorithm allowed us to use only

150 realizations per likelihood calculation, because initial trials made clear that larger numbers
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of realizations were unnecessary.333

For each likelihood calculation, we compared the fraction of infected insects from a given

field observation to the fraction infected as generated by the model, expressed as ∑ Em
∑ Em+S . We then

summed the log-likelihoods of the observations across plots, assuming a beta-binomial likelihood336

function with parameters a = peγ and b = (1− p)eγ, where p is the model prediction of the

fraction infected and γ is an inverse measure of the over-dispersion of the binomial variation in

the data. We estimated γ from the data, using a vague prior. As we will show, over-dispersion339

levels were moderate but not excessive.

7.3 Conceptual Basis of WAIC

In any model selection procedure, a fundamental goal is to produce a model that will best predict342

future data (Konishi and Kitagawa, 2008). In a Bayesian context, the accuracy of the model

predictions can be summarized by the posterior predictive density, the probability of future data

given current data (Gelman et al., 2014);345

p(D̃|D) =
∫

p(D̃|θ)p(θ|D)dθ. (A11)

Here D̃ is future data, D is current data, and θ is a vector of parameters. The predictive accuracy

of the model p(D̃|D) is thus calculated in terms of the probability of future data given the

parameters p(D̃|θ), and in terms of the posterior distribution of the parameters p(θ|D). By348

definition we have not yet collected future data, so the ability of a model to predict future data

must be approximated by the model’s ability to predict existing data. The likelihood of current

data, however, often over-estimates the likelihood of future data, because fitting a model to a351

current data set can lead to under-estimates of the uncertainty in the model’s predictions of

future data (Konishi and Kitagawa, 2008). In WAIC in particular, this tendency to over-fit current

data is corrected for in terms of the variance of the posterior predictive density, which can be354

approximated by the variance of the posterior (Watanabe, 2009).
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The WAIC is thus defined as (Gelman et al., 2014):

WAIC =
n

∑
i=1

log

(
1
S

S

∑
s=1

p(Di|θs)

)
+

n

∑
i=1

VS
s=1 log p(Di|θs)

The first term in the WAIC, p(Di|θs), is the probability of the data given the parameters, which is357

an approximation to the expected log predictive density, a goodness of fit term. WAIC averages

over n data points, which in our case corresponds to our 12 epizootic time series, and over

S random draws from the joint posterior distribution of the parameters θ. We also averaged360

over the stochasticity in the model output. The second term penalizes more complex models in

terms of VS
s=1, an approximation to the variance of the log predictive density, which inevitably

increases with the number of parameters. The variance term is also averaged over the n plots363

and the S random draws, as well as over the stochasticity in the model output. More complex

models may provide less parsimonious explanations for the data, and so are likely to do a poor

job of predicting future data or out-of-sample data. WAIC is thus asymptotically equivalent to366

cross-validation (Gelman et al., 2014).

Exploratory simulations demonstrated that, when the number of draws of parameter sets

from the posterior was more than about 500, further increases in the number of draws had369

only small effects on the WAIC score. In contrast, the number of realizations of the stochastic

model had a strong effect on the WAIC score, apparently because the number of realizations

has strong effects on the penalty term of the WAIC (fig. A5). Accordingly, for each model,372

we calculated WAIC scores based on 750 parameter sets drawn from the posteriors, and by

estimating likelihoods ( ˆ̄L) using 1000 realizations of each epizootic.
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Figure A5: Effects of the number of parameter sets and the number of stochastic realizations on

WAIC scores. Effects on the WAIC (left panel) are separated into effects on the penalty term

(middle panel), and effects on the log likelihood (right panel). This simulation was carried out

for the model that has an experiment-based prior on δ, which has a WAIC score that is close to

that of the best model.

7.4 Transmission Rates From the Best 2-ν̄ Model375

In the main text, we show that the best 2-ν̄ model, which has an informative prior for the death

rate δ, has almost the same WAIC score as the best 1-ν̄ model. As we described, however, the

estimates of the 2 separate transmission rates for the 2-ν̄ model are not meaningfully different.378

To show this, we made draws from the posteriors for each transmission rate, and we calculated

differences between the two transmission rates for each draw. As we reported in the main text, the

95% credible interval (CI) for this distribution includes zero (CI: -0.13, 2.56; fig. A6), confirming381

that we cannot conclude that the two estimates are meaningfully different. There is, however, a

trend in which spray virus transmission is slightly higher than naturally occurring transmission,

but this trend is likely due to the interaction between average transmission and stochasticity. That384

is, epizootics in unsprayed populations are better explained by parameter sets with lower average

transmission and higher stochasticity in transmission. The trend towards higher transmission for

the sprayed virus therefore appears to be a statistical effect, rather than a biological effect.387
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Figure A6: The difference between estimates of the log-transformed average transmission rates in

the 2-ν̄ model for spray - control. These values were log-transformed before taking the difference.

The 95% CI is between the vertical dashed lines, and includes 0.

Figure A7 shows the substantial overlap between the estimate of the average transmission

rate for the best 1-ν̄ model (ν̄1), which has all uninformative priors, and for the two estimates

from the best 2-ν̄ model. The three estimates are thus not meaningfully different.390
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Figure A7: Stacked histograms showing the overlap between the three estimates of average trans-

mission rate from the two best models.

8 Disease-density threshold

As described in the main text, our estimates of the disease-density thresholds differ only slightly

between 1-ν̄ models, yet the estimates of ν̄ and µ differ strongly between models. An obvious393

question is therefore, why are the threshold values so similar? The answer seems to be that there

are correlations between the marginal posterior estimates of these two parameters both within

and between model types (fig. A8). For models with priors based on experiments, however, the396

correlation between ν̄ and µ is weaker, making it easier to separately estimate ν̄ and µ. This effect
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demonstrates another benefit of using experimental data to construct priors.
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Figure A8: Relationship between marginal posterior samples of ν̄ and µ from the 1-ν̄ models.

The panel on the left shows pooled samples from all models, while the panels on the right show

samples for each model. The positive correlations between the two parameters lead to very

similar estimates of the disease-density thresholds across models.

9 Marginal posteriors from 1-ν̄ models399

Here we present tables showing the marginal posterior parameter estimates derived from the

1-ν̄ models. In general, the median parameter estimates do not differ much between models,

although there is modest variation in precision.402

Table A3: Marginal posterior estimates of model parameters, where γ estimates the extra-

binomial variation in fraction infected (see main text). Estimates are medians with 95% credible

intervals. These are not on a log scale.

Parameter
Model

(Informative Priors)
Estimate
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δ

δ 0.061 (0.055, 0.067)

None 0.063 (0.056, 0.07)

C ρ δ 0.067 (0.059, 0.076)

C 0.063 (0.058, 0.07)

C ρ δ ν̄ 0.077 (0.066, 0.087)

ρ 0.065 (0.057, 0.076)

ν̄ 0.083 (0.064, 0.103)

C

δ 1.360 (1.163, 1.588)

None 1.275 (1.108, 1.530)

C ρ δ 1.150 (0.968, 1.337)

C 1.233 (1.024, 1.436)

C ρ δ ν̄ 0.978 (0.813, 1.163)

ρ 1.132 (0.963, 1.346)

ν̄ 0.836 (0.605, 1.086)

µ

δ 0.041 (0.001, 0.201)

None 0.042 (0.001, 0.236)

C ρ δ 0.016 (0, 0.117)

C 0.053 (0.002, 0.221)

C ρ δ ν̄ 0.007 (0, 0.037)

ρ 0.031 (0.001, 0.255)

ν̄ 0.017 (0, 0.073)

ν̄

δ 0.277 (0.082, 0.545)

None 0.166 (0.055, 0.377)

C ρ δ 0.059 (0.029, 0.101)

C 0.136 (0.053, 0.267)

C ρ δ ν̄ 0.024 (0.014, 0.037)
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ρ 0.07 (0.025, 0.14)

ν̄ 0.017 (0.008, 0.027)

ρ

δ 0.004 (0.001, 0.012)

None 0.008 (0.002, 0.02)

C ρ δ 0.024 (0.01, 0.043)

C 0.01 (0.002, 0.023)

C ρ δ ν̄ 0.047 (0.02, 0.083)

ρ 0.023 (0.008, 0.044)

ν̄ 0.062 (0.025, 0.123)

γ

δ 2.117 (1.801, 2.426)

None 2.102 (1.831, 2.367)

C ρ δ 2.147 (1.864, 2.501)

C 2.156 (1.886, 2.456)

C ρ δ ν̄ 2.248 (1.995, 2.531)

ρ 2.079 (1.704, 2.384)

ν̄ 2.157 (1.899, 2.455)
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Table A4: Marginal posterior estimates of initial viral (i.e. infectious 1st instar cadaver) densities,

and of initial host density for C3-2015. Estimates are medians with 95% credible intervals. These

are not on a log scale.

Parameter
Model

(Informative Priors)
Estimate

P0, T1-2010

δ 3.223 (1.314, 6.269)

None 4.259 (2.354, 8.446)

C ρ δ 8.272 (3.173, 17.101)

C 4.099 (1.972, 7.311)

C ρ δ ν̄ 13.271 (4.126, 30.747)

ρ 7.38 (2.498, 13.666)

ν̄ 19.551 (6.467, 45.627)

P0, T2-1987

δ 0.01 (0.001, 0.041)

None 0.02 (0, 0.105)

C ρ δ 0.052 (0.002, 0.216)

C 0.029 (0, 0.159)

C ρ δ ν̄ 0.152 (0.008, 0.698)

ρ 0.065 (0.004, 0.477)

ν̄ 0.23 (0.005, 1.259)

P0, T3-1987

δ 0.02 (0.004, 0.062)

None 0.045 (0.006, 0.173)

C ρ δ 0.127 (0.003, 0.437)

C 0.054 (0.015, 0.121)

C ρ δ ν̄ 0.333 (0.086, 0.793)

ρ 0.115 (0.029, 0.286)
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ν̄ 0.538 (0.133, 1.227)

P0, T4-1987

δ 0.018 (0.001, 0.057)

None 0.026 (0.001, 0.159)

C ρ δ 0.075 (0.019, 0.171)

C 0.044 (0.012, 0.095)

C ρ δ ν̄ 0.221 (0.053, 0.519)

ρ 0.091 (0.018, 0.261)

ν̄ 0.374 (0.085, 0.889)

P0, T5-1987

δ 0.062 (0, 0.315)

None 0.121 (0.027, 0.299)

C ρ δ 0.234 (0.014, 0.827)

C 0.104 (0, 0.679)

C ρ δ ν̄ 0.462 (0.072, 1.242)

ρ 0.244 (0.031, 0.893)

ν̄ 0.724 (0.109, 2.1)

S0, C3-2015

δ 47.855 (6.619, 148.114)

None 49.627 (7.389, 124.164)

C ρ δ 47.754 (5.464, 134.17)

C 51.902 (2.506, 179.48)

C ρ δ ν̄ 62.45 (4.44, 171.538)

ρ 41.987 (3.418, 133.317)

ν̄ 62.803 (10.467, 146.299)
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Table A5: Marginal posterior estimates of transmission variability, σεt , which is plot-specific.

Estimates are medians with 95% credible intervals. These are not on a log scale.

Plot
Model

(Informative Priors)
Estimate

C1-2010

δ 2.742 (1.405, 5.048)

None 3.546 (1.246, 6.572)

C ρ δ 4.293 (2.698, 6.609)

C 3.832 (1.893, 6.23)

C ρ δ ν̄ 4.817 (3.393, 6.959)

ρ 3.942 (2.033, 7.225)

ν̄ 5.641 (3.767, 7.924)

C2-1987

δ 3.537 (0.337, 12.439)

None 4.011 (2.165, 6.368)

C ρ δ 3.592 (0.758, 8.179)

C 3.993 (0.74, 9.74)

C ρ δ ν̄ 3.788 (0.646, 10.17)

ρ 1.405 (0.132, 6.094)

ν̄ 2.705 (0.384, 7.888)

C3-2015

δ 0.769 (0.031, 3.865)

None 0.804 (0.006, 5.441)

C ρ δ 0.794 (0.02, 4.079)

C 0.488 (0.001, 4.907)

C ρ δ ν̄ 0.483 (0.001, 4.056)

ρ 0.873 (0.02, 7.322)

ν̄ 0.5 (0.003, 3.693)

C4-1987

δ 3.636 (1.578, 6.299)
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None 2.597 (0.791, 6.158)

C ρ δ 1.959 (0.093, 9.11)

C 2.858 (0.702, 6.928)

C ρ δ ν̄ 1.86 (0.325, 5.442)

ρ 1.535 (0.024, 6.543)

ν̄ 1.547 (0.048, 6.693)

C5-2010

δ 0.111 (0.002, 0.754)

None 0.117 (0.003, 0.775)

C ρ δ 0.099 (0, 0.866)

C 0.084 (0, 1.019)

C ρ δ ν̄ 0.097 (0.001, 0.974)

ρ 0.087 (0.001, 0.962)

ν̄ 0.052 (0, 0.717)

C6-2010

δ 0.102 (0, 1.018)

None 0.154 (0.002, 1.216)

C ρ δ 0.125 (0.001, 1.437)

C 0.098 (0.001, 0.914)

C ρ δ ν̄ 0.128 (0, 1.453)

ρ 0.202 (0.006, 1.162)

ν̄ 0.333 (0.012, 1.927)

C7-1987

δ 0.095 (0.001, 0.937)

None 0.222 (0.006, 1.261)

C ρ δ 0.098 (0, 1.443)

C 0.152 (0.006, 0.92)

C ρ δ ν̄ 0.12 (0.002, 1.119)

ρ 0.106 (0.001, 0.724)
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ν̄ 0.136 (0.002, 0.796)

T1-2010

δ 0.368 (0.004, 2.743)

None 0.352 (0.012, 1.921)

C ρ δ 0.41 (0.012, 2.487)

C 0.345 (0.002, 2.443)

C ρ δ ν̄ 0.467 (0.003, 3.2)

ρ 0.404 (0.003, 4.09)

ν̄ 0.21 (0, 2.63)

T2-1987

δ 2.976 (0.676, 7.66)

None 2.896 (0.997, 6.441)

C ρ δ 3.499 (1.576, 6.053)

C 3.218 (0.166, 9.305)

C ρ δ ν̄ 3.093 (1.504, 5.387)

ρ 2.534 (0.829, 6.221)

ν̄ 2.92 (1.58, 4.817)

T3-1987

δ 0.294 (0.003, 2.722)

None 0.237 (0.003, 3.072)

C ρ δ 0.571 (0.003, 4.353)

C 0.223 (0.001, 2.573)

C ρ δ ν̄ 0.432 (0.002, 2.975)

ρ 0.35 (0, 2.723)

ν̄ 0.359 (0.002, 2.113)

T4-1987

δ 0.105 (0, 1.598)

None 0.105 (0.001, 1.194)

C ρ δ 0.363 (0.007, 2.03)

C 0.118 (0.001, 1.002)
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C ρ δ ν̄ 0.265 (0.001, 2.258)

ρ 0.21 (0.004, 1.618)

ν̄ 0.16 (0.001, 1.936)

T5-1987

δ 2.411 (0.008, 14.717)

None 2.397 (0.066, 8.573)

C ρ δ 2.752 (0.15, 10.398)

C 2.966 (0.557, 7.488)

C ρ δ ν̄ 2.56 (0.579, 6.598)

ρ 2.325 (0.24, 6.59)

ν̄ 1.818 (0.071, 8.203)
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10 Marginal Posteriors For the 2-ν̄ Models

Here we present tables with the marginal posterior parameter estimates derived from the 2-ν̄

models.405

Table A6: Marginal posterior estimates of model parameters, where γ estimates the extra-

binomial variation in fraction infected (see main text). Estimates are medians with 95% credible

intervals. These are not on a log scale.

Parameter
Model

(Informative Priors)
Estimate

δ

δ 0.064 (0.055, 0.073)

C ρ δ 0.064 (0.056, 0.073)

None 0.062 (0.054, 0.074)

ν̄, TMB-1 0.073 (0.064, 0.083)

C

δ 1.292 (1.084, 1.495)

C ρ δ 1.234 (1.135, 1.356)

None 1.265 (1.078, 1.454)

ν̄, TMB-1 0.997 (0.815, 1.173)

µ

δ 0.016 (0, 0.183)

C ρ δ 0.044 (0.001, 0.188)

None 0.048 (0, 0.374)

ν̄, TMB-1 0.011 (0, 0.069)

ν̄, Control

δ 0.067 (0.013, 0.191)

C ρ δ 0.049 (0.017, 0.101)

None 0.073 (0.015, 0.233)

ν̄, TMB-1 0.026 (0.012, 0.046)
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ν̄, TMB-1

δ 0.252 (0.083, 0.718)

C ρ δ 0.234 (0.079, 0.467)

None 0.25 (0.077, 0.666)

ν̄, TMB-1 0.03 (0.013, 0.056)

ρ

δ 0.018 (0.002, 0.058)

C ρ δ 0.034 (0.011, 0.064)

None 0.019 (0.002, 0.067)

ν̄, TMB-1 0.043 (0.016, 0.083)

γ

δ 2.124 (1.910, 2.386)

C ρ δ 2.25 (1.984, 2.517)

None 2.059 (1.782, 2.335)

ν̄, TMB-1 2.214 (1.93, 2.517)
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Table A7: Marginal posterior estimates of initial viral (i.e. infectious 1st instar cadaver) densities,

and of initial host density for C3-2015. Estimates are medians with 95% credible intervals. These

are not on a log scale.

Parameter
Model

(Informative Priors)
Estimate

P0, T1-2010

δ 3.187 (1.277, 6.944)

C ρ δ 3.222 (0.875, 6.576)

None 3.687 (0.937, 9.667)

ν̄, TMB-1 9.946 (4.372, 17.728)

P0, T2-1987

δ 0.009 (0, 0.057)

C ρ δ 0.015 (0, 0.09)

None 0.02 (0.002, 0.066)

ν̄, TMB-1 0.117 (0.001, 0.622)

P0, T3-1987

δ 0.017 (0.002, 0.057)

C ρ δ 0.027 (0.001, 0.111)

None 0.028 (0.005, 0.068)

ν̄, TMB-1 0.254 (0.063, 0.626)

P0, T4-1987

δ 0.013 (0.001, 0.053)

C ρ δ 0.019 (0.001, 0.088)

None 0.016 (0.004, 0.047)

ν̄, TMB-1 0.177 (0.053, 0.376)

P0, T5-1987

δ 0.069 (0.017, 0.146)

C ρ δ 0.069 (0.008, 0.204)

None 0.086 (0.01, 0.235)

ν̄, TMB-1 0.401 (0.078, 1.146)

S0, C3-2015

δ 72.375 (15.566, 169.075)
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C ρ δ 68.895 (12.593, 172.337)

None 71.492 (9.571, 219.717)

ν̄, TMB-1 53.987 (23.135, 98.69)
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Table A8: Marginal posterior estimates of transmission variability, σεt , which is plot-specific.

Estimates are medians with 95% credible intervals. These are not on a log scale.

Plot
Model

(Informative Priors)
Estimate

C1-2010

δ 4.564 (1.488, 8.99)

C ρ δ 5.259 (3.282, 7.162)

None 4.625 (1.65, 7.774)

ν̄, TMB-1 4.871 (3.271, 6.792)

C2-1987

δ 3.016 (0.997, 7.627)

C ρ δ 3.399 (0.618, 8.782)

None 3.362 (0.074, 18.944)

ν̄, TMB-1 2.623 (0.045, 14.099)

C3-2015

δ 0.616 (0.018, 3.576)

C ρ δ 0.454 (0.001, 4.425)

None 0.511 (0.004, 3.609)

ν̄, TMB-1 0.499 (0, 4.605)

C4-1987

δ 2.989 (1.188, 5.574)

C ρ δ 2.181 (0.139, 7.823)

None 2.577 (0.435, 5.734)

ν̄, TMB-1 2.645 (0.346, 6.965)

C5-2010

δ 0.127 (0, 1.514)

C ρ δ 0.138 (0.002, 1.454)

None 0.259 (0.007, 1.526)

ν̄, TMB-1 0.067 (0, 0.964)

C6-2010

δ 0.261 (0.001, 2.125)

C ρ δ 0.286 (0.001, 2.04)
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None 0.305 (0.001, 2.783)

ν̄, TMB-1 0.225 (0.003, 1.784)

C7-1987

δ 0.172 (0.005, 1.268)

C ρ δ 0.109 (0, 1.728)

None 0.163 (0.008, 1.358)

ν̄, TMB-1 0.078 (0, 1.034)

T1-2010

δ 0.195 (0.002, 1.804)

C ρ δ 0.19 (0, 2.471)

None 0.363 (0.003, 3.082)

ν̄, TMB-1 0.268 (0, 3.593)

T2-1987

δ 1.745 (0.064, 6.314)

C ρ δ 1.599 (0.003, 8.071)

None 1.536 (0.047, 6.791)

ν̄, TMB-1 3.324 (1.505, 6.18)

T3-1987

δ 0.213 (0.001, 2.038)

C ρ δ 0.139 (0, 2.433)

None 0.25 (0.001, 2.396)

ν̄, TMB-1 0.446 (0.006, 2.844)

T4-1987

δ 0.111 (0.001, 1.253)

C ρ δ 0.066 (0, 1.211)

None 0.088 (0.001, 1.059)

ν̄, TMB-1 0.173 (0.002, 1.271)

T5-1987

δ 1.392 (0.067, 6.406)

C ρ δ 2.174 (0.068, 8.63)

None 1.588 (0.103, 6.538)

ν̄, TMB-1 2.679 (0.272, 8.737)
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11 Visual fits to the observational data for each of the 1-ν̄ models.
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Figure A9: Stochastic realizations of the model that has experiment-based priors on the trans-

mission heterogeneity parameter C, the ratio parameter ρ, and the death rate δ.
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Figure A10: Stochastic realizations of the model that has an experiment-based prior on the trans-

mission heterogeneity parameter C.
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Figure A11: Stochastic realizations of the model that has an experiment-based prior on the ratio

parameter ρ.
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Figure A12: Stochastic realizations of the model that has an informative prior on the average

transmission parameter ν̄.
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12 Visual fits to the observational data for each of the 2-ν̄ models.
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Figure A13: Stochastic realizations of the 2-ν̄ model that has an informative prior on the death

rate parameter δ.
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Figure A14: Stochastic realizations of the 2-ν̄ model that has experiment-based priors on the

heterogeneity parameter C, the ratio parameter ρ, and the mortality parameter δ.
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Figure A15: Stochastic realizations of the 2-ν̄ model that has only uninformative priors.
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Figure A16: Stochastic realizations of the 2-ν̄ model that has an informative prior on the sprayed

(TMB-1) virus’ average transmission rate, ν̄TMB−1.
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13 JAGS model statement for fitting the transmission model to408

experimental data

model{

##########

# Priors #

##########

# Virus-level transmission parameters.

# Three viruses: TMB-1, WA, NM

for(v in 1:3){

# C and nu.bar (log scale):

nC[v] ~ dnorm(0, 1 / (1 ^ 2))

nnu.bar[v] ~ dnorm(-8, 1 / (2 ^ 2))

C[v] <- exp(nC[v])

nu.bar[v] <- exp(nnu.bar[v])

}

# Error in Initial Cadaver Density:

# Error in cadaver density varies by experimental treatment.

# (i.e. 1, 2, 3 represent 0, 10, or 40 initial cadavers)

for(d in 1:3){

p.mean[d] ~ dnorm(0, .001)
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p.sd[d] ~ dgamma(0.001,0.001)

p.tau[d] <- 1 / (p.sd[d])^2

}

# Ratio parameter:

# Informative prior generated by counting virus in

# first and fourth instar larvae

nratio ~ dnorm(-3.387, 1 / 0.25^2)

ratio <- exp(nratio)

##############

# LIKELIHOOD #

##############

for(i in 1:N.obs){

# Binomial likelihood:

# n.inf = number infected from each bag

# n.recov = total number recovered from each bag at end of experiment

n.inf[i] ~ dbin(prob[i], n.recov[i])

# Heterogeneity model:

prob[i] <- 1 - (1 + (C[Virus[i]])^2 * nu.bar[Virus[i]] *

(P[i]+0.00001) * ratio * 7)^(-1/(C[Virus[i]]^2))

}
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#########################

# ERROR IN CAD. DENSITY #

#########################

# P = estimated cadaver density,

# based on estimated area of foliage in each bag

# Cad.Den = vector of treatment identifiers

# (i.e. 1, 2, 3 represent 0, 10, or 40 initial cadavers)

for(i in 1:N.obs){

P[i] ~ dnorm(p.mean[Cad.Den[i]], p.tau[Cad.Den[i]])

}

}
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14 JAGS model statement to fit a Gamma distribution to the

time-to-death data

model{

##########

# Priors #

##########

g_alpha ~ dunif(0, 100)

g_beta ~ dunif(0, 100)

##############

# LIKELIHOOD #

##############

# y = vector with time-to-death for each larva

for(i in 1:n_samp){

y[i] ~ dgamma(g_alpha, g_beta)

}

}
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