
Appendix 2: Simulating 20-species landscapes
Inferring species interactions from co-occurrence data with Markov networks

David J. Harris

Simulating landscapes from known coefficients

The following function draws random coefficients for a Markov network of a pre-specified size.

make_coefficients = function(n_spp, p_neg, mean_alpha){
Exponential distribution has lots of mass near 0 but has
a long tail.
true_beta_magnitudes = rexp(choose(n_spp, 2))

Multiply some proportion of the interactions
by -1
b = true_beta_magnitudes * sample(

c(-1, 1),
size = length(true_beta_magnitudes),
prob = c(p_neg, 1 - p_neg),
replace = TRUE

)

Species' intercepts are normally distributed
a = rnorm(n_spp, mean_alpha)

Return the simulated values.
The rosalia function stores pairwise parameters in the upper
triangle of an n-by-n matrix and stores the species intercepts
along the diagonal, so these values are named accordingly.
c(alpha = a, beta = b)

}

I used the following R function to generate “true” parameters with the method above, then simulate
a presence-absence landscape based on those parameters using Markov chain Monte Carlo, and
finally save the results to a “fakedata” folder.

I used Gibbs sampling as my Markov chain Monte Carlo transition operator. In each round of Gibbs
sampling, I cycled through all the species, randomly updating each one’s presence/absence vector in
response to its conditional occurrence probability:

p(yi) = logistic(αi +
∑

j

βijyj),

where the logistic function is 1
1+e−x .

1

For the abundance-based simulations, abundance was simulated with a Poisson distribution with
rate parameter given by log(1 + exp(αi +

∑
j βijyj)).

simulate_data = function(n_spp, n_sites, rep_name, n_gibbs, n_env, sd, f, rdist, p_neg, mean_alpha){
n_spp: number of species to include in the landscape
n_sites: number of sites to include in the landscape
rep_name: an identifier to use for the landscape replicate
n_gibbs: number of Gibbs samples to perform
n_env: number of environmental variables to simulate
sd: standard deviation of environmental variables (can be zero)
f: inverse link function (see above for two examples)
rdist: a function for sampling a random value from a distribution
p_neg: proportion of negative interactions (e.g. competition)
mean_alpha: the intercept value for the average species

Determine the "true" parameters for the simulated assemblage
par = make_coefficients(n_spp, p_neg, mean_alpha)

"True" interaction strengths, to save for later
truth = par[-(1:n_spp)]

"True" intercepts, possibly adjusted below by environment
alpha = par[1:n_spp]

Turn the interaction values into an n-by-n matrix
Start with empty matrix; fill in upper triangle;
then fill in lower triangle with its transpose
beta = matrix(0, n_spp, n_spp)
beta[upper.tri(beta)] = truth
beta = beta + t(beta)

Environmental states are normally distributed
env = matrix(rnorm(n_sites * n_env), ncol = n_env)

alpha_env = matrix(rnorm(n_spp * n_env, sd = sd), nrow = n_env)

Simulate the landscape from known process with Gibbs sampling

Landscape starts as if betas were all zero. Each species' occurrence probability
or abundance depends on its alpha value and on the environment (assuming alpha_env
is not zero).

2

x = matrix(
f(rep(1, n_sites) %*% t(alpha) + env %*% alpha_env),
nrow = n_sites,
ncol = n_spp

)

Gibbs sampling
for(i in 1:n_gibbs){

Each round of Gibbs sampling updates one species (column) across all sites
according to its conditional probability (i.e. conditional on environment
and the other species that are present).
for(j in 1:n_spp){

x[,j] = rdist(
nrow(x),
f(x %*% beta[, j] + alpha[j] + env %*% alpha_env[,j])

)
}

}

Collapse abundance data to presence/absence and store
it as integer values rather than true/false
x = x > 0
mode(x) = "integer"

colnames(x) = paste0("V", 1:n_spp)

Save the results in a "fake data" folder

file_stem = paste(n_sites, rep_name, sep = "-")

Gotelli and Ulrich's Pairs software rejects empty sites, so I remove them here
x_subset = x[rowSums(x) != 0, colSums(x) != 0]

Save the matrix of presence/absence observations
write.csv(

x,
file = paste0("fakedata/matrices/", file_stem, ".csv")

)

Gotelli and Ulrich's Pairs method expects the data matrices to be transposed,
So I save them separately
write.table(

t(x_subset),
file = paste0("fakedata/matrices/", file_stem, "-transposed.txt"),

3

quote = FALSE
)

Save the "true" species interactions
write(

truth,
file = paste0("fakedata/truths/", file_stem, ".txt"),
ncolumns = length(truth)

)
}

Define a convenience function for Bernoulli random samples
rbern = function(n, prob){

rbinom(n = n, size = 1, prob = prob)
}

Loop to simulate and save all the landscapes:

set.seed(1)
n_spp = 20

for(n_sites in c(25, 200, 1600)){
for(type in c("no_env", "env", "abund")){

for(i in 1:50){
simulate_data(

n_spp = n_spp,
n_sites = n_sites,
n_gibbs = 1000,
n_env = 2,
rep_name = paste0(type, i),
sd = ifelse(type == "env", 2, 0),
f = if(type == "abund"){function(x){log(1 + exp(x))}}else{plogis},
rdist = if(type == "abund"){rpois}else{rbern},
p_neg = if(type == "abund"){1}else{0.75},
mean_alpha = if(type == "abund"){5}else{-1}

)
}

}
}

4

	Simulating landscapes from known coefficients

