
Supplementary results 

Trans-meQTL stability 

To further exclude the possibility of confounding by cellular heterogeneity, we performed our 

trans-meQTL mapping on uncorrected methylation data and data corrected for known cell type 

proportions (Neutrophil, Lymphocyte, Monocyte, Eosinophil and Basophil percentage). These 

analyses led to significantly less trans-meQTLs (17,704 and 19,625, respectively) (Extended Data 

Table 7,8), suggesting cellular heterogeneity does not confound our results. Of the 17,704 trans-

meQTLs that are identified in the uncorrected data 82% are shared with the final trans-meQTL 

mapping, all in the same allelic direction. For the 19,625 trans-meQTLs we identified after 

correcting for cell-type information, 80% of the trans-meQTLs are shared with the final trans-

meQTL analysis, again all in the same allelic direction. 

Furthermore, trans-meQTL mapping only using SNPs known to influence cell proportions1,2 in 

blood revealed that most of these SNPs have no or very few trans-meQTLs. (Extended Data Table 

6). 153 of these 261 SNPs affect a single CpG site in trans only, thus contrasting the reviewer's 

prediction. The SNP (rs9932319, reported to be affecting kir+ NK cells) that is affecting 

methylation in trans most (altering 486 CpG sites) maps in close proximity to the CTCF 

transcription factor. Since the trans-meQTL CpG sites are strongly enriched for CTCF binding, 

we conclude that these trans-meQTLs are true positives and not false-positive findings due to 

differences in cell-type proportions. 

Lastly we linked our GWAS SNPs to the SNPs known to influence cell proportions and found that 

only 0.6% of the GWAS SNPs are in high LD with SNPs known to influence cell proportions. 
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Extended Data Figures 

 

 

Extended Data Fig. 1. Density plot of the distance between the 139,566 CpGs harboring a cis-

meQTL and its strongest associated. Most SNP-CpG pairs are in close proximity (median distance: 

10 kb), as indicated by the narrow peak around zero.  



 

Extended Data Fig. 2. The proportion of CpGs harboring an identified trans-meQTL increases 

with increasing DNA methylation variability. The proportion of CpGs with evidence of a trans-

meQTL are calculated per decile of methylation variability (x-axis). 

  



 

 



Extended Data Fig. 3. a, The number of cis-meQTLs found is strongly dependent on the variability 

of DNA methylation at the CpG site. Variances for 405,709 CpGs interrogated in the analyses 

were calculated using the 3,841 samples for which 450k data was available. Next, the CpGs were 

divided in deciles and the number of effect counted per decile. The different stacked colors indicate 

the primary, secondary, etc. effects. b, The proportion of variance explained remains limited, even 

for highly variable CpG sites. The x-axis shows the variances calculated for the interrogated 

405,709 CpGs. The y-axis shows the proportion of that variance explained by our identified cis-

meQTLs. The limited proportion of variance explained, even for highly variable probes suggests 

increased statistical power contributes to, but does not fully explain the increased number of cis-

meQTLs identified. c, DNA methylation variability differs between genomic contexts. Each line 

represents the proportion of 405,709 used CpGs present in each genomic region. This clearly 

shows some CpGs on the array are overrepresented in certain genomic contexts. For example, 

lowly variable CpGs (0-10%) are overrepresented in CpG islands. This may confound any 

enrichment analyses if variability in DNA methylation is influencing the likelihood of a given CpG 

harboring a meQTL. d, DNA methylation variability seems to be the driving factor for identifying 

cis-meQTLs, even within genomic contexts. Each line again represents a distinct genomic context. 

e, Reported enrichments of cis-meQTL effects for certain genomic contexts are strongly attenuated 

after accounting for the differential variability in DNA methylation between those genomic 

regions. Grey bars show uncorrected odds ratios. Blue bars show odds ratios corrected for 

methylation variability, and the distance to the nearest SNP. 

  



 

Extended Data Fig. 4. Overrepresentation of positive (blue bars) and negative e-CpGs (red bars) 

in CpG islands and predicted chromatin states. The x-axis shows this overrepresentation in terms 

of odds ratios and error bars (95% confidence interval). e-CpGs with negative associations are 

overrepresented in active regions (e.g., Active TSS and Enhancers), while e-CpGs with positive 

association are often found in repressed regions (e.g. Quitescent). CGI: CpG island; TssA: Active 

TSS; TssAFlnk: Flanking active TSS; TxFlnk, Transcribed at gene 5’ and 3’; Tx: Strong 

transcription; TxWk: Weak transcription; EnhG: Genic enhancer; Enh: Enhancer; ZNF/Rpts: ZNF 

genes and repeats; Het: Heterochromatin; TssBiv: Bivalent/Poised TSS; BivFlnk: Flanking 

bivalent TSS/Enhancer; EnhBiv: Bivalent enhancer. 

 



 

Extended Data Fig. 5. a, Depiction of the CTCF gene and rs8060686, associated with metabolic 

syndrome. The plot shows an increased expression of NFKB1 for the risk allele C. b, In addition 

to influencing CTCF expression, rs8060686 also influences DNA methylation at 779 CpGs in 

trans, increasing methylation levels at 87.7% of affected CpG sites (dark grey). In addition, many 

of the CpG sites (77.4%) overlap with CTCF binding sites (20.3-fold enrichment, P-value = 1.6 x 

10-232), shown in the outer chart. c, Illustrations of meQTL (left plot) and eQTL effects (right plot) 

of rs8060686 in trans. Only SNP-gene combinations were tested where the gene was associated 

with one of the 779 CpGs with a trans-meQTL. d, Gene network of the genes associated with 60 

of the 779 CpGs (7.7%) with a trans-meQTL. 

 

 



 

Extended Data Fig. 6 Depiction of the NKX2-3 gene and rs11190140, associated with 

inflammatory bowl syndrome. The plot shows an increased expression of NKX2-3 for the risk 

allele T. b, In addition to influencing NKX2-3 expression, rs11190140 also influences DNA 

methylation at 228 CpGs in trans, decreasing methylation levels at 81.1% of affected CpG sites 

(red). In addition, many of the CpG sites overlap with motifs of NKX2-1 and NKX2-5 (there is no 

NKX2-3 motif or ChIP-Seq data available). c, Gene network of the genes associated with 15 of 

the 228 CpGs (6.6%) with a trans-meQTL, in blue the cis-eQTL effected gene is shown and in red 

the genes associated both in methylation and in expression. 

 

 

 



 

 

Extended Data Fig. 7 Depiction of the ZBTB38 gene and rs6763931, associated with heigth. The 

plot shows an increased expression of ZBTB38 for the risk allele T. b, In addition to influencing 

ZBTB38 expression, rs6763931 also influences DNA methylation at 267 CpGs in trans, decreasing 

methylation levels at 99.2% of affected CpG sites (red). In addition, a depletion of overlap with 

H3K27me3 is observed (7.4-fold depletion, P-value = 3.8 x 10-28), shown in the outer chart. c, 

Gene network of the genes associated with 60 of the 779 CpGs (7.7%) with a trans-meQTL, in 

blue the cis-eQTL effected gene is shown and in red the genes associated both in methylation and 

in expression. 

 

 



 

Extended Data Fig. 8 Depiction of the BPTF gene and rs7216064, associated with lung carcinoma. 

b, rs7216064 influences DNA methylation at 64 CpGs in trans, decreasing methylation levels at 

82.8% of affected CpG sites (red). In addition, many of the CpG sites (81.3%) overlap with CTCF 

binding sites (16.8-fold enrichment, P-value = 5.1 x 10-25), shown in the outer chart. C Genes 

associated to altered methylation caused by rs7216064, in blue BPTF is included. 

 


