Supplemental Material: Estimating the
functional dimensionality of neural
representations



1 Identifying areas carrying functional dimen-
sionality

With the first dataset from a category learning study by Mack et al. (2013),
we aimed to identify areas carrying functional dimensionality and compare
them with the areas found by the original authors’ model-based analysis.

1.1 Methods

Pre-processing of the data was carried out using SPM12 (Penny et al., 2006).
Functional EPI data were motion-corrected with respect to the mean-image,
T1 weighted anatomical scans were realigned to the EPI images, and both
functional and anatomical images were normalized to MNI space with a voxel-
resolution of 3 x 3 x 3. Data were high-pass filtered at 128Hz to account for
slow signal drifts. Beta estimates were derived from a GLM containing one
regressor per stimulus (16 regressors in total), convolved with the HRF. Mo-
tion regressors were included in the GLM as covariates of no interest. Tem-
poral autocorrelations were accounted for by implementing an autoregressive
model (AR-1) during parameter estimation. Residuals of the GLM for each
timestep were saved and used later on for pre-whitening of the data.

2 Using functional dimensionality to assess
sensitivity to stimulus features

Using data from a study of real-world categories using photographic stimuli
by Bracci and Op de Beeck (2016), we tested whether different regions show
functional dimensionality in response to different stimulus features, depend-
ing on how the stimulus-space is summarized.

2.1 Methods

During the experiment of the second dataset, participants performed a 1-
back real-world size judgment task. Each participant completed two sessions
(on two different days) of eight runs. For one participant, four runs were
lost. Each image was presented twice per run.



Pre-processing of the data was carried out using SPM12. Functional EPI
data were motion-corrected with respect to the mean-image, T1 weighted
anatomical scans were realigned to EPI images, and both functional and
anatomical images were normalized to MNI space with a voxel-resolution of
3 x 3 x 3. Data were high-pass filtered at 128Hz to account for slow signal
drifts. We aimed to test if our method could be applied to assessing quali-
tative coding differences across the brain by varying how the stimulus space
is summarized. In line with the authors original analysis, we tested for dif-
ferences depending on whether the stimuli were averaged to emphasize their
category or shape information. To that end, we constructed two separate
GLMs. The first GLM (catGLM) was composed of one regressor per cate-
gory (six in total), thus averaging across objects shapes. The second GLM
(shapeGLM) consisted of nine different regressors, one for each shape, aver-
aging neural responses across object categories. In both GLMs, regressors
were convolved with the HRF and six motion-regressors as covariates of no
interest were included.

Dimensionality was estimated separately for both GLMs. We ran a whole-
brain searchlight with a 7mm sphere on the beta estimates of the respective
GLM, again pre-whitening and mean-centering voxel patterns within each
searchlight before estimating the dimensionality. Reconstruction correlations
were averaged across runs for each participant and tested for significance
across participants using FSL’s randomise function (Winkler et al., 2014).
Results were FWE corrected using a TFCE threshold of p < .05.

3 Measuring task-dependent differences in di-
mensionality

In this third dataset, we considered whether the underlying dimensional-
ity of neural representations changes as a function of task. In Mack et al.
(2016), participants learned a categorization rule over a common stimulus
set that either depended on one or two stimulus dimensions. We predicted
that the estimated functional dimensionality, as measured by our hierarchi-
cal Bayesian method, should be higher for the more complex categorization
problem, extending the original authors’ findings.



3.1 Methods

Each participant completed twelve functional runs in total, of which four
were on type I problem and four on type II problem (the first four runs
served as familiarization with the stimuli).

Pre-processing of the data was carried out using SPM12 (Penny et al.,
2006). Functional EPI data were motion-corrected with respect to the mean-
image, T1 weighted anatomical scans were realigned to EPI images, and
both functional and anatomical images were normalized to MNI space with
a voxel-resolution of 3 x 3 x 3. Data were high-pass filtered at 128Hz to
account for slow signal drifts. Beta estimates were derived from a GLM
containing one regressor per stimulus (8 regressors in total), convolved with
the HRF. Six motion regressors were included in the GLM as covariates of
no interest. Temporal autocorrelations were accounted for by implementing
an autoregressive model during parameter estimation. Residuals of the GLM
for each timestep were saved and used later on for pre-whitening of the data.

We defined a region of interest (ROI) in the left and right LOC based on
voxels that showed increased activation with trial onset, based on a separate
GLM with only a single regressor modeling all trials (p < .001, uncorrected,;
left LOC: 120 voxels, right LOC: 220 voxels). Using an ROI instead of a
searchlight approach allowed us to estimate the degree of functional dimen-
sionality rather than only identifying which areas showed functional dimen-
sionality. We estimated dimensionality across these two ROIs separately for
the two different categorization tasks. To reduce the impact of category-
learning on the estimated dimensionality, the first functional run of each
problem type was excluded from the analysis, resulting in three runs for each
problem.
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