
Supplementary Figures 

Supplementary Fig. S1.  Comparison of in situ sequencing techniques. In both methods, a 

barcode mRNA is first reverse transcribed into a cDNA. In BaristaSeq (left), the barcode portion 

is then copied into a padlock probe intermediate, which is circularized and used as a template for 

rolling circle amplification. In FISSEQ (right), the cDNA is directly circularized and used as a 

template for rolling circle amplification. 

Supplementary Fig. S2. Optimization of BaristaSeq for brain slices. (A) Amplification of 

barcodes in brain slices in the indicated reaction chambers. Scale bars = 100 µm. (B) Merged 

images of rolonies (yellow) generated in barcoded brain slices and the residual GFP signals 

(cyan)  with the indicated time of pepsin treatment. Scale bars = 100 µm. (C) Comparison of 

barcode amplicons generated using BaristaSeq (a), the original padlock method (b), and FISSEQ 

(c). Scale bars = 50 µm. (D) Sequencing images of cycles 2, 4, and 6 of barcoded brain slices 

sequenced using SOLiD sequencing chemistry (top) and using Illumina sequencing chemistry 

(bottom). Imaging conditions were kept constant throughout each sequencing run. Scale bar = 

100 µm. (E) Average S/N of Illumina (red) and SOLiD (blue) sequencing in situ over cycles. 

Error bars indicate the standard error for the S/N for pixels. (F-H) Sequencing quality and signal 

intensity of individual base calls (F), mean signal intensity over cycles (G), and the fraction of 

the bases over cycles (H) are plotted.  

Supplementary Fig. S3. Validation of BARseq using retrograde tracing. (A) Representative 

image of a brain slice double labeled with barcodes (cyan) and CTB (magenta) from the 

contralateral auditory cortex. Scale bar = 100 µm. (B) Histograms of the number of barcode 

molecules for each neuron recovered in the olfactory bulb (OB, blue) and in the contralateral 

auditory cortex (AudC). Both axes were drawn on log scales. The vertical dashed line indicates 

the noise threshold used in the experiment (5 molecules). 

Supplementary Fig. S4. Histogram of the minimal hamming distance between barcodes 

recovered from MAPseq of brain XC9 and other barcodes of the same brain. 

Supplementary Fig. S5. Filtering projection data using non-negative matrix factorization. (A) 

Positive (green) or negative (red) Pearson correlation coefficients among projections to the 

indicated areas in all neurons. (B) The average projection pattern of all neurons sampled (center) 

is decomposed into six projection modules (Basis 1-6). (C) The projection patterns of two example 

neurons (left) are filtered using projection modules (right). The weight for each module is labeled 

to the left of each module. (D) Comparison of the original projection strengths (blue) and the 

filtered projection strengths (red) for the two neurons shown in (C). (E) The fraction of variance 

explained (y-axis) using NMF (blue), individual projections (red), and PCA (black). (F) The 

fraction of neurons that remains in the same class-level clusters (y-axis) when filtering the 

projection data with the indicated number of projection modules (x-axis) compared to the clusters 

without filtering. 

Supplementary Fig. S6. Hierarchical clustering of projection neurons in the mouse auditory 

cortex. (A) The workflow of the hierarchical clustering. (B) The distribution of the maximum 

cluster probability for individual neurons when classified using all 11 projection areas (a) or 10 

projection areas (b-l). For classification using 10 projection areas, the unused projection area is 

labeled on top of each graph. (C) The fraction of well-classified neurons in each subclass. The 

subclass labels correspond to those in Fig. 3G and the class the subclasses belong to are labeled 



below. The dotted line indicate 80% well-classified neurons. (D) Comparison of clusters obtained 

using k-means (upper row), spectral clustering (middle row), and Louvain community detection 

(lower row) at the indicated hierarchies. All clusters were color coded onto a t-SNE plot generated 

using all data. The colors are randomly assigned to individual clusters. (E) Single-cell projection 

patterns sorted by cluster identities. Each row represent a barcode and each column represent 

projection strengths to the indicated brain area.  

Supplementary Fig. S7. Validating BARseq projection patterns using retrograde tracing. (A) 

Triple retrograde tracing of neurons projecting to the rostral striatum (CTB-647), the caudal 

striatum (CTB-488), and the tectum (RetroBeads). (B) Representative image of the triple 

retrograde labeling in the auditory cortex showing neurons projecting to the rostral striatum 

(magenta), the caudal striatum (cyan), and the tectum (yellow). Scale bar = 100 µm. (C) Venn 

diagram showing the number of neurons projecting to each of the three areas. 

Supplementary Fig. S8. Laminar distribution of projection neurons. (A)(B) Representative 

images of FISH against Cux2 (A) and Fezf2 (B) in two adjacent slices. Scale bars = 50 µm. (C) 

Violin plots of the laminar distribution of all BARseq neurons (All) and those with (Proj) or 

without (Non-proj) detected projections. 

Supplementary Fig. S9. Laminar distribution of projection neuron subclasses. (A) Differences in 

normalized entropy (x-axis) of individual subclasses between the two brains are plotted against the 

negative logarithm of the p values (y-axis). The subclasses were color-coded according to their 

class-level divisions as indicated. The p values were shown without multiple testing correction. 

The red vertical dashed line indicate no difference in entropy, and the black horizontal dashed line 

indicate significance level after Bonferroni correction. (B) Differences in mean laminar locations 

(x-axis) of individual subclasses between the two brains are plotted against the negative logarithm 

of the p values (y-axis). The subclasses were color-coded according to their class-level divisions 

as indicated. The p values were shown without multiple testing correction. The red vertical dashed 

line indicate no difference in the mean laminar locations, and the black horizontal dashed line 

indicate significance level after Bonferroni correction. (C)(D)(E) Histograms of the strengths of 

tectal projections (C), thalamic projections (D), and striatal projections (E) of the corticotectal 

neurons in L5 (blue) and L6 (red). p < 0.0005 after Bonferroni correction for the two distributions 

in (C), and p > 0.05 for the two distributions in (D) and (E). p values were obtained using bootstrap 

ks test. (F)(G) Pearson correlation coefficients among the projection targets of the ITc (F) and ITi 

(G) neurons. Projections to the thalamus and the tectum were not shown because they were the 

main targets of the PT and CT neurons, not the IT neurons. Only statistically significant 

correlations were shown. The fact that projections were correlated within ITi and ITc suggest that 

projections were structured within each class. 

Supplementary Fig. S10. BARseq can link projection patterns with gene expression and in vivo 

functional two photon imaging. (A) In situ sequencing of barcodes and endogenous genes. Left: 

Barcodes (magenta) and endogenous mRNAs (yellow) are both amplified for in situ sequencing 

to correlate neuronal projections with gene expression. Right: Barcodes (top) and mRNAs (bottom) 

are sequenced sequentially to avoid interference during base-calling. Scale bars = 100 µm. (B) in 

vivo two photon images of GFP-positive neurons imaged in live animals are registered to ex vivo 

images of the same neurons in brain slices. Such registration potentially allows correlation of in 

vivo functional imaging with BARseq. Scale bar = 50 µm.  



Supplementary Table 1. Comparison between MAPseq and retrograde tracing experiment. Each 

row represent a single neuron recovered from BaristaSeq with visible GFP signal from the 

barcodes and good sequencing quality (quality score > 0.75). The first four columns indicate the 

raw barcode counts in the olfactory bulb (OB), contralateral auditory cortex (c1), the cortical area 

surrounding the contralateral auditory cortex with CTB signals visible to the naked eyes (c2), and 

an even larger cortical area surrounding the tracer area with CTB signals visible under the 

microscope (c3). The rest of the columns indicate whether the cell projects contralaterally based 

on CTB and/or BARseq 

Supplementary Table 2. The number of barcodes sequenced per brain from the projection sites, 

the number of cells sequenced per brain from the auditory cortex, and the number of BaristaSeq in 

situ barcodes matching barcodes at the projection sites with or without quality filtering were 

indicated for each brain. *In XC14, the auditory cortex was sequenced in vitro.  

Supplementary Table 3. Normalized layer boundary positions determined in three pairs of slices 

across the auditory cortex. In each slice, the thickness of the cortex was normalized to that in the 

BARseq brains, and the boundary positions were scaled accordingly. 

 

  



Supplementary Note 1. Optimization of BaristaSeq for brain slices 

We tested three commercially available reaction chambers that were physically compatible with 

our samples (Supp. Fig. S2A), and found that the HybriWell-FL sealing system was the only 

system that did not inhibit rolony formation (Supp. Fig. S2Ab). The ImmEdge hydrophobic barrier 

pen also produced good amplification (Supp. Fig. S2Ac), but the HybriWell-FL system offered 

better control of liquid evaporation during heating steps and easier handling. Therefore, we used 

the HybriWell-FL system for BaristaSeq on brain slices. 

RNAs in fixed tissues are less accessible to in situ enzymatic reactions than those in cell culture 

are. This reduced accessibility is likely due to excessive protein crosslinking caused by the 

increased formaldehyde fixation time needed to fix brain tissues adequately. We therefore added 

a pepsin digestion step before reverse transcription to increase accessibility of fixed RNAs (Supp. 

Fig. S2B). The pepsin step also reduced the GFP signal from the cells (cyan in Supp. Fig. S2B), 

which may interfere with sequencing signals. We found that 3 mins of 0.2% pepsin digestion at 

room temperature greatly increased rolony formation (Supp. Fig. S2Bb) compared to no pepsin 

treatment (Supp. Fig. S2Ba), whereas 5 mins of pepsin digestion caused excessive tissue loss 

(Supp. Fig. S2Bc). We therefore used 3 mins of pepsin digestion for BaristaSeq in brain slices. 

These optimizations for BaristaSeq allowed us to amplify barcodes efficiently in barcoded neurons 

in brain slices (Fig. 2A).  The optimized BaristaSeq protocol (Supp. Fig. S2Ca) greatly 

outperformed the original padlock probe-based technique7 (Supp. Fig. S2Cb) and FISSEQ6 (Supp. 

Fig. S2Cc) in amplifying barcodes in brain slices. 

To sequence the barcodes using Illumina sequencing chemistry, we based our sequencing protocol on the 

HiSeq recipe files and adjusted the incubation times to account for the heat transfer of the reaction chambers. 

We also increased the number of washes after the incorporation step compared to the original BaristaSeq 

protocol to counteract the increased background staining in tissue slices. This increased number of washes 

was essential for reducing the background signals, especially for long sequencing runs. We compared this 

optimized Illumina sequencing in situ to sequencing by ligation (SOLiD) used by other sequencing 

methods6,7. We sequenced the first six bases of barcodes in brain slices (Supp. Fig. S2D). The signal-to-

noise ratios averaged over all six cycles were 39 ± 4 for Illumina sequencing (Supp. Fig. S2E), ~10-fold 

higher than that of SOLiD sequencing (4 ± 1), probably due to the improved washing conditions and higher 

background in tissues using SOLiD. 

Supplementary Note 2. BARseq for the auditory cortex projections 

In each brain, we collected 11 target areas, including four ipsilateral cortical areas (motor, 

orbitofrontal, visual, and somatosensory), two contralateral cortical areas (visual and auditory), 

three subcortical areas (rostral and caudal striatum and the amygdala), the thalamus, and the 

tectum. Care was taken to avoid major axonal tracts through the thalamus and to leave buffering 

areas between adjacent areas. Example images of the actual collected areas are available at Dryad 

(see Data and software availability in Methods). These areas covered all major brain areas to which 

the auditory cortex projects, as determined by conventional bulk GFP tracing experiments16. We 

also collected the olfactory bulb as a negative control to which the auditory cortex does not project.  

The 30-nt barcodes were sequenced fully at each projection site using conventional Next-Gen 

Sequencing, and 15 bases were sequenced in situ using BaristaSeq at the injection sites. The 15 

bases read length in situ was sufficient to distinguish unambiguously all infected barcodes allowing 

one mismatch. For the XC9 brain, barcodes recovered through MAPseq had a mean hamming 

distance of 4.5 ± 0.7 (mean ± stdev; Supp. Fig. S3). Only one pair (0.04%) out of 4841 barcodes 

had a hamming distance of 1 and 10 pairs (0.4%) out of 4841 had a hamming distance of 2. Because 



the sequencing experiment in Fig. 2 showed only a single error for 51 barcodes, each sequenced 

25 bases, our sequencing error rate was approximately 1 (51 × 25)⁄ = 0.08% . Therefore, 

assuming that sequencing errors have no bias toward a particular base, the probability of matching 

an in situ barcode to the wrong MAPseq barcode, while allowing one mismatch, is 
2

4841
× 0.08%÷

3 = 1𝑒 − 7. The probability of an in situ barcode matching to two MAPseq barcodes is 
20

4841
×

0.08% × 2 ÷ 3 +
2

4841
= 4𝑒 − 4 . Although we cannot detect false positive matches, an 

ambivalent match could be detected. In the XC9 data, however, no ambivalent match between the 

in situ barcodes and the MAPseq barcodes have occurred.  

In addition, XC9 had three pairs of barcodes whose first 15 bases were the same. These appeared 

to have arisen from amplification errors in homopolymer stretches of the same barcode rather than 

different barcodes, because each pair had a single in-del and had almost identical projection 

patterns. These three pairs were not recovered in situ and thus did not affect the analyses.  

Similarly, out of 13581 total sequences, XC28 had 5 pairs of barcodes within one mismatch and 

106 pairs of barcodes within two mismatches for the first 15 bases. No XC28 barcodes had 

identical sequences in the first 15 bases. The probability of a wrong match in XC28 is 
10

13581
×

0.08% ÷ 3 = 2𝑒 − 7, and the probability of an ambiguous match in XC28 is 
212

13581
× 0.08% ×

2 ÷ 3 +
10

13581
= 7𝑒 − 4. No actual ambivalent match was seen in XC28. Therefore, allowing one 

mismatch for a 15-base sequence is sufficient to match barcodes in the somas to those at the 

projection sites unambiguously for both brains. 

We rejected barcodes obtained from highly deformed tissues and cells outside of the cortex, and 

matched the remaining in situ barcodes to those in the target areas. We filtered “orphan barcodes,” 

i.e. any barcode sequences recovered at a projection target for which the corresponding sequence 

was not recovered at the injection site. These orphan barcodes were likely from barcoded cells 

outside of the dissected injection site due to the diffusion of the virus, and therefore could reflect 

cell types in neighboring cortical areas. We performed further analyses on 6391 neurons with high-

quality projection data.  

Supplementary Note 3. The diversity of binary projection patterns 

Out of the 12 areas we sampled, one was a negative control (the olfactory bulb). The total number 

of possible projection patterns should be the random combinations of projections to 11 areas, or 

211 = 2048. These patterns include one with no projection to any area, which would have been 

filtered out in our dataset. Therefore, we would have been able to detect 2047 binary projection 

patterns at most. The 264 patterns actually observed is thus a significant fraction (13%) of all 

possible patterns. 

Supplementary Note 4. Hierarchical clustering of projection neurons 

To cluster the projection data, we first filtered the data using non-negative matrix factorization24. 

We noticed that projections to different brain areas were correlated (Supp. Fig. S5A). Such 

correlation suggests that cortical projections are not organized randomly, which is consistent with 

the known differences among classes of projection neurons. Because these correlations likely 

reflect high-order structures in the organization of projections, we want to preserve such 

correlations among projection areas while reducing the noise in the projection data. We therefore 

used non-negative matrix factorization to group correlated projections into k sets of projections, or 



projection “modules” (Supp. Fig. S5B). The projection patterns of individual neurons can thus be 

approximated by a weighted sum of the projection modules (Supp. Fig. S5C, D). 

We tested varying the module number k for filtering. Reducing the number of modules increases 

the amount of noise that can be removed, but could also potentially remove structures in the data 

important for clustering. NMF explained more variance of the data with higher k values, but the 

increase slows at k ≥ 5 (Supp. Fig. S5E). However the first two levels of clustering were not robust 

at k = 5 (Supp. Fig. S5F). We therefore used k = 6 for our filtering, but other k values produced 

similar clustering results. 

After filtering the data, we performed a divisive hierarchical clustering (Supp. Fig. S6A). At each 

hierarchy, a group of neurons was split into two subgroups using k-means clustering. We only kept 

the subgroups when the divisions were statistically significant and when each subgroup contained 

more than 1% of all neurons. This process was repeated for the newly generated subgroups, until 

no more significant splits were found. We then used random forest to find the probability that 

neurons belong to each cluster by doing pair-wise comparison among all pairs of clusters. This 

probabilistic cluster calling revealed that the majority of neurons (5968/6391, or 93% of all 

neurons) were assigned to a dominant cluster with high probability (>98% probability), but a small 

set of neurons (421/6391, or 7% of all neurons) were assigned to two clusters at around 50% 

probability each (Supp. Fig. S6Ba). These results indicate that the majority of neurons were 

unambiguously assigned to a single cluster. 

Although BARseq has a low false-negative rate (~10%), such a false-negative rate may accumulate 

for subclasses with multiple projections, leading to higher rate in misclassification. To examine 

the extent of such misclassification, we used random forest to classify neurons probabilistically 

using 10 out of the 11 projections, thus simulating the effect of a projection being uninformative 

(Supp. Fig. S6Bb-l). This analysis revealed similar distribution of neurons with the majority being 

well-classified (i.e. >98% probability for the dominant cluster) and a smaller fraction being 

ambiguously assigned to two clusters (~50% probability for the dominant cluster). A third small 

group was visible that corresponds to neurons that were ambiguously assigned to three clusters 

when some projections were not used (~33% probability for the dominant cluster, Supp. Fig. S6Be-

h, j). Projections to the caudal striatum and to the amygdala seemed to be more critical for 

clustering than the other projections. In contrast, the defining projections for the major classes, 

including the contralateral projections, corticothalamic projections, and the corticotectal 

projections, appeared less critical for classification. This result probably reflects the fact that major 

classes have different projection patterns in addition to the defining projections, whereas 

subclasses within a class were more similar. 

We then considered a neuron ambivalently classified if it was assigned to two or more clusters 

using all 11 projections, or assigned to the wrong cluster using any of the 10 projections if the 

resulting cluster was consistent with a dropped projection rather than a false-positive projection. 

This resulted in 5682/6391 (89%) well-classified neurons and 709/6391 (11%) ambivalent 

neurons. These estimates represent an upper bound on the number of ambivalent neurons, because 

it did not take into consideration the actual low false-negative rate of BARseq. The ambivalent 

neurons were concentrated in a few ITi subclasses (Supp. Fig. S6C), indicating that these 

subclasses may have resulted from misclassification of other subclasses due to false negative 

projections. 



We also compared our clustering to graph based clustering using Louvain community detection25 

and hierarchical clustering using spectral clustering27. Louvain community detection identified 2-

4 clusters at each hierarchy, and therefore did not fully correspond to the clusters obtained by 

bifurcation only at any hierarchical level. However, the resulting clusters from both methods, 

especially high-level nodes, were similar to those obtained using k-means (Supp. Fig. S6D). We 

chose to base all further analyses on clustering using k-means, because the major classes were 

better separated than using spectral clustering and the imposed bifurcation was easier to interpret 

than the clusters produced by Louvain community detection. 

 

Supplementary Note 5. Subclasses of cortical projection neurons 

Our clustering produced nine subclasses of contralaterally projecting intratelencephalic (ITc) 

neurons, ten subclasses of ipsilaterally projecting intratelencephalic (ITi) neurons, four subclasses 

of pyramidal tract (PT) neurons, and two subclasses of corticothalamic (CT) neurons (Fig. 3G). 

Most divisions appeared to be based on whether the neurons project to the striatum, the ipsilateral 

sensory cortices, and the amygdala. The projections to the orbitofrontal cortex and the motor cortex 

appeared to have little effects on the clustering, probably because these projections were usually 

weak and very few neurons projected to these areas (Supp. Fig. S6E, Fig. 3D). 

We identified a cluster of neurons (Leaf 14, Fig. 3G) that appeared to be CT neurons projecting to 

the striatum, but not to the tectum. Layer 6 CT neurons, however, usually do not project to the 

striatum10. The apparent striatal projections could be caused by contamination by fibers passing 

through the striatum. Alternatively, these neurons could be PT neurons in layer 5 and deep layer 6 

whose subcerebral projections were missed due to either weak projections in the tectum or 

projections to other targets rather than the tectum. Our analyses of projection neurons in situ 

support the latter hypothesis. We observed a total of 590 corticothalamic neurons that did not 

project to the tectum or the striatum, and 505 that did project to the striatum. However, only 10 of 

the latter group was obtained in the in situ sequenced brains, compared to 229 of the former group. 

Therefore, most of the striatum and thalamus projecting neurons were from the conventional 

MAPseq brain (XC14). Because we only sequenced neurons at the center of each injection site in 

situ (XC9 and XC28), but collected a much larger injection site that may have included 

neighboring cortical areas in the conventional MAPseq brain (XC14), these neurons were rare in 

the auditory cortex, and were more likely in neighboring cortical areas, where PT neurons could 

project to other targets. Furthermore, the 10 neurons that projected to the striatum had a laminar 

profile similar to that of PT neurons, but different from those of the layer 6 CT neurons (Supp. Fig. 

4C). These results suggest that most of the striatum projecting “corticothalamic” neurons were 

likely PT neurons in layer 5 and deep layer 6 in neighboring cortical areas. 

Supplementary Note 6. Laminar distribution of projection neurons 

To estimate the boundaries of cortical layers, we performed FISH against two known layer-specific 

marker genes, Cux218 (Supp. Fig. S8A), and Fezf2 (Supp. Fig. S8B). Cux2 was strongly expressed 

in L2/3 and only sporadically in other layers; Fezf2 was strongly expressed in L5 and weakly in 

L6. Because L4 is poorly defined in the auditory cortex29, we omitted L4 and defined only the 

remaining two borders (Supp. Table S3). We defined the L2/3 and L5 border as below the Cux2 

band and above the strong Fezf2 band, and defined the L5 and L6 border as between the strong 

and weak bands of Fezf2. To account variations in cortex thickness and sample preparation, we 

examined three slices spanning 800 µm in the auditory cortex, normalized all cortical thickness to 



1200 µm (i.e. the same cortical thickness as the BARseq brains), and calculated the mean positions 

of layer boundaries (Supp. Table S3), The L2/3 and L5 border defined by Fezf2 agreed with that 

defined by Cux2. Based on these measurements, we defined the L2/3 and L5 border to be at 590 

µm and the L5 and L6 border to be at 830 µm. These borders were used for the BARseq analysis 

when layer identities were involved (Fig. 4A, C). 

We saw few projection neurons in superficial L2/3 in our dataset. This is partially due to smaller 

number of neurons labeled near the cortical surface, and partially due to an enrichment of neurons 

without detectable projections in superficial L2/3 (Supp. Fig. S8C). Neurons in superficial L2/3 

(or L2) of the auditory cortex are known to project local and not contralaterally30. Because we did 

not sample neighboring cortical areas, these locally projecting ITi neurons would show as non-

projecting neurons in BARseq. 

Supplementary Note 7. The spatial organization of subclasses of projection neurons 

We examined whether clustering resulted in subclasses that were more restrictive in laminar 

locations. One natural measure of spatial compactness is the standard deviation of the spatial 

distribution of neurons within a class, but such a measure yields spuriously high values for 

multimodal distributions. We therefore examined the entropy (normalized to fall between 0 and 1) 

of the laminar distribution of all nodes and leaves in the clustering, a measure which is insensitive 

to the shape of the distribution. We did not see a reduction in the mean cluster entropy with more 

divisions (p = 0.94 for cluster hierarchy 2-7, one-way ANOVA), especially for the ITc subclasses 

(blue dots). We saw no significant difference in the entropy of the laminar distributions of the 

subclasses between the two brains (Fig. 4B; p > 0.05 by random sampling after Bonferroni 

correction; Supp. Fig. S9A), suggesting that the two brains were consistent. The lack of laminar 

restriction was also not due to misalignment between the two brains, because the average laminar 

locations of neurons from each brain were similar for all but one subclass (Supp. Fig. S9B; p > 

0.05 after Bonferroni correction, Mann-Whitney U test). The one exception was a CT subclass that 

were on average 50 µm deeper in the XC28 than in XC9 (Supp. Fig. S9B; p < 0.0005 after 

Bonferroni correction), but this could be explained by more deep L6 neurons being labeled in 

XC28 than in XC9 (XC9 and XC28 had 165 and 132 L6 labeled neurons with laminar depths < 

1000 µm, respectively, compared to 56 and 129 L6 neurons with laminar depths > 1000 µm; p < 

10-7, fisher’s exact test). Therefore, subclasses were generally not more restrictive in laminar 

distribution than classes. 

We further investigated the projection patterns of corticotectal PT neurons in L5 and L6. PT 

neurons in L5 and L6 of the auditory cortex have distinct morphology and physiological 

properties20, and thus likely belong to different classes. However, we failed to identify a PT 

subclass restricted to either L5 or L6 (Fig. 4C). Corticotectal neurons mainly projected to the 

tectum, the thalamus, and the caudal striatum. All L5 (185 / 185) and L6 (80 / 80) corticotectal PT 

neurons as defined by clustering projected to the thalamus. In addition, similar fractions of neurons 

projected to the caudal striatum (43 / 185 = 23% for L5 and 24 / 80 = 30% for L6, p = 0.3 using 

fisher’s exact test). To ensure that such results were not biased by our clustering, we also looked 

in all neurons that projected to the tectum regardless of their classification by clustering. Similarly, 

98% (183 / 187) and 98% (65 / 66) of L5 and L6 corticotectal neurons, respectively, projected to 

the thalamus. Because these projection probabilities were likely limited by the sensitivity of 

BARseq (92%), virtually all corticotectal neurons project to the thalamus regardless of their 

laminar origins. For corticostriatal projections, 25% (46 / 187) and 27% (18 / 66) of L5 and L6 

neurons with tectal projections, respectively, projected to the caudal striatum (p = 0.7 using fisher’s 



exact test). These results indicate that the L5 and L6 corticotectal neurons have similar projection 

probabilities to their targets. 

We then examined the projection strengths of single corticotectal neurons in L5 and L6. In contrast 

to the projection probabilities, corticotectal projections were stronger in L5 than those in L6 [Supp. 

Fig. S9C; 11.7 ± 2.2 (mean ± stdev), N = 80 for L6 neurons and 13.8 ± 1.6, N = 185 for L5 neurons, 

p < 0.0001 using bootstrap ks test]. Projections to both the thalamus and the striatum were 

indistinguishable between the two groups (Supp. Fig. S9D, E, p = 0.5 for both corticothalamic 

projections and corticostriatal projections using bootstrap ks test). The distribution of the strengths 

of corticotectal projections, however, overlap significantly between the two groups. These results 

were consistent with the notion that projections are not organized by laminae. 


