Supplemental Information

Cohort information

In this study, we made use of in-house samples, as well as data gathered through collaborations and data sharing platforms. In total, 16 cohorts contributed data, which are listed in Table S1 together with demographic information. Table S2 lists the number of subjects with brain disorder diagnoses per cohort. Table S3 lists additional information on each of the cohorts: their source, comments (including funding acknowledgements), and references that can be consulted for detailed descriptions of data gathering characteristics.

Cohort	Sample size	Sex, % male	Age in years (SD)	Hippocampal volume in cubic millimeter (SD)
PING	413	51.8	12.1 (4.9)	7054 (724)
PNC	514	50.6	15.4 (3.6)	7223 (667)
NIMAGE	223	58.7	17.7 (3.6)	6875 (607)
UBA	1024	34.9	22.5 (3.3)	7094 (652)
BIG	2318	47.8	25.5 (10.1)	7398 (738)
UNIBA	361	56.5	28.4 (8.3)	6879 (643)
ТОР	1130	53.1	32.4 (10.2)	7289 (733)
HUBIN	174	69.0	42.1 (8.1)	7321 (712)
DEMGEN	40	40.0	44.9 (22.1)	7222 (735)
NCNG	361	32.4	52.2 (17.1)	6822 (766)
UKBB	12634	48.1	55.9 (7.5)	6941 (728)
STROKEMRI	117	41.0	57.9 (15.5)	6760 (745)
HUNT	783	46.5	58.9 (4.2)	6674 (677)
BETULA	328	47.9	62.6 (13.3)	6675 (752)
ADNI2	253	56.9	72.9 (7.1)	6169 (916)
ADNI1	624	57.9	75.5 (6.7)	5583 (1004)
All	21297	48.3	47.8 (17.5)	6961 (798)

Table S1. Demographic information and total hippocampal volume per cohort included in the analyses

SD=standard deviation

								Subthr.			SZ BD
Cohort	ADHD	BD	Dementia	HC	MCI	MDD	Prodr.	ADHD	SZ	SZ-SIB	mix
ADNI1	0	0	137	179	308	0	0	0	0	0	0
ADNI2	0	0	20	106	127	0	0	0	0	0	0
BETULA	0	0	0	328	0	0	0	0	0	0	0
BIG	0	0	0	2318	0	0	0	0	0	0	0
DEMGEN	0	0	0	40	0	0	0	0	0	0	0
HUBIN	0	0	0	94	0	0	0	0	80	0	0
HUNT	0	0	0	783	0	0	0	0	0	0	0
NCNG	0	0	0	361	0	0	0	0	0	0	0
NIMAGE	100	0	0	89	0	0	0	34	0	0	0
PING	0	0	0	413	0	0	0	0	0	0	0
PNC	0	0	0	514	0	0	0	0	0	0	0
STROKEMRI	0	0	0	117	0	0	0	0	0	0	0
ТОР	0	211	0	563	0	0	18	0	233	0	105
UBA	0	0	0	1024	0	0	0	0	0	0	0
UKBB	0	0	0	12634	0	0	0	0	0	0	0
UNIBA	0	0	0	270	0	2	0	0	72	17	0

Table S2. Brain disorder diagnoses per cohort

ADHD=attention-deficit/hyperactivity disorder, BD=bipolar disorder, HC=healthy controls, MCI=mild cognitive impairment, MDD=major depressive disorder, Prodr.=prodromal psychosis, subtrh.ADHD= subthreshold ADHD, SZ=schizophrenia, SZ-SIB=SZ siblings

Cohort	Source	Comment	Reference
ADNI1	http://adni.loni.usc.edu/	Data collection and sharing for this project was	(1,2)
ADNI2	http://adni.loni.usc.edu/	funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant	
		U01 AG024904) and DOD ADNI (Department of	
		Defense award number W81XWH-12-2-0012). ADNI	
		is funded by the National Institute on Aging, the	
		National Institute of Biomedical Imaging and	
		Bioengineering, and through generous	
		contributions from the following: AbbVie,	
		Alzheimer's Association; Alzheimer's Drug Discovery	
		Foundation; Araclon Biotech; BioClinica, Inc.;	
		Biogen; Bristol-Myers Squibb Company; CereSpir,	
		Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.;	
		Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech,	
		Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen	
		Alzheimer Immunotherapy Research &	
		Development, LLC.; Johnson & Johnson	
		Pharmaceutical Research & Development LLC.;	
		Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale	
		Diagnostics, LLC.; NeuroRx Research; Neurotrack	
		Technologies; Novartis Pharmaceuticals	
		Corporation; Pfizer Inc.; Piramal Imaging; Servier;	
		Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health	
		Research is providing funds to support ADNI clinical	
		sites in Canada. Private sector contributions are	
		facilitated by the Foundation for the National	
		Institutes of Health (www.fnih.org). The grantee	
		organization is the Northern California Institute for	
		Research and Education, and the study is	
		coordinated by the Alzheimer's Therapeutic	
		Research Institute at the University of Southern	
		California. ADNI data are disseminated by the	
		Laboratory for Neuro Imaging at the University of Southern California.	
BETULA	Authors	Betula was supported by a Wallenberg Scholar	(3)
• • •		Grant (KAW)	V - 1
BIG	Authors	This study used the BIG database, which was	(4)
		established in Nijmegen in 2007. This resource is	
		now part of Cognomics, a joint initiative by	
		researchers of the Donders Centre for Cognitive	
		Neuroimaging, the Human Genetics and Cognitive	
		Neuroscience departments of the Radboud	
		University Medical Centre, and the Max Planck Institute for Psycholinguistics. The Cognomics	
		Initiative is supported by the participating	
		departments and centres and by external grants,	
		that is, the Biobanking and Biomolecular Resources	
		Research Infra-structure (Netherlands) (BBMRI-NL),	
		the Hersenstichting Nederland, and the Netherlands	
		Organisation for Scientific Research (NWO). The	
		research leading to these results also received	

Table S3. Cohorts included in the current study

		funding from the European CommunityÕs Seventh Framework Programme (FP7/2007Đ2 013) under grant agreements nû 602805 (Aggresso-type), nû 278948 (TACTICS), and nû 602450 (IMAGEMEND), and from the European CommunityÕs Horizon 2020 Programme (H2020/2014Đ2020) under grant agreement nû 643051 (MiND).In addition, the work was supported by a grant for the ENIGMA Consortium (grant number U54 EB020403) from the BD2K Initiative of a cross-NIH partnership. Barbara Franke is supported by a Vici grant from NWO (grant 016-130-669). The Cognomics Initiative Resource, the Brain Imaging Genetics (BIG) sample (http://www.cognomics.nl), stems from an ongoing study, which started in 2007. The BIG sample is a collection of healthy volunteers aged 18–40 years, who participated in studies at the Donders Centre for Cognitive Neuroimaging (DCCN) of the Radboud University in Nijmegen. Subjects were of Caucasian descent with no self-reported neurological or psychiatric history, and mainly high level of education (80% with bachelor student level or higher). All participants gave written informed consent and the study was approved by the local ethics committee (CMO Region Arnhem-Nijmegen, the Netherlands). The self-reported healthy individuals underwent anatomical MRI scans, usually as part of their involvement in diverse smaller-scale studies at the DCCN. Structural T1- weighted images were acquired using MPRAGE sequence (1.0x1.0 x1.0 mm3 voxel size) with a 1.5T scanner (Sonata and Avanto, Siemens, Erlangen, Germany) or a 3T scanner (Trio and TrioTim, Siemens, Erlangen, Germany).	
DEMGEN	Authors		(5)
HUBIN	Authors	This study was supported by the Swedish Research Council (2006-2992, 2006-986, K2007-62X-15077- 04-1, 2008-2167, K2008-62P-20597-01-3. K2010- 62X-15078-07-2, K2012-61X-15078-09-3, 2017- 00949), the regional agreement on medical training and clinical research between Stockholm County Council and the Karolinska Institutet, the Knut and Alice Wallenberg Foundation, and the HUBIN project	(6)
HUNT	https://www.ntnu.edu/hunt	The HUNT Study is a collaboration between HUNT Research Centre, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Nord-Trøndelag County Council, Central Norway Regional Health Authority, and the Norwegian Institute of Public Health. HUNT- MRI and the genetic analysis were funded by grants from the Liaison Committee between the Central Norway Regional Health Authority and NTNU to principal investigator Asta Håberg, and the Norwegian National Advisory Unit for functional MRI. We thank the HUNT MRI participants, MRI	(7,8)

		technicians and the Department of Diagnostic Imaging at Levanger Hospital, Professor Lars Jacob Stovner (NTNU) and the administrative staff at HUNT.
NCNG	Authors	The sample collection was supported by grants from the Bergen Research Foundation and the University of Bergen, the Dr Einar Martens Fund, the K.G. Jebsen Foundation, the Research Council of Norway, to SLH, VMS, AJL, and TE. The authors thank Dr. Eike Wehling for recruiting participants in Bergen, and Professor Jonn-Terje Geitung and Haraldplass Deaconess Hospital for access to the MRI facility. Additional support by RCN grants 177458/V50 and 231286/F20
NIMAGE	Authors	This project was supported by grants from National Institutes of Health (grant R01MH62873 to SV Faraone) for initial sample recruitment, and from NWO Large Investment (grant 1750102007010 to JK Buitelaar), NWO Brain & Cognition (grant 433-09- 242 to JK Buitelaar), ZonMW Grant 60-60600-97- 193, and grants from Radboud University Medical Center, University Medical Center Groningen, Accare, and VU University Amsterdam for subsequent assessment waves. NeuroIMAGE also receives funding from the European Community's Seventh Framework Programme (FP7/2007 – 2013) under grant agreements n° 602805 (Aggressotype), n° 278948 (TACTICS), and n° 602450 (IMAGEMEND), and from the European Community's Horizon 2020 Programme (H2020/2014 – 2020) under grant agreements n° 643051 (MiND) and n° 667302 (CoCA).
PING	http://pingstudy.ucsd.edu/	Data used in the preparation of this article were obtained from the Pediatric Imaging, Neurocognition and Genetics (PING) Study database (http://ping.chd.ucsd.edu/). PING was launched in 2009 by the National Institute on Drug Abuse (NIDA) and the Eunice Kennedy Shriver National Institute Of Child Health & Human Development (NICHD) as a 2-year project of the American Recovery and Reinvestment Act. The primary goal of PING has been to create a data resource of highly standardized and carefully curated magnetic resonance imaging (MRI) data, comprehensive genotyping data, and developmental and neuropsychological assessments for a large cohort of developing children aged 3 to 20 years. The scientific aim of the project is, by openly sharing these data, to amplify the power and productivity of investigations of healthy and disordered development in children, and to increase understanding of the origins of variation in neurobehavioral phenotypes. For up-to-date information, see http://ping.chd.ucsd.edu/."

		Health Grant RC2DA029475). PING is funded by the	
		National Institute on Drug Abuse and the Eunice	
		Kennedy Shriver National Institute of Child Health &	
		Human Development. PING data are disseminated	
		by the PING Coordinating Center at the Center for	
		Human Development, University of California, San	
		Diego.	
PNC	https://www.med.upenn.edu	Support for the collection of the data sets was	(12,13)
		provided by grant RC2MH089983 awarded to R. Gur	(, ,
		and RC2MH089924 awarded to H. Hakonarson.	
		Subjects were recruited through the Center for	
		Applied Genomics at The Children's Hospital in	
		Philadelphia.	
STROKEMRI/	Authors	Supported by the Research Council of Norway	(14)
MOT	Addiois	(249795, 248238), the South-Eastern Norway	(14)
		Regional Health Authority (2014097, 2015044,	
		-	
		2015073, 2016083), and the Norwegian ExtraFoundation for Health and Rehabilitation	
TOD		(2015/FO5146).	(15 10)
ТОР	Authors	The work was funded by the Research Council of	(15–18)
		Norway (213837, 223273, 204966/F20, 213694,	
		229129, 249795/F20, 248778), the South-Eastern	
		Norway Regional Health Authority (2013-123, 2014-	
		097, 2015-073, #2017-112) and Stiftelsen Kristian	
		Gerhard Jebsen.	(1.2)
UBA	Authors	European Community's Seventh Framework	(19)
		Programme (FP7/2007–2013) grant agreement	
		#602450 (IMAGEMEND); Swiss National Science	
		Foundation (grants 163434, 147570 and 159740)	
UKBB		All subjects with a primary or secondary ICD-10	(20)
		diagnosis with a mental or neurological disorder	
	https://www.ukbiobank.ac.uk/	were excluded prior to analysis and the remaining	
		subjects included as healthy controls. The used UK	
		Biobank project ID number is #27412.	
UNIBA	Authors	This work was supported by a "Capitale Umano ad	(21)
		Alta Qualificazione" grant by Fondazione Con II Sud	
		awarded to Alessandro Bertolino and by a	
		Hoffmann-La Roche Collaboration Grant awarded to	
		Giulio Pergola. This project has received funding	
		from the European Union Seventh Framework	
		Programme for research, technological	
		development and demonstration under grant	
		agreement no. 602450 (IMAGEMEND). This paper	
		reflects only the author's views and the European	
		Union is not liable for any use that may be made of	
		the information contained therein.	

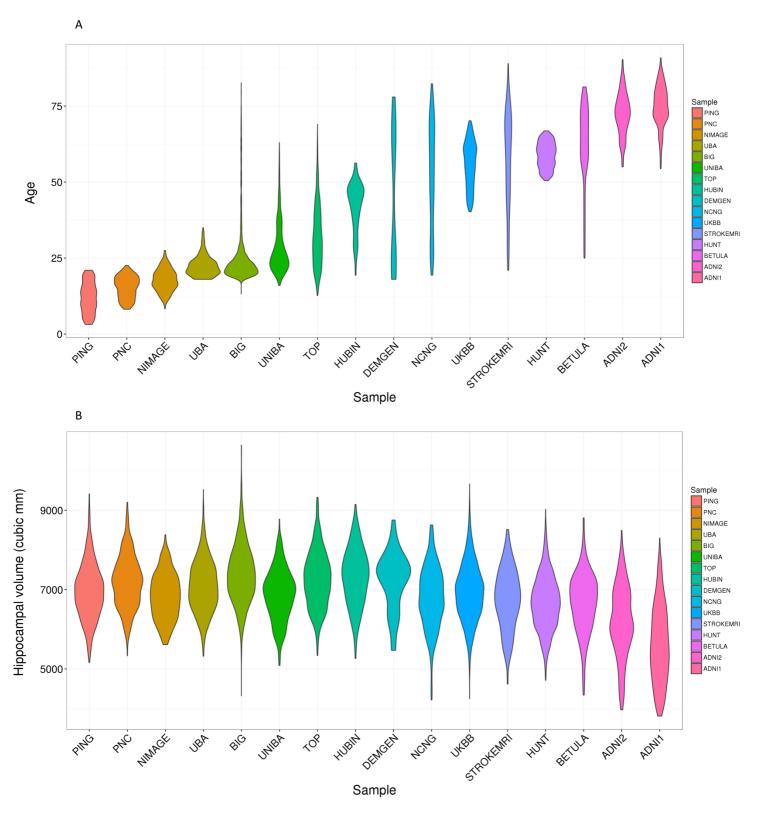
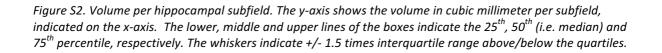
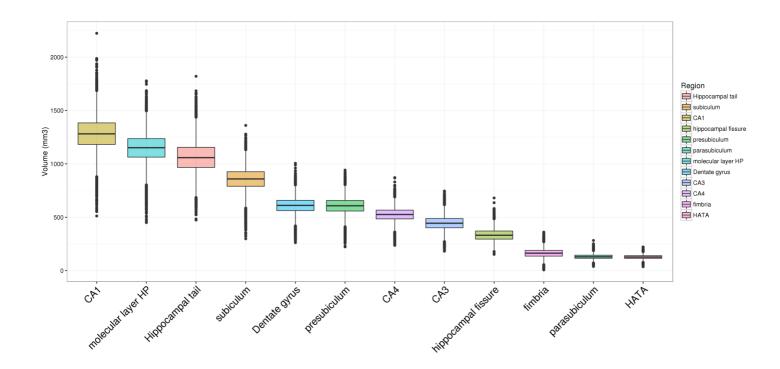




Figure S1. Demographics distributions per sample. Figure S1A shows the distribution of age in years (on the yaxis) per cohort (indicated on the x-axis), sorted by increasing mean age. Figure S1B visualizes the mean hippocampal volume in cubic millimeter (on the y-axis) per cohort (on the x-axis).

Image preprocessing and quality control

Raw data for all individuals was stored and analysed locally at the University of Oslo, where we deployed a harmonized analysis protocol applied to each individual subject raw data. We performed automated surfacebased morphometry and subcortical segmentation using Freesurfer v5.3. Several of the samples were carefully screened by trained research personnel to identify segmentation errors, assess the quality of each subject's brain images manually, edit segmentation where possible and to exclude bad data. However, due to the vast number of subjects it was not feasible to manually check the segmentation of all images. We therefore deployed an automated quality control protocol that excluded potential outliers based on global data quality measures (in addition to the described manual exclusions). In brief, we regressed age, age², sex and scanning site from mean cortical thickness, cortex volume, subcortical gray matter volume and from estimated total intracranial volume. Next, we z-standardized the resulting absolute of the residuals and excluded those subjects that exceeded pre-defined standard deviation (SD) thresholds. Before the analyses, we excluded individuals identified by manual QC as well as those exceeding a threshold of 4 SD on any of the regions of interest or ICV.

Freesurfer v5.3 vs v6.0

The vast majority of structural MRI scans available for this study had already been preprocessed with FreeSurfer v5.3. Given the large computational cost of re-processing these scans with FreeSurfer v6.0, we decided to stick with this version and run the v6.0 hippocampal subfield segmentation on top. We did perform a sanity check: First, we ran the recon-all –all stream from v6.0, followed by the v6.0 hippocampal subfield segmentation for fifty participants. We then correlated the resulting hippocampal subfield estimates with those obtained through the combination of v5.3 for the main segmentation with v6.0 for the subfield segmentation for these same fifty subjects. The resulting correlation per subfield is shown below.

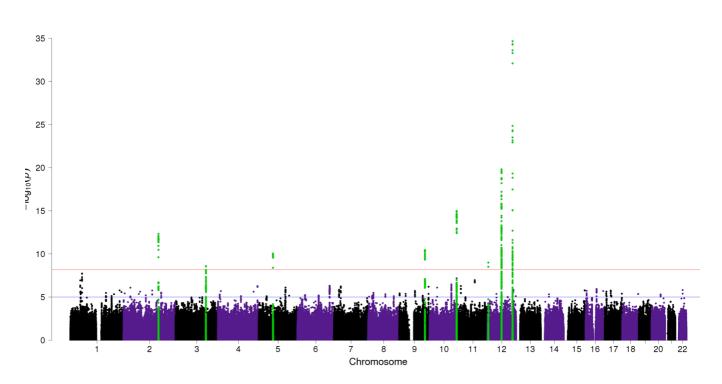
Subfield	Correlation
Hippocampal tail	0.96
Subiculum	0.95
CA1	0.93
Hippocampal fissure	0.94
Presubiculum	0.94
Parasubiculum	0.87
Molecular layer	0.93
Dentate gyrus	0.91
CA3	0.92
CA4	0.89
Fimbria	0.89
HATA	0.93
Whole hippocampus	0.95

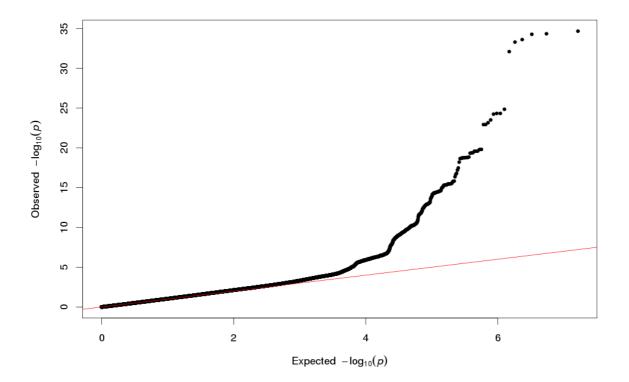
Genotyping and quality control

Genetic data were obtained at each site using commercially available genotyping platforms. For all cohorts except BIG and UK Biobank (UKBB), we carried out phasing and imputation in-house according to protocols in line with those applied by the ENIGMA consortium (http://enigma.ini.usc.edu). This consisted of standard pre-imputation quality controls, excluding markers exhibiting high rates of genotyping missingness (above 5%), minor allele frequency (MAF) below 1% or deviating from Hardy Weinberg equilibrium ($p<1*10^{-6}$). Individuals exhibiting high rates of genotyping missingness (above 5%), cryptic relatedness (pi-hat above 18.5%) or genome-wide heterozygosity (outside mean ±4 SD of the sample) were removed from the analyses. We restricted our analyses to those with European determined through multidimensional ancestry as scaling (MDS). MACH (http://www.sph.umich.edu/csg/abecasis/MACH) was used to impute the genotypes onto the reference haplotypes from the 1000 Genomes Project (build 37, assembly hg19). After imputation, genetic data were further quality checked to remove poorly imputed SNPs (estimated R²<0.3) and those with low MAF (<5%) or failing HWE at 1x10⁻⁶. For UKBB and BIG, we used the provided imputed data, which were processed with established protocols.^{24,25} We further carried out the same postimputation QC steps as described for the other samples.

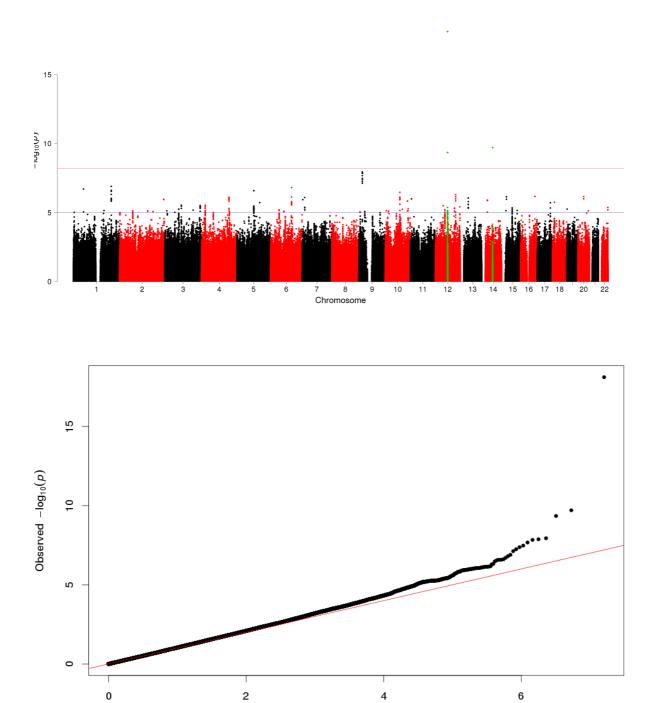
Table S3. Genome-wide complex trait analysis heritability estimates, with full test statistics.

ROI	H2	SE	Pval
Hippocampal tail	0.27	0.02	1.00e-16
Subiculum	0.22	0.02	1.00e-16
CA1	0.22	0.02	1.00e-16
Hippocampal fissure	0.20	0.02	1.00e-16
Presubiculum	0.21	0.02	1.00e-16
Parasubiculum	0.14	0.02	1.00e-16
Molecular layer HP	0.21	0.02	1.00e-16
Dentate gyrus	0.22	0.02	1.00e-16
CA3	0.24	0.02	1.00e-16
CA4	0.22	0.02	1.00e-16
Fimbria	0.17	0.02	1.00e-16
НАТА	0.17	0.02	1.00e-16
Whole hippocampus	0.23	0.02	1.00e-16
Lateral ventricle	0.16	0.02	1.00e-16
Cerebellum	0.25	0.02	1.00e-16
Thalamus	0.20	0.02	1.00e-16
Caudate	0.25	0.02	1.00e-16
Putamen	0.22	0.02	1.00e-16
Pallidum	0.16	0.02	1.00e-16
Brain stem	0.27	0.02	1.00e-16
Amygdala	0.17	0.02	1.00e-16
Accumbens	0.17	0.02	1.00e-16
Frontal	0.18	0.02	1.00e-16
Parietal	0.18	0.02	1.00e-16
Temporal	0.20	0.02	1.00e-16
Occipital	0.25	0.02	1.00e-16
Cingulate	0.15	0.02	1.00e-16
Insular	0.22	0.02	1.00e-16

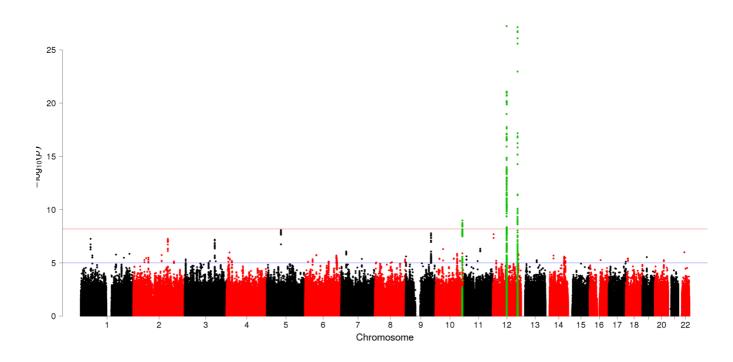

ROI=Region of interest, H2=Heritability, SE=Standard error, Pval=P-value

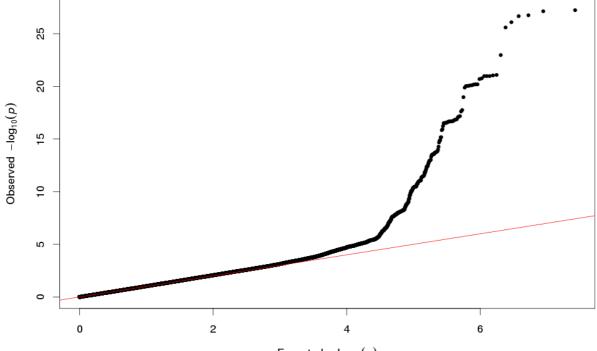

Table S4. Genetic correlation, calculated through linkage disequilibrum score regression (LDSC), of Alzheimer's disease and schizophrenia diagnosis with each of the subfields, corrected for total hippocampal volume.

Structure	A	lzheimer's dise	ease		Schizophrenia	
Structure	Rg	SE	P-value	Rg	SE	P-value
Whole hippocampus	-0.056	0.103	0.585	-0.032	0.04	0.429
Parasubiculum	0.177	0.102	0.083	-0.007	0.046	0.878
Presubiculum	0.143	0.098	0.145	-0.001	0.042	0.977
Subiculum	0.071	0.111	0.519	0.063	0.048	0.187
CA1	-0.088	0.106	0.403	0.02	0.05	0.693
CA3	-0.081	0.084	0.334	-0.054	0.038	0.153
CA4	-0.12	0.097	0.216	-0.06	0.045	0.184
Granule cell layer DG	-0.117	0.096	0.219	-0.064	0.045	0.153
НАТА	-0.188	0.107	0.079	-0.067	0.047	0.152
Fimbria	-0.246	0.13	0.058	-0.055	0.052	0.295
Molecular layer DG	-0.086	0.107	0.421	0.011	0.052	0.829
Hippocampal fissure	-0.149	0.105	0.153	0.081	0.052	0.118
Hippocampal tail	0.108	0.092	0.241	0.037	0.045	0.405

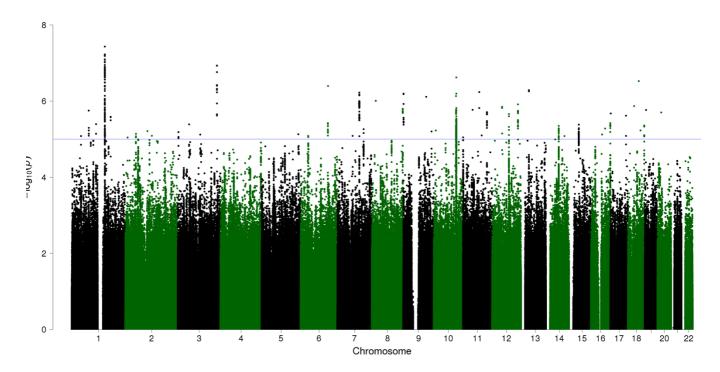

Figure S3. Manhattan and QQ plots for whole hippocampus and per subfield. For the manhattan plots, the red line indicates the adjusted whole-genome significance threshold (6.5x10-9 p-value), the blue line the suggestive threshold (1x10-5).

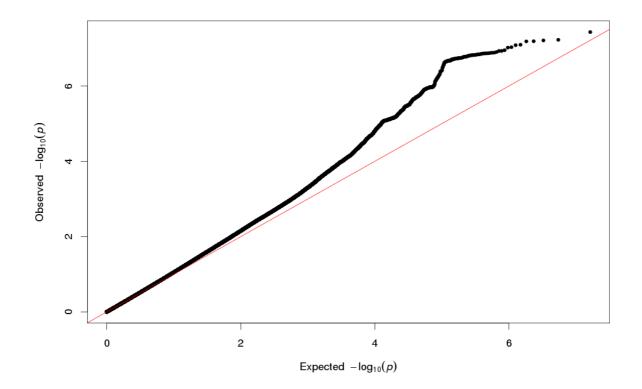
Whole hippocampus

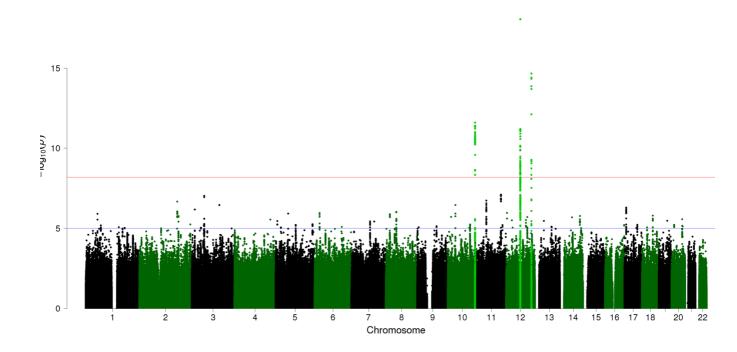


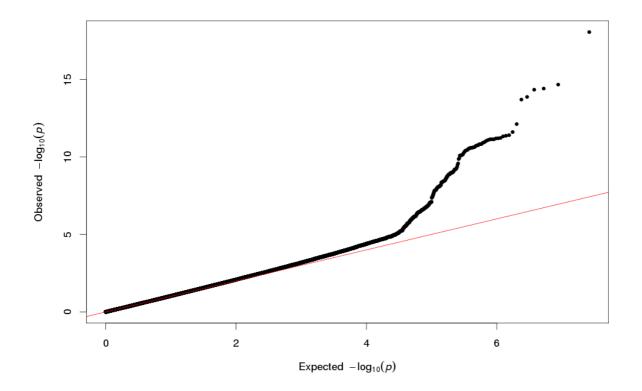


CA1 corrected for total hippocampal volume

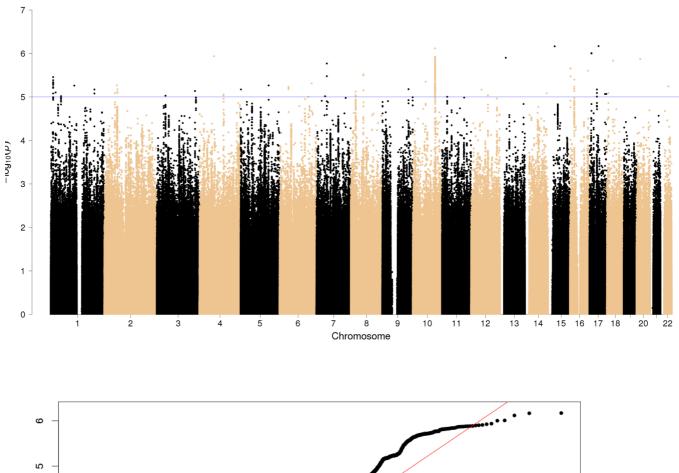

Expected $-\log_{10}(p)$

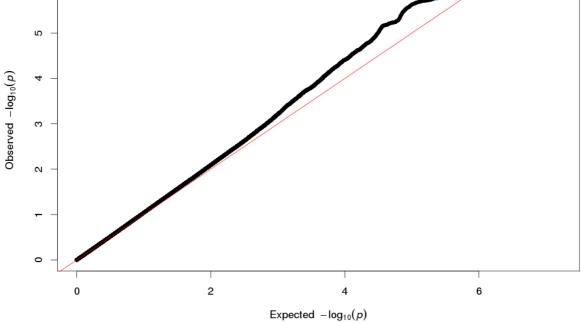


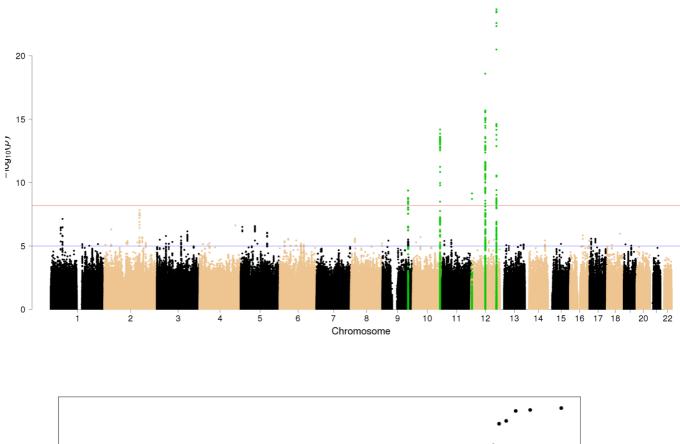


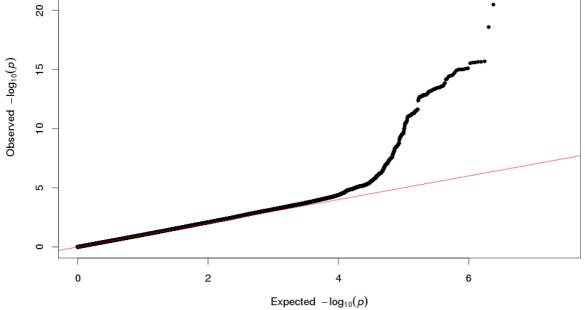

Expected $-\log_{10}(p)$

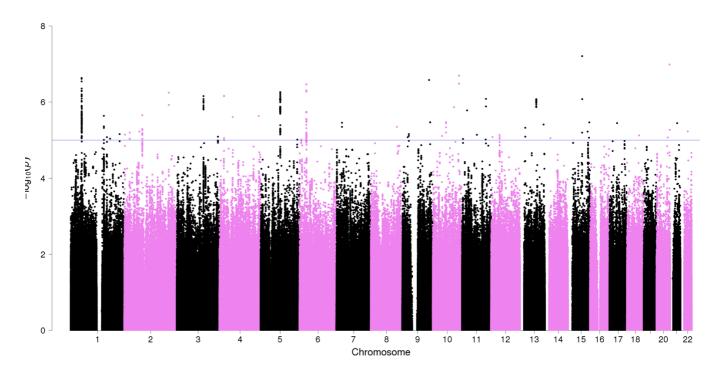
CA3 corrected for total hippocampal volume

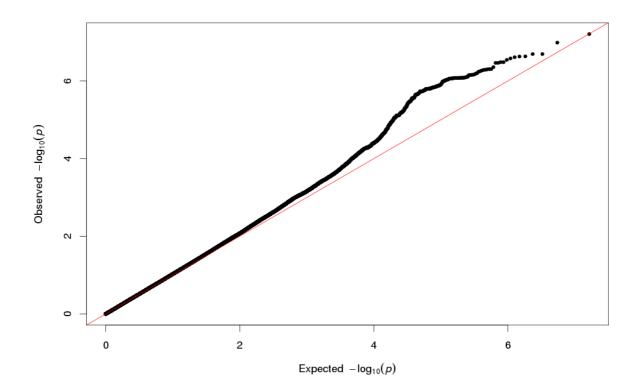


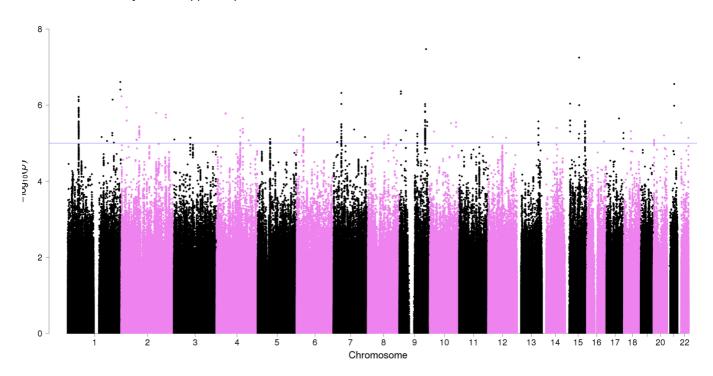


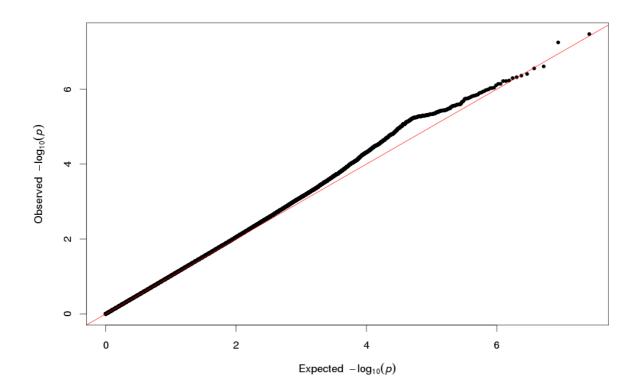


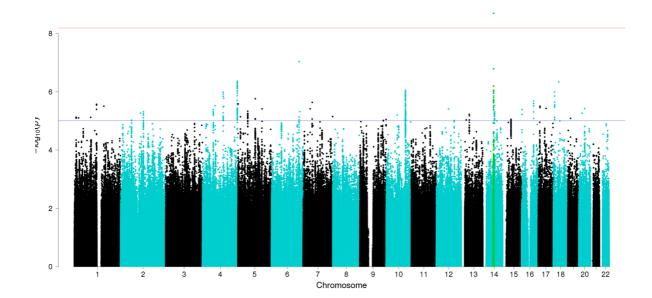

CA4 corrected for total hippocampal volume

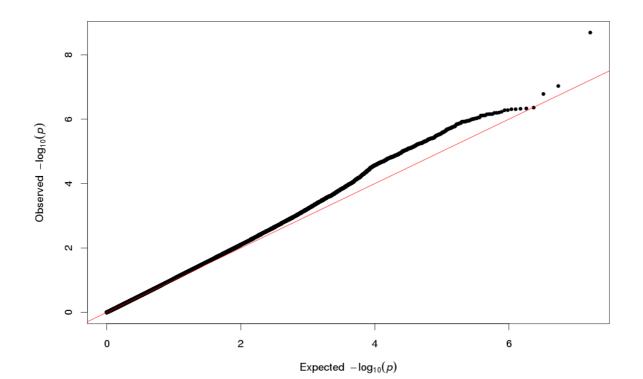


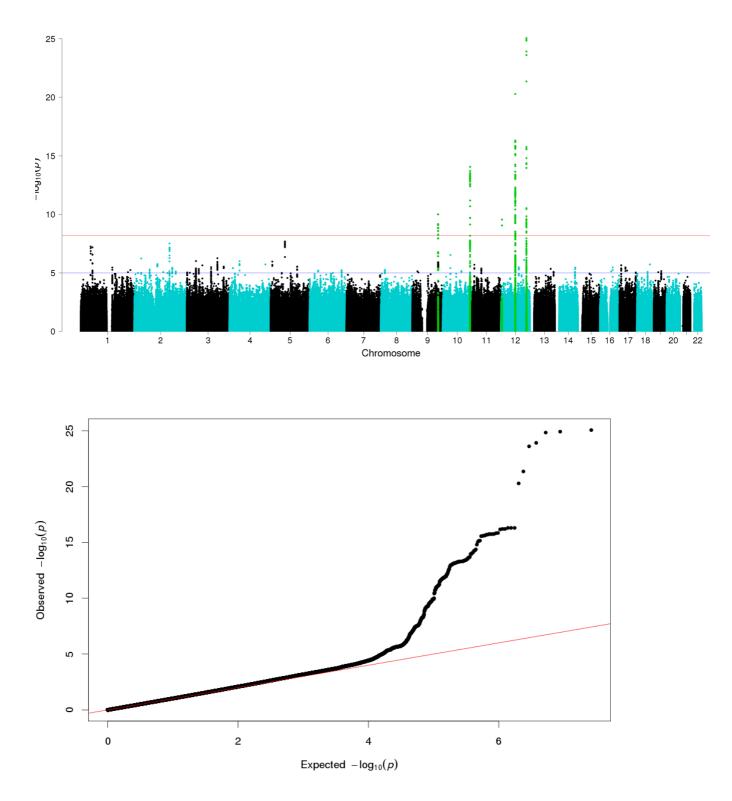

CA4 uncorrected for total hippocampal volume

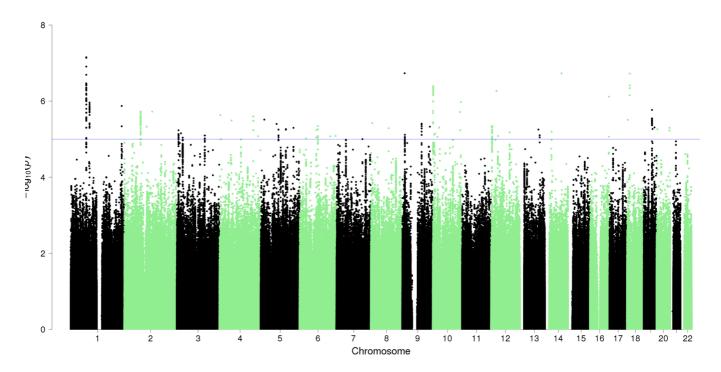


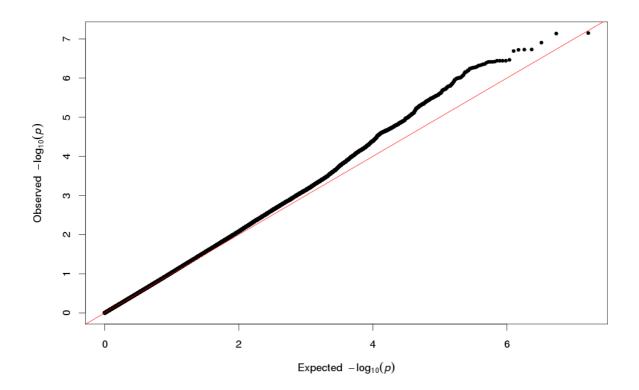

Fimbria corrected for total hippocampal volume

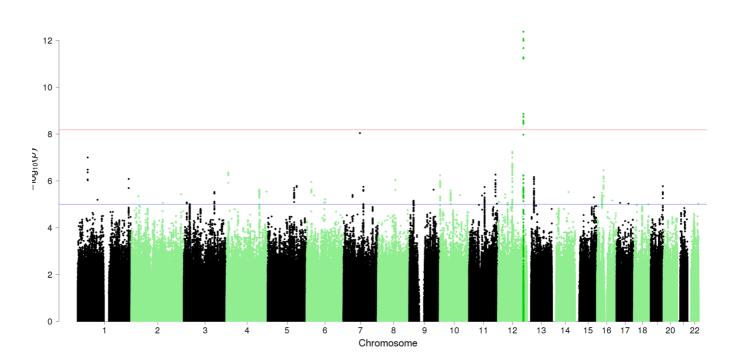


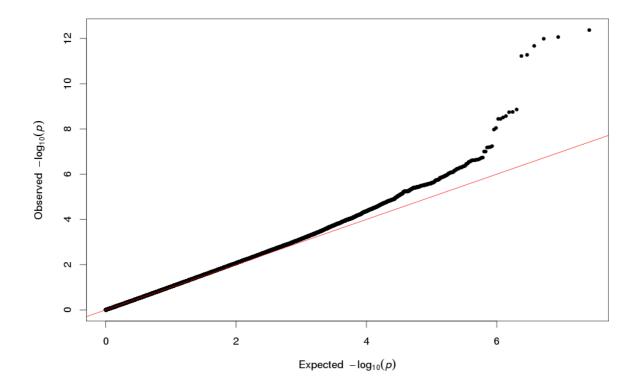

Fimbria uncorrected for total hippocampal volume

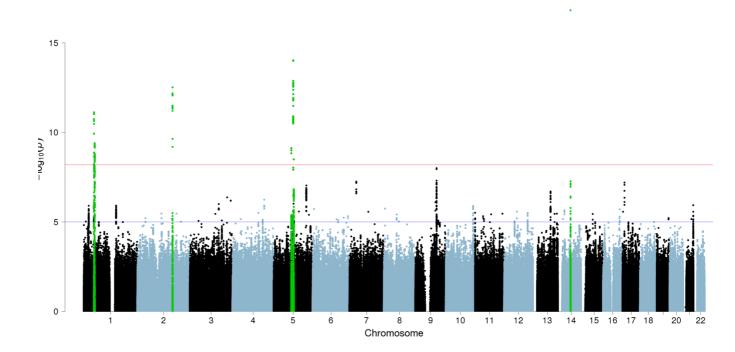


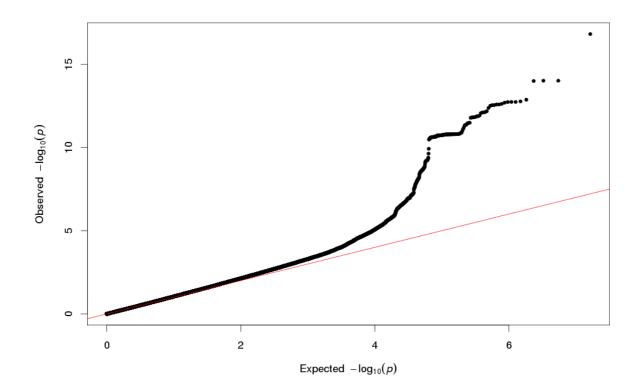


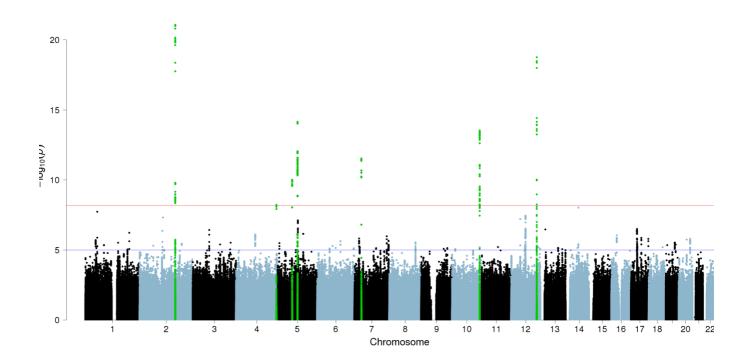


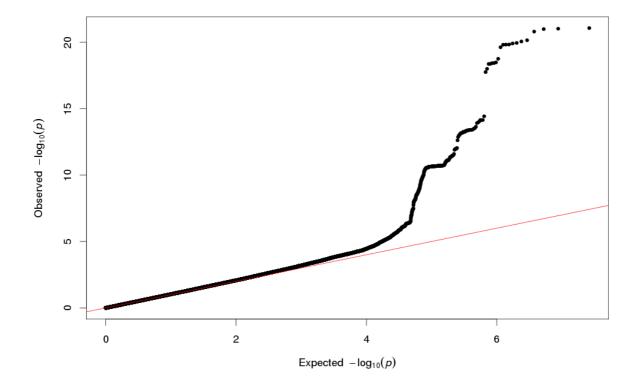

Granule Cell Layer Dentate Gyrus uncorrected for total hippocampal volume

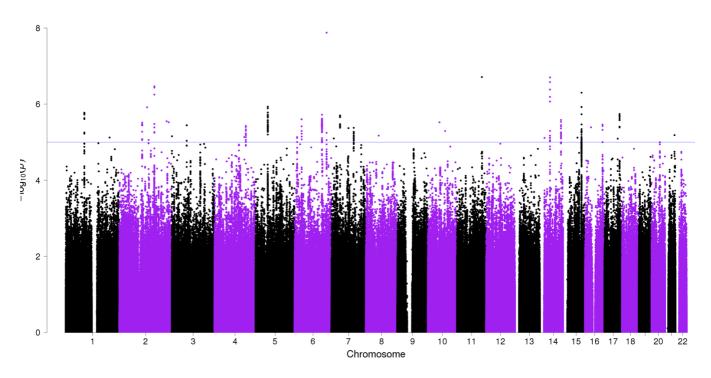

HATA corrected for total hippocampal volume

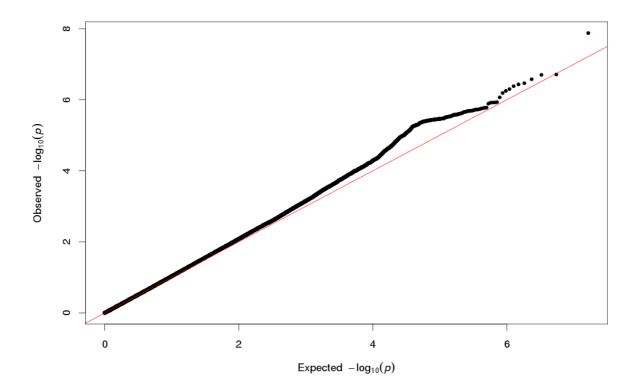


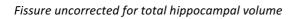


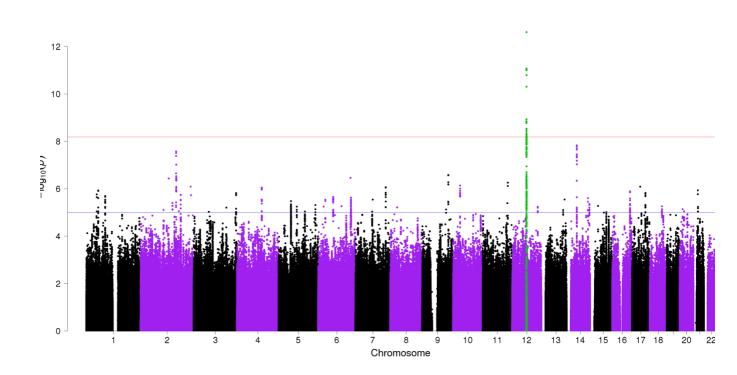

HATA uncorrected for total hippocampal volume

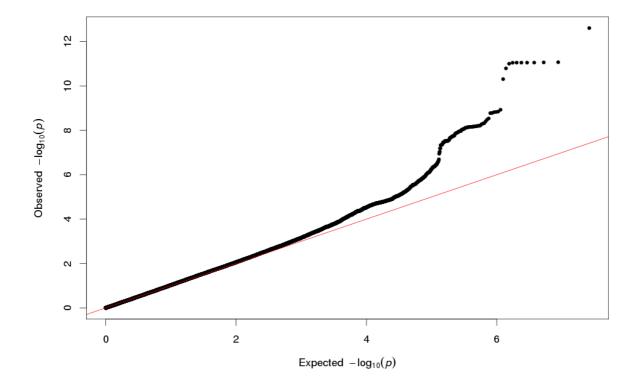


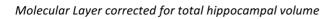


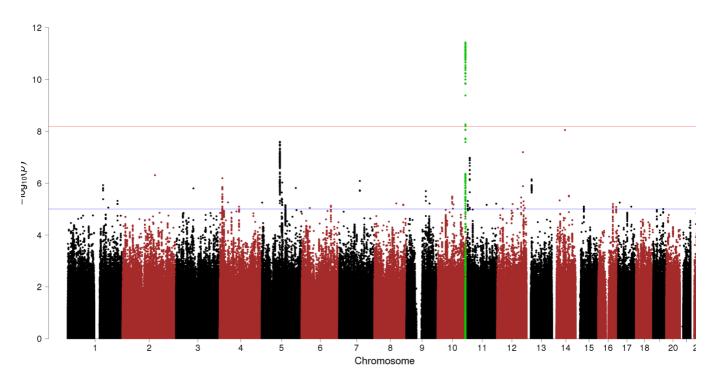


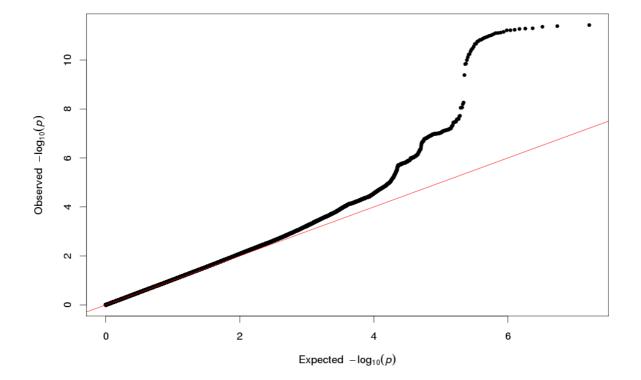


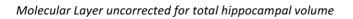


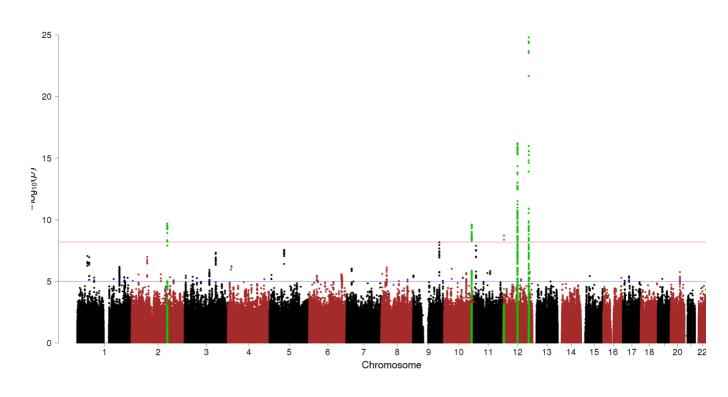

Fissure corrected for total hippocampal volume

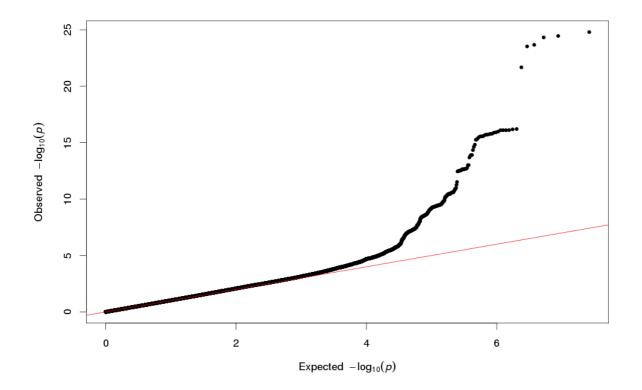


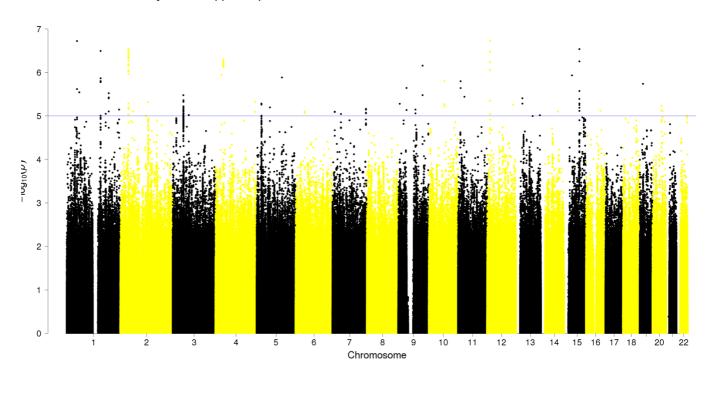


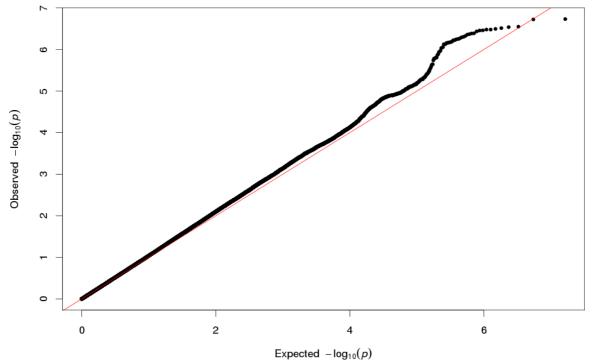


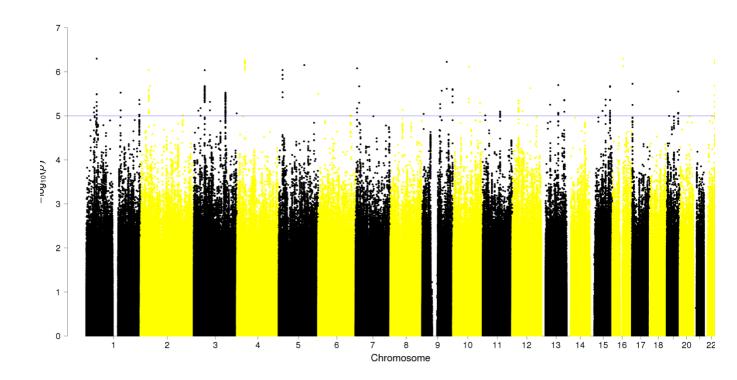


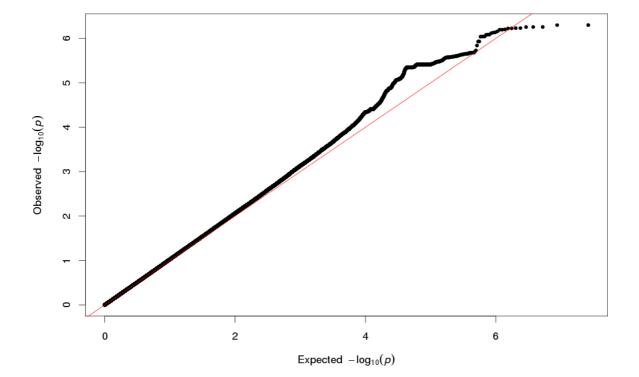




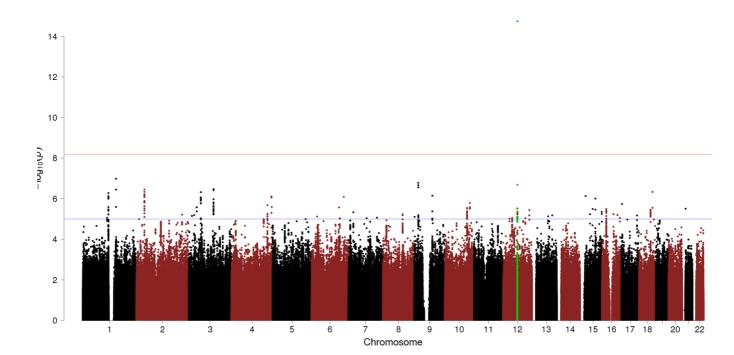


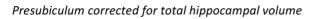


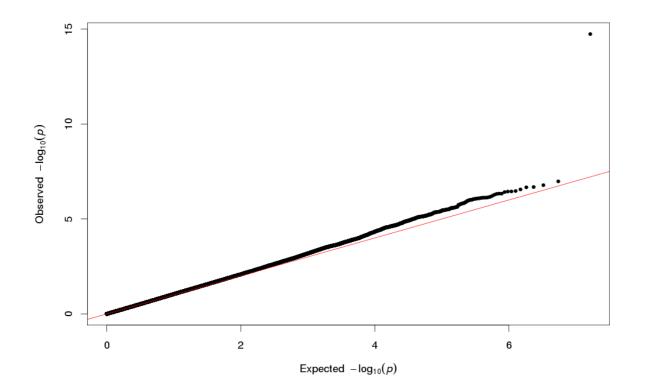


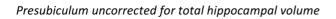


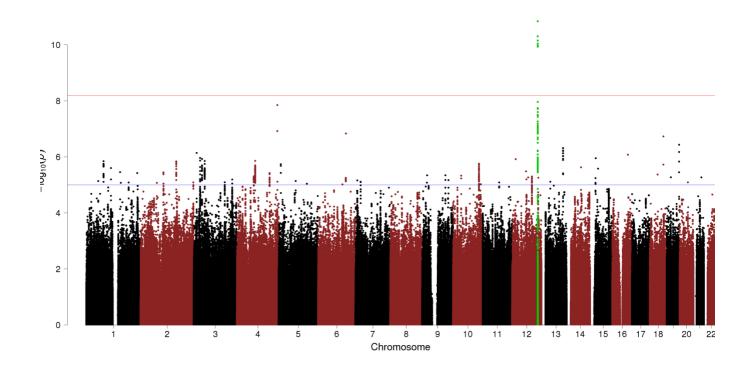
Parasubiculum corrected for total hippocampal volume

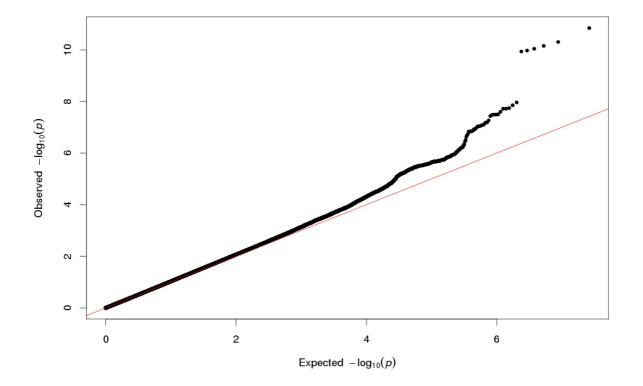


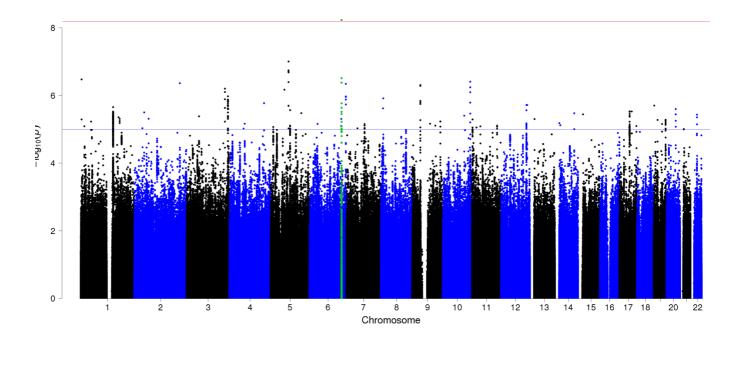


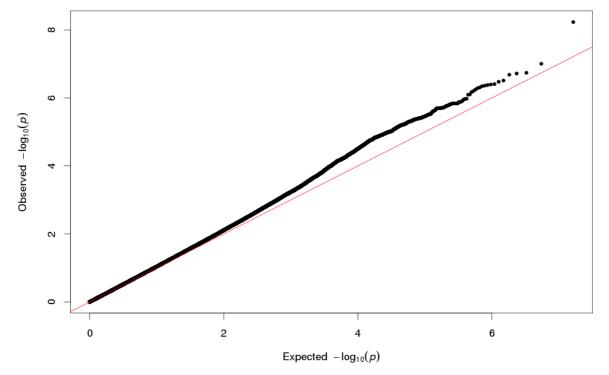


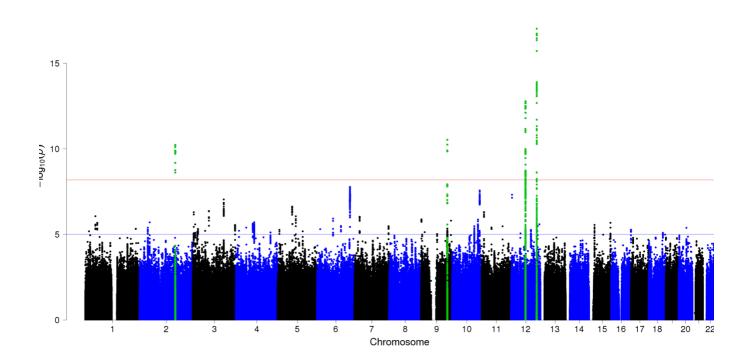



Parasubiculum uncorrected for total hippocampal volume









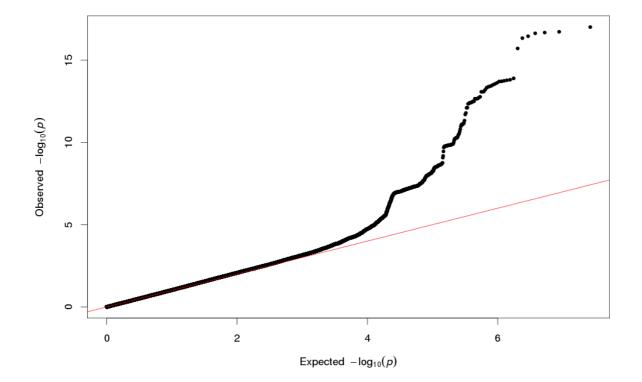
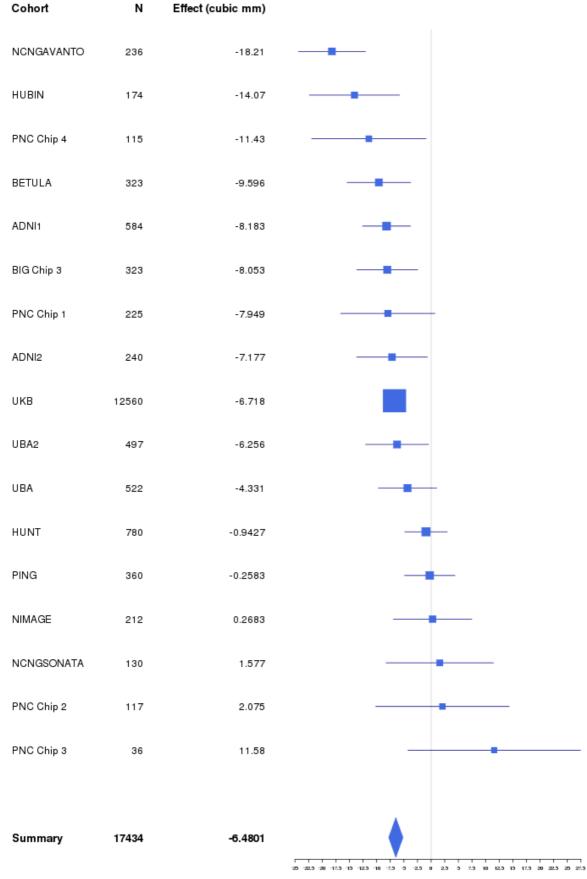
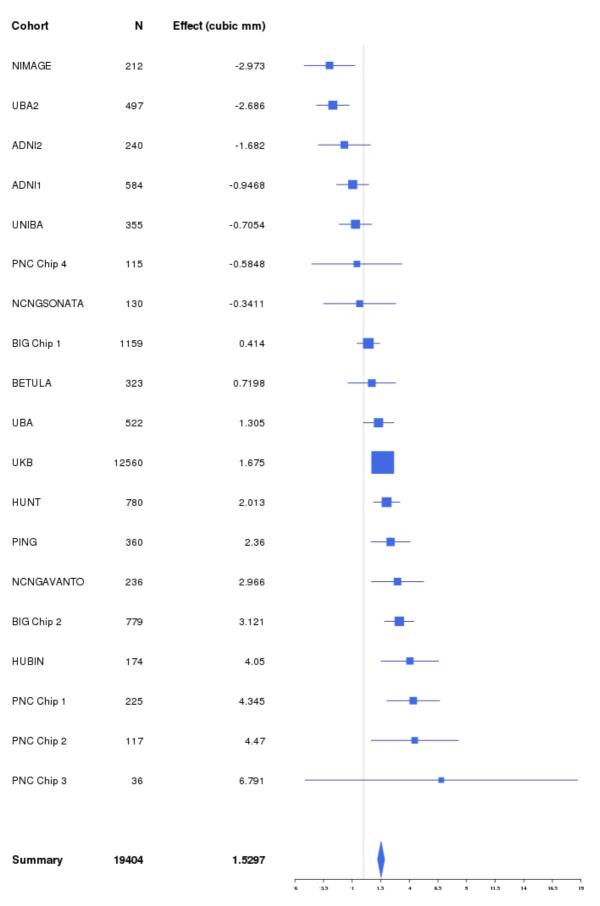



Figure S4 Forest plot per lead SNP of the whole-genome significant loci across all the subfields.

CA1_IncWhole 12:65718299



CA1_IncWhole 14:59074136

Cohort	N	Effect (cubic mm)	
NCNGSONATA	130	-1.389	
PNC Chip 3	36	-1.004	
ADNI2	240	-0.9483	
ADNI1	584	-0.2725	
BIG Chip 2	779	0.8827	
UNIBA	355	1.512	
UBA2	497	1.531	
PNC Chip 4	115	1.735	
UKB	12560	2.755	
UBA	522	3.088	
PNC Chip 1	225	3.717	
PING	360	3.893	
HUNT	780	5.34	
HUBIN	174	5.615	
NCNGAVANTO	236	5.656	
BETULA	323	9.721	
NIMAGE	212	10.4	-
PNC Chip 2	117	13.87	
Summary	18245	2.9772	
			-18 -123 -13 -103 -8 -23 -3 -03 2 43 7 93 12 143 17 193

...

GC.ML.DG_IncWhole 14:59074136

Hippocampal_tail_IncWhole 1:47945370

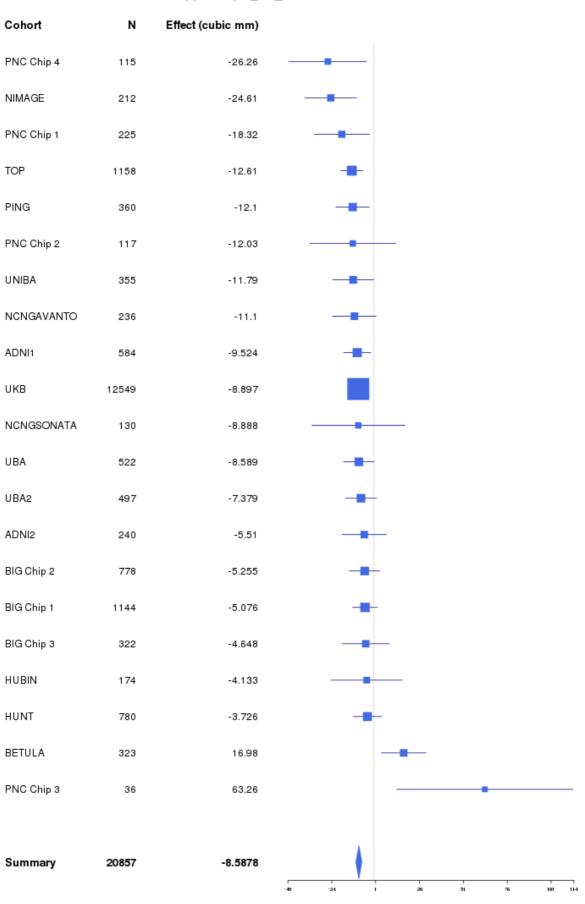
Cohort	N	Effect (cubic mm)	
PNC Chip 3	36	-32.58	
UNIBA	355	-13.43	
ADNI2	240	-8.658	
NIMAGE	212	-4.001	
PING	360	-2.668	
ADNI1	584	2.651	
UBA	522	6.433	
PNC Chip 2	117	6.627	
BIG Chip 1	1156	7.531	
HUNT	780	7.774	
UKB	12504	7.986	
NCNGSONATA	130	9.046	
PNC Chip 4	115	10.24	
NCNGAVANTO	236	10.71	
PNC Chip 1	225	10.83	
BIG Chip 3	317	11.68	
BIG Chip 2	764	14.44	
UBA2	497	14.99	
BETULA	323	17.07	
HUBIN	174	17.87	
Summary	19647	7.3102	- 17 - 12 - 57 - 52 - 47 - 42 - 57 - 52 - 27 - 52 - 17 - 12 - 7-45-2.0.5 3 5.5 8 10.3131.51850.5250.53500.5

Hippocampal_tail_IncWhole 1:51016603

Cohort	N	Effect (cubic mm)	
PNC Chip 3	36	-17.48	
UNIBA	355	-7.874	
NCNGSONATA	130	-2.611	
PNC Chip 1	225	-2.153	
NIMAGE	212	-1.733	
ADNI1	584	-1.505	
BIG Chip 2	779	-0.8543	
UBA	522	0.2188	
PING	360	0.7314	
BIG Chip 1	1158	1.07	
NCNGAVANTO	236	1.467	
HUBIN	174	2.656	
PNC Chip 2	117	2.848	
ТОР	1158	2.99	
UKB	12515	6.233	
BETULA	323	8.592	
HUNT	780	11.06	
UBA2	497	11.9	
BIG Chip 3	323	13.94	
ADNI2	240	15.43	
PNC Chip 4	115	19.6	
Summary	20839	5.2216	•

Hippocampal_tail_IncWhole 2:162846439

Cohort	Ν	Effect (cubic mm)	
PNC Chip 3	36	-19.45	
HUNT	780	-4.259	
NIMAGE	212	-3.683	
HUBIN	174	-1.468	
PNC Chip 4	115	-1.426	
PING	360	-0.7522	
BIG Chip 3	323	-0.6336	
TOP	1158	2.222	
ADNI1	584	3.228	
UBA2	497	4.262	
ADNI2	240	6.042	
NCNGSONATA	130	6.217	-
UKB	12556	6.45	
NCNGAVANTO	236	6.654	
PNC Chip 1	225	7.639	
BIG Chip 1	1159	10.28	
UBA	522	11.87	
BIG Chip 2	778	12.22	
UNIBA	355	14.72	
BETULA	323	14.9	
PNC Chip 2	117	19.38	
Summary	20880	6.1075	


Hippocampal_tail_IncWhole 5:81929360

Cohort	Ν	Effect (cubic mm)	
PNC Chip 3	36	-44.36	
PNC Chip 1	225	-28.09	
NCNGSONATA	130	-17.82	_
PNC Chip 4	115	115 -15.07	
ADNI1	584	-13.34	
BETULA	323	-12.97	
BIG Chip 3	322	-12.1	
UNIBA	355	-11.24	
BIG Chip 2	776	-9.907	
BIG Chip 1	1158	-9.002	
TOP	1158	-6.127	
UKB	12549	-5.52	
NIMAGE	212	-2.941	
PING	360	-2.762	
HUBIN	174	-2.456	
UBA2	497	-0.5421	
UBA	522	1.039	
ADNI2	240	2.267	
HUNT	780	2.891	
NCNGAVANTO	236	5.309	
PNC Chip 2	117	7.479	
Summary	20869	-5.7429	•

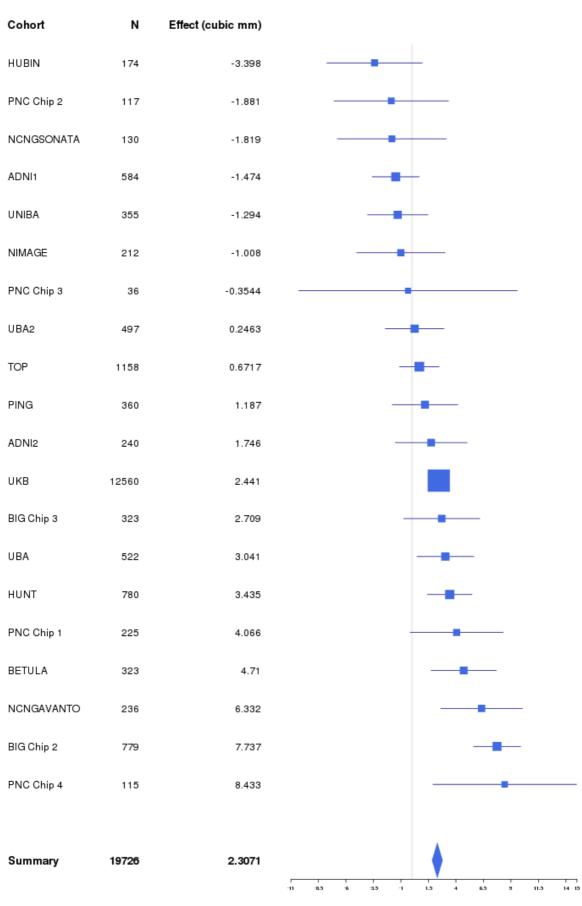
Hippocampal_tail_IncWhole 5:90816402

Cohort	N	Effect (cubic mm)	
PNC Chip 2	117	-24.65	
PING	360	-21.48	
PNC Chip 3	36	-18.08	
BETULA	323	-17.47	_
BIG Chip 3	322	-15.4	
NCNGSONATA	130	-15.28	
HUNT	780	-12.16	
ADNI2	240	-10.93	
UNIBA	355	-10.93	
PNC Chip 1	225	-8.828	
UBA2	497	-8.529	
UKB	12529	-7.119	
ADNI1	584	-6.779	
BIG Chip 1	1159	-4.874	
PNC Chip 4	115	-3.011	
BIG Chip 2	779	-2.958	
NIMAGE	212	-2.142	
ТОР	1158	-1.748	
UBA	522	2.46	
HUBIN	174	5.009	
NCNGAVANTO	236	5.143	
Summary	20853	-7.1115	▲
			9 - 46.5 - 46 - 46.5 - 41 - 36.5 - 36 - 30.5 - 31 - 30.5 - 36 - 32.5 - 21 - 46.5 - 41 - 41.5 - 11 - 42 - 6 - 3.5 - 11 - 1.5 - 4 - 6.5 - 9 - 11.5 - 14 - 16.5 - 11 - 16.5 - 16 - 13.5 - 11 - 16.5 - 15 - 11 - 15.5 - 11 - 15.5 - 11 - 15.5 - 11 - 15.5 - 11 - 15.5 - 11 - 15.5 - 11 - 15.5 - 11 - 15.5 - 11 - 15.5 - 11 - 15.5 - 11 - 15.5 - 11 - 15.5 - 15 - 1

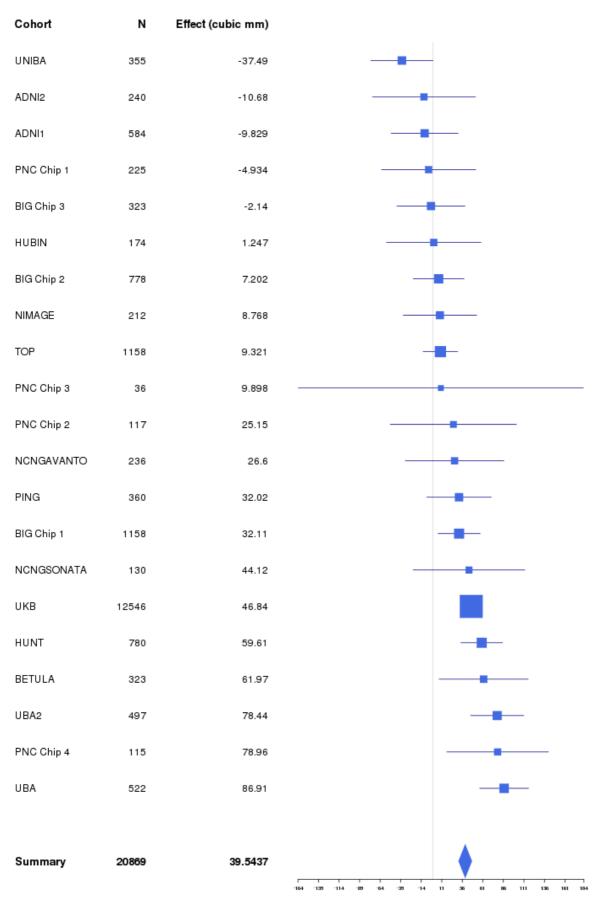
Hippocampal_tail_IncWhole 5:93094118

Hippocampal_tail_IncWhole 14:59074136

Cohort	N	Effect (cubic mm)	
PNC Chip 3	36	-56.81	
PNC Chip 2	117	-26.54	_
NCNGAVANTO	236	-19.07	
PNC Chip 1	225	-18.6	
HUBIN	174	-18.54	
NIMAGE	212	-16.37	
HUNT	780	-11.44	-
BIG Chip 2	779	-9.115	
UKB	12560	-7.954	
BIG Chip 1	1159	-6.688	+
UBA	522	-6.625	
PING	360	-5.619	
BETULA	323	-3.7	
UNIBA	355	1.706	
ADNI2	240	4.903	
UBA2	497	6.37	
ADNI1	584	6.844	-
PNC Chip 4	115	7.722	
NCNGSONATA	130	12.93	
Summary	19404	-7.4462	
			1 1 1 1 1 13 66 -46 18 7 20


molecular_layer_HP_IncWhole 10:126436717

Cohort	N	Effect (cubic mm)	
PNC Chip 3	36	-9.481	
BIG Chip 3	322	-3.468	
HUNT	780	-3.372	
ADNI1	584	-3.067	
PNC Chip 1	225	-2.656	
BIG Chip 2	777	-2.335	
UBA	522	-2.028	
BIG Chip 1	1150	-1.795	
NCNGSONATA	130	-1.684	
UKB	12511	-1.282	
ADNI2	240	-0.9361	
TOP	1158	-0.9208	
PING	360	-0.8082	
NIMAGE	212	-0.7735	
HUBIN	174	-0.6823	
BETULA	323	-0.5137	
UBA2	497	0.2073	
PNC Chip 4	115	0.3392	_
NCNGAVANTO	236	0.548	
PNC Chip 2	117	0.6157	
UNIBA	355	0.6714	
Summary	20824	-1.3636	-17 -142 -12 -52 -7 -42 -2 0.5 3 4


presubiculum_IncWhole 12:65718299

Cohort	N	Effect (cubic mm)	
PNC Chip 3	36	-13.75	_
PING	360	-9.671	
PNC Chip 2	117	-1.372	
NIMAGE	212	-0.9532	
HUBIN	174	-0.1904	
BETULA	323	0.01548	
PNC Chip 1	225	0.4428	_
PNC Chip 4	115	1.349	
HUNT	780	1.685	
UBA2	497	4.898	
ADNI1	584	5.443	
UKB	12560	6.165	
NCNGAVANTO	236	7.183	
ADNI2	240	9.769	
UBA	522	12.6	
NCNGSONATA	130	15.1	
BIG Chip 3	323	17.42	
Summary	17434	5.6108	

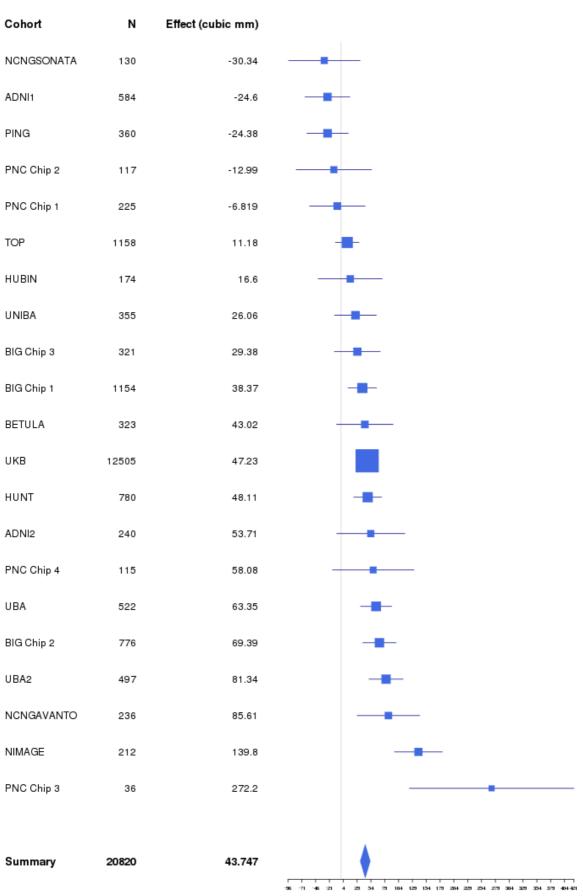
subiculum_IncWhole 6:148056480

Whole_hippocampus 2:162845565

Whole_hippocampus 3:141759380

Cohort	N	Effect (cubic mm)	
PNC Chip 4	115	-82.89	
HUBIN	174	-67.61	
PNC Chip 2	117	-32.59	
ADNI2	240	-23.54	
BIG Chip 1	1150	-9.24	
BETULA	323	-4.933	
HUNT	780	-4.264	-
UBA2	497	6.038	
NCNGSONATA	130	8.184	
PNC Chip 1	225	21.34	
UBA	522	22.36	
ADNI1	584	24.12	
ТОР	1158	31.66	
NCNGAVANTO	236	37.96	
UKB	12536	45.15	
UNIBA	355	50.77	
BIG Chip 2	776	53.96	
PING	360	59.7	
BIG Chip 3	322	88.25	
NIMAGE	212	94.01	
PNC Chip 3	36	321.7	
Summary	20848	36.184	•
			·170-140-120 ·27 · 27 · 27 · 27 · 27 · 27 · 27 · 2

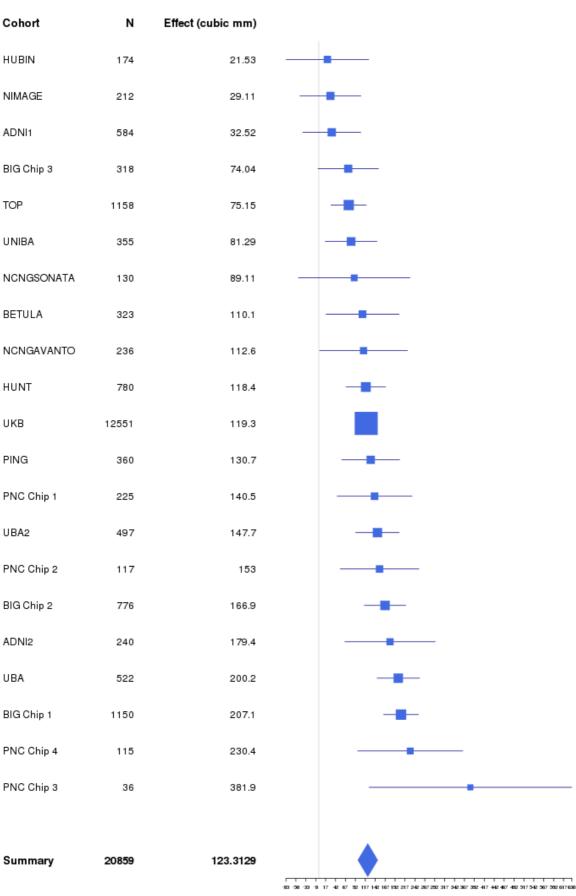
Whole_hippocampus 5:66112715


Cohort N Effect (cubic mm) HUBIN 174 -152.9 PNC Chip 3 36 -45.03 NCNGSONATA 130 -39.74 PING 360 -21.35 UBA2 497 -5.631 BIG Chip 3 323 9.289 TOP 1158 9.552 NIMAGE 212 10.45 ADNI1 584 18.99 UNIBA 355 24.19 BIG Chip 1 1156 38.1	
PNC Chip 3 36 -45.03 NCNGSONATA 130 -39.74 PING 360 -21.35 UBA2 497 -5.631 BIG Chip 3 323 9.289 TOP 1158 9.552 NIMAGE 212 10.45 UNIBA 355 24.19 BIG Chip 1 1156 38.1	
NCNGSONATA 130 -39.74 PING 360 -21.35 UBA2 497 -5.631 BIG Chip 3 323 9.289 TOP 1158 9.552 NIMAGE 212 10.45 ADNI1 584 18.99 UNIBA 355 24.19 BIG Chip 1 1156 38.1	
PING 360 -21.35 UBA2 497 -5.631 BIG Chip 3 323 9.289 TOP 1158 9.552 NIMAGE 212 10.45 ADNI1 584 18.99 UNIBA 355 24.19 BIG Chip 1 1156 38.1	
PING 360 -21.35 UBA2 497 -5.631 BIG Chip 3 323 9.289 TOP 1158 9.552 NIMAGE 212 10.45 ADNI1 584 18.99 UNIBA 355 24.19 BIG Chip 1 1156 38.1	
UBA2 497 -5.631 BIG Chip 3 323 9.289 TOP 1158 9.552 NIMAGE 212 10.45 ADNI1 584 18.99 UNIBA 355 24.19 BIG Chip 1 1156 38.1	_
BIG Chip 3 323 9.289 TOP 1158 9.552 NIMAGE 212 10.45 ADNI1 584 18.99 UNIBA 355 24.19 BIG Chip 1 1156 38.1	
TOP 1158 9.552 NIMAGE 212 10.45 ADNI1 584 18.99 UNIBA 355 24.19 BIG Chip 1 1156 38.1	_
NIMAGE 212 10.45 ADNI1 584 18.99 UNIBA 355 24.19 BIG Chip 1 1156 38.1	—
ADNI1 584 18.99 UNIBA 355 24.19 BIG Chip 1 1156 38.1	-
ADNI1 584 18.99 UNIBA 355 24.19 BIG Chip 1 1156 38.1	_
UNIBA 355 24.19 -	
BIG Chip 1 1156 38.1 -	
	-
BIG Chip 2 777 39.24 -	
HUNT 780 44.07	
UKB 12535 45.01	
BETULA 323 45.32	-
UBA 522 48.11	-
PNC Chip 2 117 58.81	
NCNGAVANTO 236 67.05 -	
PNC Chip 1 225 87.54	
ADNI2 240 123.7	
PNC Chip 4 115 150.9	-
Summary 20855 36.6334	
-212 -167 -162 -137 -112 -67 -62 -37 -12 13	

Whole_hippocampus 9:119245127

Cohort	N	Effect (cubic mm)	
PNC Chip 1	225	-193.7	
PNC Chip 3	36	-188	
HUBIN	174	-143.2	
PING	360	-108.5	
BIG Chip 2	776	-88.98	
NIMAGE	212	-86.95	
BETULA	323	-77.89	
BIG Chip 3	323	-74.95	
BIG Chip 1	1156	-59.16	-=-
NCNGSONATA	130	-53.58	
PNC Chip 2	117	-53.21	
HUNT	780	-48.05	
UBA2	497	-45.7	
ADNI1	584	-39.4	
UKB	12544	-37.78	
ТОР	1158	-26.47	-
UBA	522	-18.61	
UNIBA	355	3.279	-
PNC Chip 4	115	51.29	_
NCNGAVANTO	236	128.9	
ADNI2	240	135.8	
Summary	20863	-42.4218	•

Whole_hippocampus 10:126474200


Whole_hippocampus 12:4007898

		intere_inpper	
Cohort	Ν	Effect (cubic mm)	
PNC Chip 4	115	-113.9	
BETULA	323	-86.08	_
PNC Chip 1	225	-77.81	
UBA2	497	-66.67	
ADNI2	240	-57.3	
BIG Chip 1	1141	-42.55	
ИКВ	12532	-41.11	
NCNGAVANTO	236	-36.41	
BIG Chip 3	323	-36.4	
PNC Chip 2	117	-33.95	
HUNT	780	-28.27	
PING	360	-27.1	
HUBIN	174	-14.76	
NCNGSONATA	130	-9.169	
BIG Chip 2	779	-0.08168	
NIMAGE	212	0.09667	
UBA	522	4.529	
ADNI1	584	25.37	
UNIBA	355	27.12	
PNC Chip 3	36	90.86	
Summary	19681	-35.5976	

Whole_hippocampus 12:65765944

Cohort	N	Effect (cubic mm)	
PNC Chip 3	36	-187.8	
PNC Chip 4	115	-157.1	•
BETULA	323	-141.7	
PNC Chip 2	117	-112.7	
UNIBA	355	-101.7	_
NCNGAVANTO	236	-96.52	_
ADNI1	584	-93.05	_
BIG Chip 2	779	-90.08	
NCNGSONATA	130	-89.85	
HUNT	780	-89.03	
NIMAGE	212	-86.62	_
ТОР	1158	-62.93	
BIG Chip 1	1156	-59.81	
ИКВ	12525	-53.63	
BIG Chip 3	323	-50.39	
HUBIN	174	-48.4	
PING	360	-41.55	
ADNI2	240	-30.58	
UBA2	497	-12.89	
PNC Chip 1	225	-4.378	_
UBA	522	-2.161	
Summary	20847	-58.0823	

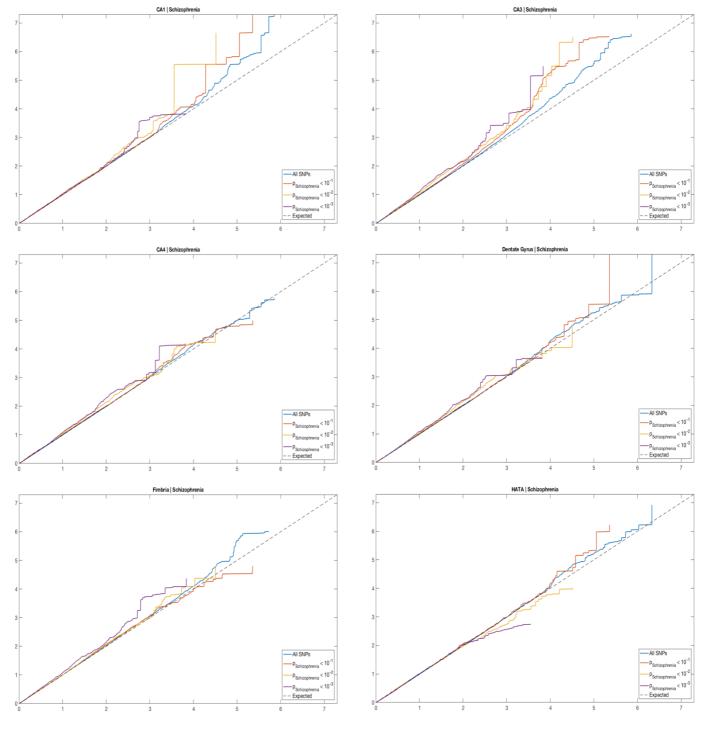
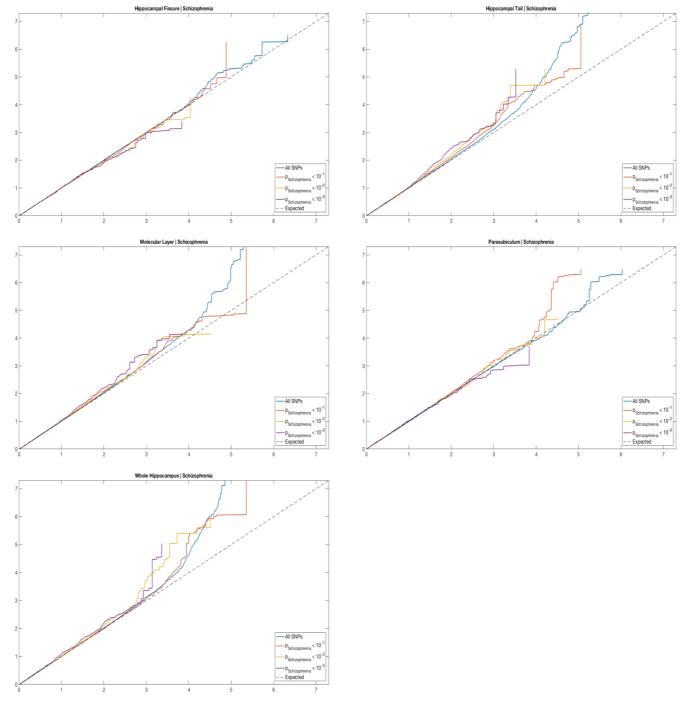
Whole_hippocampus 12:117323367

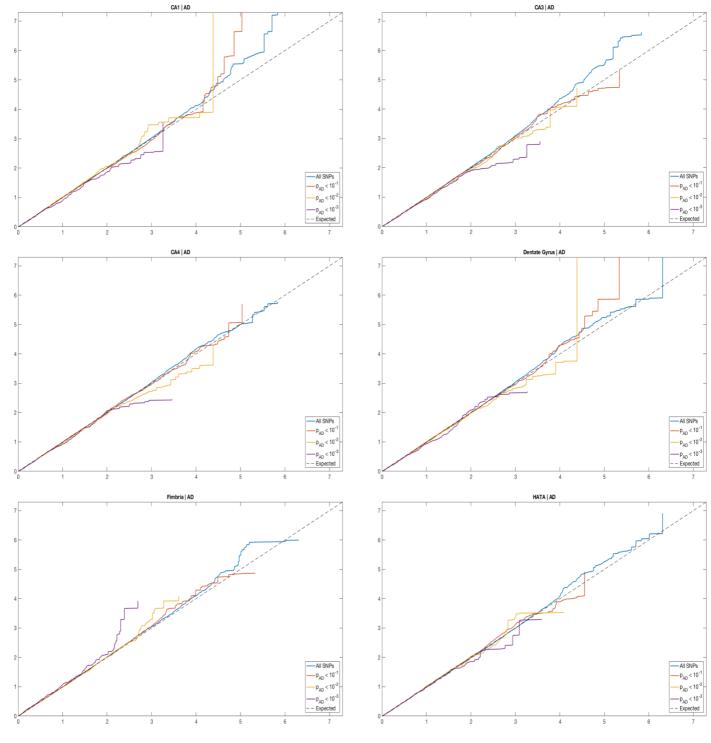
Linkage disequilibrium score regression (LDSR)

LDSR utilizes the fact that the effect size of any given SNP relates to its LD structure with causal variants, whereas inflation of test statistics by cryptic relatedness or population stratification will be independent of LD. As such, it can isolate true polygenic signals, expressed in an 'LD Score'. Cross-trait LDSR builds on this by taking the product of Z-scores from two traits to estimate their genetic overlap. Note that this technique is robust against sample overlap, which is accounted for by the intercept. For more information, please see Bulik-Sullivan *et al.* (22).

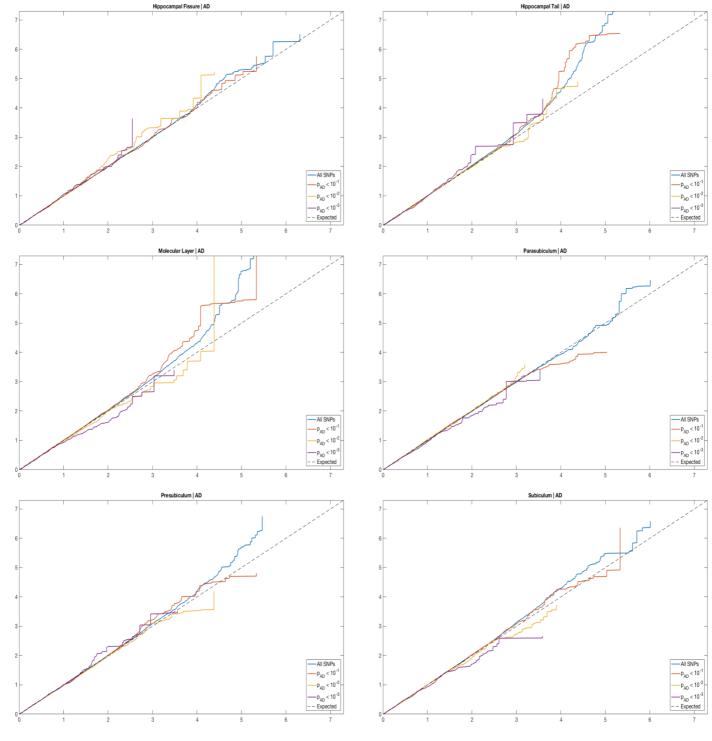
Conditional/conjunction false discovery rate (FDR)

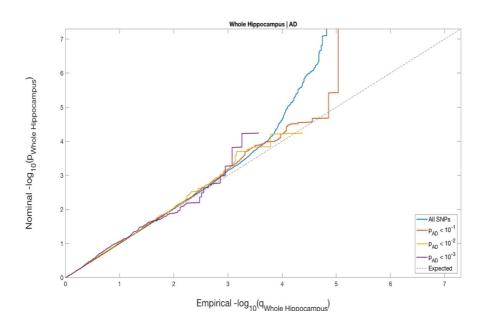
Conditional FDR re-ranks test statistics of SNPs for one trait (here, hippocampal subfield volumes) based on their strength of association with a second trait (here, AD and schizophrenia). Genetic overlap can be visualized through conditional QQ-plots, plotting the observed distribution of test statistics from the first trait thresholded at increasing levels of association with the second trait (here we used p<.1, p<.01, and p<.001). Pleiotropic enrichment will show up as increasing deflections from the null distribution, see Figure 3 in the main text and the figures below. Conjunctional FDR can identify specific shared variants, by selecting those SNPs that have a conditional FDR value below .05 on both traits. The strength of these techniques, compared to LDSR, lies in the fact that overlap between the traits is detected regardless of the direction of allelic effects, which could be mixed. For more information, please see Andreassen *et al.* (23,24).


Figure S5. Conditional QQ plots, conditioning the subfields genome-wide significance statistics on those for schizophrenia and Alzheimer's disease.

Empirical -log₁₀(q _{Subfield})


Nominal -log₁₀(p subfield)


Empirical -log₁₀(q _{Subfield})

Empirical -log₁₀(q _{Subfield})

Empirical -log₁₀(q _{Subfield})

- 1. Weiner MW, Aisen PS, Jack CR, Jagust WJ, Trojanowski JQ, Shaw L, et al. The Alzheimer's disease neuroimaging initiative: progress report and future plans. Alzheimer's Dement J Alzheimer's Assoc. 2010;6(3):202–11.
- 2. Wyman BT, Harvey DJ, Crawford K, Bernstein MA, Carmichael O, Cole PE, et al. Standardization of analysis sets for reporting results from ADNI MRI data. Alzheimer's Dement J Alzheimer's Assoc. 2013;9(3):332–7.
- 3. Nilsson L-G, Adolfsson R, Bäckman L, de Frias CM, Molander B, Nyberg L. Betula: A prospective cohort study on memory, health and aging. Aging Neuropsychol Cogn. 2004;11(2–3):134–48.
- 4. Guadalupe T, Zwiers MP, Teumer A, Wittfeld K, Vasquez AA, Hoogman M, et al. Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets. Hum Brain Mapp. 2014 Jul;35(7):3277–89.
- 5. Doan NT, Kaufmann T, Bettella F, Jørgensen KN, Brandt CL, Moberget T, et al. Distinct multivariate brain morphological patterns and their added predictive value with cognitive and polygenic risk scores in mental disorders. NeuroImage Clin. 2017;
- 6. Haukvik UK, Schaer M, Nesvåg R, McNeil T, Hartberg CB, Jönsson EG, et al. Cortical folding in Broca's area relates to obstetric complications in schizophrenia patients and healthy controls. Psychol Med. 2012;42(6):1329–37.
- 7. Håberg AK, Hammer TA, Kvistad KA, Rydland J, Müller TB, Eikenes L, et al. Incidental intracranial findings and their clinical impact; The HUNT MRI Study in a general population of 1006 participants between 50-66 years. PLoS One. 2016;11(3):e0151080.
- 8. Holmen TL, Bratberg G, Krokstad S, Langhammer A, Hveem K, Midthjell K, et al. Cohort profile of the Young-HUNT Study, Norway: a population-based study of adolescents. Int J Epidemiol. 2013;43(2):536–44.
- 9. Espeseth T, Christoforou A, Lundervold AJ, Steen VM, Le Hellard S, Reinvang I. Imaging and cognitive genetics: the Norwegian Cognitive NeuroGenetics sample. Twin Res Hum Genet. 2012;15(3):442–52.
- von Rhein D, Mennes M, van Ewijk H, Groenman AP, Zwiers MP, Oosterlaan J, et al. The NeuroIMAGE study: a prospective phenotypic, cognitive, genetic and MRI study in children with attention-deficit/hyperactivity disorder. Design and descriptives. Eur Child Adolesc Psychiatry [Internet]. 2014; Available from: http://download.springer.com/static/pdf/658/art%253A10.1007%252Fs00787-014-0573-4.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs00787-014-0573-4&token2=exp=1447244083~acl=%2Fstatic%2Fpdf%2F658%2Fart%25253A10.1007%25252Fs00787-014-057
- Jernigan TL, Brown TT, Hagler DJ, Akshoomoff N, Bartsch H, Newman E, et al. The Pediatric Imaging, Neurocognition, and Genetics (PING) Data Repository. Neuroimage [Internet]. 2016 Jan [cited 2017 Jul 3];124:1149–54. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1053811915003572
- 12. Satterthwaite TD, Connolly JJ, Ruparel K, Calkins ME, Jackson C, Elliott MA, et al. The Philadelphia Neurodevelopmental Cohort: a publicly available resource for the study of normal and abnormal brain development in youth. Neuroimage. 2016;124:1115–9.
- 13. Satterthwaite TD, Elliott MA, Ruparel K, Loughead J, Prabhakaran K, Calkins ME, et al. Neuroimaging of the Philadelphia neurodevelopmental cohort. Neuroimage. 2014;86:544–53.
- 14. Dørum ES, Alnæs D, Kaufmann T, Richard G, Lund MJ, Tønnesen S, et al. Age-related differences in brain network activation and co-activation during multiple object tracking. Brain Behav. 2016;6(11).
- Kaufmann T, Alnæs D, Doan NT, Brandt CL, Andreassen OA, Westlye LT. Delayed stabilization and individualization in connectome development are related to psychiatric disorders. Nat Neurosci. 2017;20(4):513–5.
- 16. Brandt CL, Kaufmann T, Agartz I, Hugdahl K, Jensen J, Ueland T, et al. Cognitive effort and schizophrenia modulate large-scale functional brain connectivity. Schizophr Bull. 2015;41(6):1360–9.
- Skåtun KC, Kaufmann T, Tønnesen S, Biele G, Melle I, Agartz I, et al. Global brain connectivity alterations in patients with schizophrenia and bipolar spectrum disorders. J psychiatry Neurosci JPN. 2016;41(5):331.
- 18. Kaufmann T, Skatun KC, Alnaes D, Doan NT, Duff EP, Tonnesen S, et al. Disintegration of Sensorimotor Brain Networks in Schizophrenia. Schizophr Bull. 2015 Nov;41(6):1326–35.
- 19. Heck A, Fastenrath M, Ackermann S, Auschra B, Bickel H, Coynel D, et al. Converging genetic and functional brain imaging evidence links neuronal excitability to working memory, psychiatric disease, and brain activity. Neuron [Internet]. 2014 Mar 5;81(5):1203–13. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4205276/
- 20. Alfaro-Almagro F, Jenkinson M, Bangerter NK, Andersson JLR, Griffanti L, Douaud G, et al. Image

processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. Neuroimage. 2018;166:400–24.

- 21. Pergola G, Trizio S, Di Carlo P, Taurisano P, Mancini M, Amoroso N, et al. Grey matter volume patterns in thalamic nuclei are associated with familial risk for schizophrenia. Schizophr Res. 2017;180:13–20.
- 22. Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh P-R, et al. An atlas of genetic correlations across human diseases and traits. Nat Genet. 2015;47(11):1236.
- 23. Andreassen OA, Thompson WK, Dale AM. Boosting the power of schizophrenia genetics by leveraging new statistical tools. Schizophr Bull. 2013;40(1):13–7.
- 24. Andreassen OA, Thompson WK, Schork AJ, Ripke S, Mattingsdal M, Kelsoe JR, et al. Improved detection of common variants associated with schizophrenia and bipolar disorder using pleiotropy-informed conditional false discovery rate. PLoS Genet. 2013;9(4):e1003455.