
Supplemental	Information	
	
Cohort	information	
	
In	this	study,	we	made	use	of	in-house	samples,	as	well	as	data	gathered	through	collaborations	and	data	sharing	
platforms.	 In	 total,	 16	 cohorts	 contributed	 data,	 which	 are	 listed	 in	 Table	 S1	 together	 with	 demographic	
information.	 Table	 S2	 lists	 the	 number	 of	 subjects	 with	 brain	 disorder	 diagnoses	 per	 cohort.	 Table	 S3	 lists	
additional	information	on	each	of	the	cohorts:	their	source,	comments	(including	funding	acknowledgements),	
and	references	that	can	be	consulted	for	detailed	descriptions	of	data	gathering	characteristics.	
	
Table	S1.	Demographic	information	and	total	hippocampal	volume	per	cohort	included	in	the	analyses	

Cohort	 Sample	size	 Sex,	%	male	 Age	in	years	(SD)	 Hippocampal	volume	in	
cubic	millimeter	(SD)	

PING	 413	 51.8	 12.1	(4.9)	 7054	(724)	
PNC	 514	 50.6	 15.4	(3.6)	 7223	(667)	

NIMAGE	 223	 58.7	 17.7	(3.6)	 6875	(607)	
UBA	 1024	 34.9	 22.5	(3.3)	 7094	(652)	
BIG	 2318	 47.8	 25.5	(10.1)	 7398	(738)	

UNIBA	 361	 56.5	 28.4	(8.3)	 6879	(643)	
TOP	 1130	 53.1	 32.4	(10.2)	 7289	(733)	

HUBIN	 174	 69.0	 42.1	(8.1)	 7321	(712)	
DEMGEN	 40	 40.0	 44.9	(22.1)	 7222	(735)	
NCNG	 361	 32.4	 52.2	(17.1)	 6822	(766)	
UKBB	 12634	 48.1	 55.9	(7.5)	 6941	(728)	

STROKEMRI	 117	 41.0	 57.9	(15.5)	 6760	(745)	
HUNT	 783	 46.5	 58.9	(4.2)	 6674	(677)	
BETULA	 328	 47.9	 62.6	(13.3)	 6675	(752)	
ADNI2	 253	 56.9	 72.9	(7.1)	 6169	(916)	
ADNI1	 624	 57.9	 75.5	(6.7)	 5583	(1004)	
All	 21297	 48.3	 47.8	(17.5)	 6961	(798)	

SD=standard	deviation	

	
	 	



Table	S2.	Brain	disorder	diagnoses	per	cohort	

Cohort	 ADHD	 BD	 Dementia	 HC	 MCI	 MDD	 Prodr.	
Subthr.	
ADHD	 SZ	 SZ-SIB	

SZ	BD	
mix	

ADNI1	 0	 0	 137	 179	 308	 0	 0	 0	 0	 0	 0	

ADNI2	 0	 0	 20	 106	 127	 0	 0	 0	 0	 0	 0	

BETULA	 0	 0	 0	 328	 0	 0	 0	 0	 0	 0	 0	

BIG	 0	 0	 0	 2318	 0	 0	 0	 0	 0	 0	 0	

DEMGEN	 0	 0	 0	 40	 0	 0	 0	 0	 0	 0	 0	

HUBIN	 0	 0	 0	 94	 0	 0	 0	 0	 80	 0	 0	

HUNT	 0	 0	 0	 783	 0	 0	 0	 0	 0	 0	 0	

NCNG	 0	 0	 0	 361	 0	 0	 0	 0	 0	 0	 0	

NIMAGE	 100	 0	 0	 89	 0	 0	 0	 34	 0	 0	 0	

PING	 0	 0	 0	 413	 0	 0	 0	 0	 0	 0	 0	

PNC	 0	 0	 0	 514	 0	 0	 0	 0	 0	 0	 0	

STROKEMRI	 0	 0	 0	 117	 0	 0	 0	 0	 0	 0	 0	

TOP	 0	 211	 0	 563	 0	 0	 18	 0	 233	 0	 105	

UBA	 0	 0	 0	 1024	 0	 0	 0	 0	 0	 0	 0	

UKBB	 0	 0	 0	 12634	 0	 0	 0	 0	 0	 0	 0	
UNIBA	 0	 0	 0	 270	 0	 2	 0	 0	 72	 17	 0	

ADHD=attention-deficit/hyperactivity	disorder,	BD=bipolar	disorder,	HC=healthy	controls,	MCI=mild	cognitive	
impairment,	MDD=major	depressive	disorder,	Prodr.=prodromal	psychosis,	subtrh.ADHD=	subthreshold	ADHD,	
SZ=schizophrenia,	SZ-SIB=SZ	siblings	 	



	
Table	S3.	Cohorts	included	in	the	current	study	
Cohort	 Source	 Comment	 Reference	
ADNI1	 http://adni.loni.usc.edu/	 Data	 collection	 and	 sharing	 for	 this	 project	 was	

funded	 by	 the	 Alzheimer's	 Disease	 Neuroimaging	
Initiative	(ADNI)	(National	Institutes	of	Health	Grant	
U01	 AG024904)	 and	 DOD	 ADNI	 (Department	 of	
Defense	award	number	W81XWH-12-2-0012).	ADNI	
is	 funded	 by	 the	 National	 Institute	 on	 Aging,	 the	
National	 Institute	 of	 Biomedical	 Imaging	 and	
Bioengineering,	 and	 through	 generous	
contributions	 from	 the	 following:	 AbbVie,	
Alzheimer’s	Association;	Alzheimer’s	Drug	Discovery	
Foundation;	 Araclon	 Biotech;	 BioClinica,	 Inc.;	
Biogen;	 Bristol-Myers	 Squibb	 Company;	 CereSpir,	
Inc.;	Cogstate;	Eisai	Inc.;	Elan	Pharmaceuticals,	Inc.;	
Eli	Lilly	and	Company;	EuroImmun;	F.	Hoffmann-La	
Roche	 Ltd	 and	 its	 affiliated	 company	 Genentech,	
Inc.;	 Fujirebio;	 GE	 Healthcare;	 IXICO	 Ltd.;	 Janssen	
Alzheimer	 Immunotherapy	 Research	 &	
Development,	 LLC.;	 Johnson	 &	 Johnson	
Pharmaceutical	 Research	 &	 Development	 LLC.;	
Lumosity;	Lundbeck;	Merck	&	Co.,	Inc.;	Meso	Scale	
Diagnostics,	 LLC.;	 NeuroRx	 Research;	 Neurotrack	
Technologies;	 Novartis	 Pharmaceuticals	
Corporation;	 Pfizer	 Inc.;	 Piramal	 Imaging;	 Servier;	
Takeda	 Pharmaceutical	 Company;	 and	 Transition	
Therapeutics.	 The	 Canadian	 Institutes	 of	 Health	
Research	is	providing	funds	to	support	ADNI	clinical	
sites	 in	 Canada.	 Private	 sector	 contributions	 are	
facilitated	 by	 the	 Foundation	 for	 the	 National	
Institutes	 of	 Health	 (www.fnih.org).	 The	 grantee	
organization	is	the	Northern	California	Institute	for	
Research	 and	 Education,	 and	 the	 study	 is	
coordinated	 by	 the	 Alzheimer’s	 Therapeutic	
Research	 Institute	 at	 the	 University	 of	 Southern	
California.	 ADNI	 data	 are	 disseminated	 by	 the	
Laboratory	 for	Neuro	 Imaging	 at	 the	University	 of	
Southern	California.	

(1,2)	
ADNI2	 http://adni.loni.usc.edu/	

BETULA	 Authors	 Betula	 was	 supported	 by	 a	 Wallenberg	 Scholar	
Grant	(KAW)	

(3)	

BIG	 Authors	 This	 study	 used	 the	 BIG	 database,	 which	 was	
established	 in	 Nijmegen	 in	 2007.	 This	 resource	 is	
now	 part	 of	 Cognomics,	 a	 joint	 initiative	 by	
researchers	 of	 the	 Donders	 Centre	 for	 Cognitive	
Neuroimaging,	 the	Human	Genetics	 and	 Cognitive	
Neuroscience	 departments	 of	 the	 Radboud	
University	 Medical	 Centre,	 and	 the	 Max	 Planck	
Institute	 for	 Psycholinguistics.	 The	 Cognomics	
Initiative	 is	 supported	 by	 the	 participating	
departments	 and	 centres	 and	 by	 external	 grants,	
that	is,	the	Biobanking	and	Biomolecular	Resources	
Research	Infra-structure	(Netherlands)	(BBMRI-NL),	
the	Hersenstichting	Nederland,	and	the	Netherlands	
Organisation	 for	 Scientific	 Research	 (NWO).	 The	
research	 leading	 to	 these	 results	 also	 received	

(4)	



funding	from	the	European	CommunityÕs	Seventh	
Framework	 Programme	 (FP7/2007Ð2	 013)	 under	
grant	 agreements	 nû	 602805	 (Aggresso-type),	 nû	
278948	 (TACTICS),	 and	 nû	 602450	 (IMAGEMEND),	
and	from	the	European	CommunityÕs	Horizon	2020	
Programme	 (H2020/2014Ð2020)	 under	 grant	
agreement	nû	643051	(MiND).In	addition,	the	work	
was	 supported	 by	 a	 grant	 for	 the	 ENIGMA	
Consortium	(grant	number	U54	EB020403)	from	the	
BD2K	Initiative	of	a	cross-NIH	partnership.	Barbara	
Franke	is	supported	by	a	Vici	grant	from	NWO	(grant	
016-130-669).	 The	 Cognomics	 Initiative	 Resource,	
the	 Brain	 Imaging	 Genetics	 (BIG)	 sample	
(http://www.cognomics.nl	),	stems	from	an	ongoing	
study,	which	 started	 in	 2007.	 The	BIG	 sample	 is	 a	
collection	of	healthy	volunteers	aged	18–40	years,	
who	participated	 in	 studies	at	 the	Donders	Centre	
for	Cognitive	Neuroimaging	(DCCN)	of	the	Radboud	
University	in	Nijmegen.	Subjects	were	of	Caucasian	
descent	 with	 no	 self-reported	 neurological	 or	
psychiatric	 history,	 and	 mainly	 high	 level	 of	
education	 (80%	 with	 bachelor	 student	 level	 or	
higher).	 All	 participants	 gave	 written	 informed	
consent	 and	 the	 study	was	 approved	 by	 the	 local	
ethics	committee	(CMO	Region	Arnhem-Nijmegen,	
the	 Netherlands).	 The	 self-reported	 healthy	
individuals	 underwent	 anatomical	 MRI	 scans,	
usually	 as	 part	 of	 their	 involvement	 in	 diverse	
smaller-scale	 studies	 at	 the	 DCCN.	 Structural	 T1-
weighted	 images	 were	 acquired	 using	 MPRAGE	
sequence	(1.0x1.0	x1.0	mm3	voxel	size)	with	a	1.5T	
scanner	 (Sonata	 and	 Avanto,	 Siemens,	 Erlangen,	
Germany)	 or	 a	 3T	 scanner	 (Trio	 and	 TrioTim,	
Siemens,	Erlangen,	Germany).	

DEMGEN	 Authors	 	 (5)	
HUBIN	 Authors	 This	study	was	supported	by	the	Swedish	Research	

Council	 (2006-2992,	 2006-986,	 K2007-62X-15077-
04-1,	 2008-2167,	 K2008-62P-20597-01-3.	 K2010-
62X-15078-07-2,	 K2012-61X-15078-09-3,	 2017-
00949),	the	regional	agreement	on	medical	training	
and	 clinical	 research	 between	 Stockholm	 County	
Council	and	the	Karolinska	Institutet,	the	Knut	and	
Alice	 Wallenberg	 Foundation,	 and	 the	 HUBIN	
project	

(6)	

HUNT	 https://www.ntnu.edu/hunt	 The	HUNT	Study	 is	a	collaboration	between	HUNT	
Research	 Centre,	 Faculty	 of	 Medicine	 and	 Health	
Sciences,	 Norwegian	 University	 of	 Science	 and	
Technology	 (NTNU),	 Nord-Trøndelag	 County	
Council,	Central	Norway	Regional	Health	Authority,	
and	the	Norwegian	Institute	of	Public	Health.	HUNT-
MRI	and	the	genetic	analysis	were	funded	by	grants	
from	 the	 Liaison	 Committee	 between	 the	 Central	
Norway	 Regional	 Health	 Authority	 and	 NTNU	 to	
principal	 investigator	 Asta	 Håberg,	 and	 the	
Norwegian	 National	 Advisory	 Unit	 for	 functional	
MRI.	 We	 thank	 the	 HUNT	 MRI	 participants,	 MRI	

(7,8)	



technicians	 and	 the	 Department	 of	 Diagnostic	
Imaging	at	Levanger	Hospital,	Professor	Lars	 Jacob	
Stovner	 (NTNU)	 and	 the	 administrative	 staff	 at	
HUNT.	

NCNG	 Authors	 The	sample	collection	was	supported	by	grants	from	
the	Bergen	Research	Foundation	and	the	University	
of	 Bergen,	 the	 Dr	 Einar	 Martens	 Fund,	 the	 K.G.	
Jebsen	 Foundation,	 the	 Research	 Council	 of	
Norway,	to	SLH,	VMS,	AJL,	and	TE.	The	authors	thank	
Dr.	 Eike	 Wehling	 for	 recruiting	 participants	 in	
Bergen,	 and	 Professor	 Jonn-Terje	 Geitung	 and	
Haraldplass	 Deaconess	 Hospital	 for	 access	 to	 the	
MRI	 facility.	 Additional	 support	 by	 RCN	 grants	
177458/V50	and	231286/F20	

(9)	

NIMAGE	 Authors	 This	project	was	supported	by	grants	from	National	
Institutes	 of	 Health	 (grant	 R01MH62873	 to	 SV	
Faraone)	 for	 initial	 sample	 recruitment,	 and	 from	
NWO	Large	Investment	(grant	1750102007010	to	JK	
Buitelaar),	 NWO	 Brain	 &	 Cognition	 (grant	 433-09-
242	 to	 JK	 Buitelaar),	 ZonMW	 Grant	 60-60600-97-
193,	 and	 grants	 from	Radboud	University	Medical	
Center,	 University	 Medical	 Center	 Groningen,	
Accare,	 and	 VU	 University	 Amsterdam	 for	
subsequent	 assessment	 waves.	 NeuroIMAGE	 also	
receives	 funding	 from	 the	 European	 Community’s	
Seventh	Framework	Programme	(FP7/2007	–	2013)	
under	grant	agreements	n°	602805	(Aggressotype),	
n°	278948	(TACTICS),	and	n°	602450	(IMAGEMEND),	
and	from	the	European	Community’s	Horizon	2020	
Programme	 (H2020/2014	 –	 2020)	 under	 grant	
agreements	 n°	 643051	 (MiND)	 and	 n°	 667302	
(CoCA).	

(10)	

PING	 http://pingstudy.ucsd.edu/	 Data	 used	 in	 the	 preparation	 of	 this	 article	 were	
obtained	 from	 the	 Pediatric	 Imaging,	
Neurocognition	and	Genetics	(PING)	Study	database	
(http://ping.chd.ucsd.edu/).	 PING	was	 launched	 in	
2009	by	the	National	Institute	on	Drug	Abuse	(NIDA)	
and	 the	 Eunice	 Kennedy	 Shriver	National	 Institute	
Of	Child	Health	&	Human	Development	(NICHD)	as	
a	 2-year	 project	 of	 the	 American	 Recovery	 and	
Reinvestment	 Act.	 The	 primary	 goal	 of	 PING	 has	
been	 to	 create	 a	 data	 resource	 of	 highly	
standardized	 and	 carefully	 curated	 magnetic	
resonance	 imaging	 (MRI)	 data,	 comprehensive	
genotyping	 data,	 and	 developmental	 and	
neuropsychological	assessments	 for	a	 large	cohort	
of	 developing	 children	 aged	 3	 to	 20	 years.	 The	
scientific	 aim	 of	 the	 project	 is,	 by	 openly	 sharing	
these	data,	to	amplify	the	power	and	productivity	of	
investigations	 of	 healthy	 and	 disordered	
development	 in	 children,	 and	 to	 increase	
understanding	 of	 the	 origins	 of	 variation	 in	
neurobehavioral	 phenotypes.	 For	 up-to-date	
information,	see	http://ping.chd.ucsd.edu/."	
Data	 collection	 and	 sharing	 for	 this	 project	 was	
funded	 by	 the	 Pediatric	 Imaging,	 Neurocognition	
and	 Genetics	 Study	 (PING)	 (National	 Institutes	 of	

(11)	



Health	Grant	RC2DA029475).	PING	is	funded	by	the	
National	 Institute	 on	 Drug	 Abuse	 and	 the	 Eunice	
Kennedy	Shriver	National	Institute	of	Child	Health	&	
Human	Development.	PING	data	are	disseminated	
by	the	PING	Coordinating	Center	at	the	Center	 for	
Human	Development,	University	 of	 California,	 San	
Diego.	

PNC	 https://www.med.upenn.edu	 Support	 for	 the	 collection	 of	 the	 data	 sets	 was	
provided	by	grant	RC2MH089983	awarded	to	R.	Gur	
and	 RC2MH089924	 awarded	 to	 H.	 Hakonarson.	
Subjects	 were	 recruited	 through	 the	 Center	 for	
Applied	 Genomics	 at	 The	 Children’s	 Hospital	 in	
Philadelphia.	

(12,13)	

STROKEMRI/	
MOT	

Authors	 Supported	 by	 the	 Research	 Council	 of	 Norway	
(249795,	 248238),	 the	 South-Eastern	 Norway	
Regional	 Health	 Authority	 (2014097,	 2015044,	
2015073,	 2016083),	 and	 the	 Norwegian	
ExtraFoundation	 for	 Health	 and	 Rehabilitation	
(2015/FO5146).	

(14)	

TOP	 Authors	 The	 work	 was	 funded	 by	 the	 Research	 Council	 of	
Norway	 (213837,	 223273,	 204966/F20,	 213694,	
229129,	 249795/F20,	 248778),	 the	 South-Eastern	
Norway	Regional	Health	Authority	(2013-123,	2014-
097,	 2015-073,	 #2017-112)	 and	 Stiftelsen	 Kristian	
Gerhard	Jebsen.	

(15–18)	

UBA	 Authors	 European	 Community‘s	 Seventh	 Framework	
Programme	 (FP7/2007–2013)	 grant	 agreement	
#602450	 (IMAGEMEND);	 Swiss	 National	 Science	
Foundation	(grants	163434,	147570	and	159740)	

(19)	

UKBB	

https://www.ukbiobank.ac.uk/	

All	 subjects	 with	 a	 primary	 or	 secondary	 ICD-10	
diagnosis	 with	 a	 mental	 or	 neurological	 disorder	
were	excluded	prior	 to	analysis	and	the	remaining	
subjects	included	as	healthy	controls.	The	used	UK	
Biobank	project	ID	number	is	#27412.	

(20)	

UNIBA	 Authors	 This	work	was	supported	by	a	“Capitale	Umano	ad	
Alta	Qualificazione”	grant	by	Fondazione	Con	Il	Sud	
awarded	 to	 Alessandro	 Bertolino	 and	 by	 a	
Hoffmann-La	Roche	Collaboration	Grant	awarded	to	
Giulio	 Pergola.	 This	 project	 has	 received	 funding	
from	 the	 European	 Union	 Seventh	 Framework	
Programme	 for	 research,	 technological	
development	 and	 demonstration	 under	 grant	
agreement	 no.	 602450	 (IMAGEMEND).	 This	 paper	
reflects	 only	 the	 author's	 views	 and	 the	 European	
Union	is	not	liable	for	any	use	that	may	be	made	of	
the	information	contained	therein.	

(21)	

	
	 	



Figure	S1.	Demographics	distributions	per	sample.	Figure	S1A	shows	the	distribution	of	age	in	years	(on	the	y-
axis)	per	cohort	(indicated	on	the	x-axis),	sorted	by	increasing	mean	age.	Figure	S1B	visualizes	the	mean	
hippocampal	volume	in	cubic	millimeter	(on	the	y-axis)	per	cohort	(on	the	x-axis).		
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Figure	S2.	Volume	per	hippocampal	subfield.	The	y-axis	shows	the	volume	in	cubic	millimeter	per	subfield,	
indicated	on	the	x-axis.		The	lower,	middle	and	upper	lines	of	the	boxes	indicate	the	25th,	50th	(i.e.	median)	and	
75th	percentile,	respectively.	The	whiskers	indicate	+/-	1.5	times	interquartile	range	above/below	the	quartiles.	
	
		
	 	



Image	preprocessing	and	quality	control	
Raw	data	 for	all	 individuals	was	 stored	and	analysed	 locally	at	 the	University	of	Oslo,	where	we	deployed	a	
harmonized	analysis	protocol	applied	to	each	individual	subject	raw	data.	We	performed	automated	surface-
based	morphometry	and	subcortical	segmentation	using	Freesurfer	v5.3.	Several	of	the	samples	were	carefully	
screened	by	 trained	 research	personnel	 to	 identify	 segmentation	errors,	assess	 the	quality	of	each	subject’s	
brain	images	manually,	edit	segmentation	where	possible	and	to	exclude	bad	data.	However,	due	to	the	vast	
number	of	subjects	it	was	not	feasible	to	manually	check	the	segmentation	of	all	images.	We	therefore	deployed	
an	automated	quality	control	protocol	that	excluded	potential	outliers	based	on	global	data	quality	measures	
(in	addition	to	the	described	manual	exclusions).	In	brief,	we	regressed	age,	age²,	sex	and	scanning	site	from	
mean	cortical	thickness,	cortex	volume,	subcortical	gray	matter	volume	and	from	estimated	total	intracranial	
volume.	 Next,	 we	 z-standardized	 the	 resulting	 absolute	 of	 the	 residuals	 and	 excluded	 those	 subjects	 that	
exceeded	 pre-defined	 standard	 deviation	 (SD)	 thresholds.	 Before	 the	 analyses,	 we	 excluded	 individuals	
identified	by	manual	QC	as	well	as	those	exceeding	a	threshold	of	4	SD	on	any	of	the	regions	of	interest	or	ICV.	
	
Freesurfer	v5.3	vs	v6.0	
	
The	vast	majority	of	structural	MRI	scans	available	for	this	study	had	already	been	preprocessed	with	FreeSurfer	
v5.3.	Given	the	large	computational	cost	of	re-processing	these	scans	with	FreeSurfer	v6.0,	we	decided	to	stick	
with	this	version	and	run	the	v6.0	hippocampal	subfield	segmentation	on	top.	We	did	perform	a	sanity	check:	
First,	we	ran	the	recon-all	–all	stream	from	v6.0,	followed	by	the	v6.0	hippocampal	subfield	segmentation	for	
fifty	participants.	We	then	correlated	the	resulting	hippocampal	subfield	estimates	with	those	obtained	through	
the	combination	of	v5.3	for	the	main	segmentation	with	v6.0	for	the	subfield	segmentation	for	these	same	fifty	
subjects.	The	resulting	correlation	per	subfield	is	shown	below.	
	

Subfield	 Correlation	
Hippocampal	tail	 0.96	
Subiculum	 0.95	
CA1	 0.93	
Hippocampal	fissure	 0.94	
Presubiculum	 0.94	
Parasubiculum	 0.87	
Molecular	layer	 0.93	
Dentate	gyrus	 0.91	
CA3	 0.92	
CA4	 0.89	
Fimbria	 0.89	
HATA	 0.93	
Whole	hippocampus	 0.95	

	
	 	



Genotyping	and	quality	control	

Genetic	data	were	obtained	at	each	site	using	commercially	available	genotyping	platforms.	For	all	

cohorts	except	BIG	and	UK	Biobank	(UKBB),	we	carried	out	phasing	and	imputation	in-house	according	

to	protocols	 in	 line	with	those	applied	by	the	ENIGMA	consortium	(http://enigma.ini.usc.edu).	This	

consisted	 of	 standard	 pre-imputation	 quality	 controls,	 excluding	 markers	 exhibiting	 high	 rates	 of	

genotyping	missingness	(above	5%),	minor	allele	frequency	(MAF)	below	1%	or	deviating	from	Hardy	

Weinberg	equilibrium	(p<1*10-6).	Individuals	exhibiting	high	rates	of	genotyping	missingness	(above	

5%),	cryptic	relatedness	(pi-hat	above	18.5%)	or	genome-wide	heterozygosity	(outside	mean	±4	SD	of	

the	 sample)	were	 removed	 from	the	analyses.	We	 restricted	our	analyses	 to	 those	with	European	

ancestry	 as	 determined	 through	 multidimensional	 scaling	 (MDS).	 MACH	

(http://www.sph.umich.edu/csg/abecasis/MACH)	 was	 used	 to	 impute	 the	 genotypes	 onto	 the	

reference	haplotypes	from	the	1000	Genomes	Project	(build	37,	assembly	hg19).	After	 imputation,	

genetic	data	were	 further	quality	checked	 to	 remove	poorly	 imputed	SNPs	 (estimated	R2<0.3)	and	

those	with	low	MAF	(<5%)	or	failing	HWE	at	1x10-6.	For	UKBB	and	BIG,	we	used	the	provided	imputed	

data,	which	were	processed	with	established	protocols.24,25	We	 further	carried	out	 the	same	post-

imputation	QC	steps	as	described	for	the	other	samples.	

	 	



Table	S3.	Genome-wide	complex	trait	analysis	heritability	estimates,	with	full	test	statistics.	
	

ROI	 H2	 SE	 Pval	
Hippocampal	tail	 0.27	 0.02	 1.00e-16	
Subiculum	 0.22	 0.02	 1.00e-16	
CA1	 0.22	 0.02	 1.00e-16	
Hippocampal	fissure	 0.20	 0.02	 1.00e-16	
Presubiculum	 0.21	 0.02	 1.00e-16	
Parasubiculum	 0.14	 0.02	 1.00e-16	
Molecular	layer	HP	 0.21	 0.02	 1.00e-16	
Dentate	gyrus	 0.22	 0.02	 1.00e-16	
CA3	 0.24	 0.02	 1.00e-16	
CA4	 0.22	 0.02	 1.00e-16	
Fimbria	 0.17	 0.02	 1.00e-16	
HATA	 0.17	 0.02	 1.00e-16	
Whole	hippocampus	 0.23	 0.02	 1.00e-16	
Lateral	ventricle	 0.16	 0.02	 1.00e-16	
Cerebellum	 0.25	 0.02	 1.00e-16	
Thalamus	 0.20	 0.02	 1.00e-16	
Caudate	 0.25	 0.02	 1.00e-16	
Putamen	 0.22	 0.02	 1.00e-16	
Pallidum	 0.16	 0.02	 1.00e-16	
Brain	stem	 0.27	 0.02	 1.00e-16	
Amygdala	 0.17	 0.02	 1.00e-16	
Accumbens	 0.17	 0.02	 1.00e-16	
Frontal	 0.18	 0.02	 1.00e-16	
Parietal	 0.18	 0.02	 1.00e-16	
Temporal	 0.20	 0.02	 1.00e-16	
Occipital	 0.25	 0.02	 1.00e-16	
Cingulate	 0.15	 0.02	 1.00e-16	
Insular	 0.22	 0.02	 1.00e-16	

	
ROI=Region	of	interest,	H2=Heritability,	SE=Standard	error,	Pval=P-value	

	

	 	

Table	S4.	Genetic	correlation,	calculated	through	linkage	disequilibrum	score	regression	(LDSC),	of	Alzheimer’s	disease	and	
schizophrenia	diagnosis	with	each	of	the	subfields,	corrected	for	total	hippocampal	volume.		

Structure	
Alzheimer’s	disease	 Schizophrenia	

Rg	 SE	 P-value	 Rg	 SE	 P-value	
Whole	hippocampus	 -0.056	 0.103	 0.585	 -0.032	 0.04	 0.429	
Parasubiculum	 0.177	 0.102	 0.083	 -0.007	 0.046	 0.878	
Presubiculum	 0.143	 0.098	 0.145	 -0.001	 0.042	 0.977	
Subiculum	 0.071	 0.111	 0.519	 0.063	 0.048	 0.187	
CA1	 -0.088	 0.106	 0.403	 0.02	 0.05	 0.693	
CA3	 -0.081	 0.084	 0.334	 -0.054	 0.038	 0.153	
CA4	 -0.12	 0.097	 0.216	 -0.06	 0.045	 0.184	
Granule	cell	layer	DG	 -0.117	 0.096	 0.219	 -0.064	 0.045	 0.153	
HATA	 -0.188	 0.107	 0.079	 -0.067	 0.047	 0.152	
Fimbria	 -0.246	 0.13	 0.058	 -0.055	 0.052	 0.295	
Molecular	layer	DG	 -0.086	 0.107	 0.421	 0.011	 0.052	 0.829	
Hippocampal	fissure	 -0.149	 0.105	 0.153	 0.081	 0.052	 0.118	
Hippocampal	tail	 0.108	 0.092	 0.241	 0.037	 0.045	 0.405	

	



Figure	S3.	Manhattan	and	QQ	plots	for	whole	hippocampus	and	per	subfield.	For	the	manhattan	plots,	the	red	
line	indicates	the	adjusted	whole-genome	significance	threshold	(6.5x10-9	p-value),	the	blue	line	the	suggestive	
threshold	(1x10-5).	
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CA3	corrected	for	total	hippocampal	volume	

	 	



CA3	uncorrected	for	total	hippocampal	volume	

	 	



CA4	corrected	for	total	hippocampal	volume	

	 	



CA4	uncorrected	for	total	hippocampal	volume	

	 	



Fimbria	corrected	for	total	hippocampal	volume	

	 	



Fimbria	uncorrected	for	total	hippocampal	volume	

	 	



Granule	Cell	Layer	Dentate	Gyrus	corrected	for	total	hippocampal	volume	

	 	



Granule	Cell	Layer	Dentate	Gyrus	uncorrected	for	total	hippocampal	volume	

	 	



HATA	corrected	for	total	hippocampal	volume	

	 	



HATA	uncorrected	for	total	hippocampal	volume	

	
	 	



Tail	corrected	for	total	hippocampal	volume	

	 	



Tail	uncorrected	for	total	hippocampal	volume	
	

	 	



Fissure	corrected	for	total	hippocampal	volume	

	 	



Fissure	uncorrected	for	total	hippocampal	volume	
	

	 	



Molecular	Layer	corrected	for	total	hippocampal	volume	

	 	



Molecular	Layer	uncorrected	for	total	hippocampal	volume	
	

	 	



Parasubiculum	corrected	for	total	hippocampal	volume	
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Presubiculum	corrected	for	total	hippocampal	volume	
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Subiculum	corrected	for	total	hippocampal	volume	

	 	



Subiculum	uncorrected	for	total	hippocampal	volume	
	

	
	
	
	
	 	



Figure	S4	Forest	plot	per	lead	SNP	of	the	whole-genome	significant	loci	across	all	the	subfields.	
	









































	



Linkage	disequilibrium	score	regression	(LDSR)	

LDSR	 utilizes	 the	 fact	 that	 the	 effect	 size	 of	 any	 given	 SNP	 relates	 to	 its	 LD	 structure	with	 causal	

variants,	whereas	inflation	of	test	statistics	by	cryptic	relatedness	or	population	stratification	will	be	

independent	of	LD.	As	such,	it	can	isolate	true	polygenic	signals,	expressed	in	an	‘LD	Score’.	Cross-trait	

LDSR	builds	on	this	by	taking	the	product	of	Z-scores	from	two	traits	to	estimate	their	genetic	overlap.	

Note	that	this	technique	is	robust	against	sample	overlap,	which	is	accounted	for	by	the	intercept.	For	

more	information,	please	see	Bulik-Sullivan	et	al.	(22).	

	

Conditional/conjunction	false	discovery	rate	(FDR)	

Conditional	FDR	 re-ranks	 test	 statistics	of	SNPs	 for	one	 trait	 (here,	hippocampal	 subfield	volumes)	

based	 on	 their	 strength	 of	 association	 with	 a	 second	 trait	 (here,	 AD	 and	 schizophrenia).	 Genetic	

overlap	 can	 be	 visualized	 through	 conditional	 QQ-plots,	 plotting	 the	 observed	 distribution	 of	 test	

statistics	from	the	first	trait	thresholded	at	increasing	levels	of	association	with	the	second	trait	(here	

we	used	p<.1,	p<.01,	and	p<.001).	Pleiotropic	enrichment	will	show	up	as	increasing	deflections	from	

the	 null	 distribution,	 see	 Figure	 3	 in	 the	main	 text	 and	 the	 figures	 below.	 Conjunctional	 FDR	 can	

identify	specific	shared	variants,	by	selecting	those	SNPs	that	have	a	conditional	FDR	value	below	.05	

on	 both	 traits.	 The	 strength	 of	 these	 techniques,	 compared	 to	 LDSR,	 lies	 in	 the	 fact	 that	 overlap	

between	the	traits	is	detected	regardless	of	the	direction	of	allelic	effects,	which	could	be	mixed.	For	

more	information,	please	see	Andreassen	et	al.	(23,24).	

	 	



Figure	S5.	Conditional	QQ	plots,	conditioning	the	subfields	genome-wide	significance	statistics	on	those	for	
schizophrenia	and	Alzheimer’s	disease.		
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